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Abstract. In this paper we present a recent result about the propagation of weakly nonlinear surface

waves on a plasma-vacuum interface. In the plasma region we consider the equations of incompressible
magnetohydrodynamics, while in vacuum the magnetic and electric fields are governed by the Maxwell

equations. A surface wave propagate along the plasma-vacuum interface, when it is linearly weakly

stable.
Following the approach of Al̀ı and Hunter, we measure the amplitude of the surface wave by the

normalized displacement of the interface in a reference frame moving with the linearized phase velocity

of the wave, and obtain that it satisfies an asymptotic nonlocal, Hamiltonian evolution equation with
quadratic nonlinearity. We show the local-in-time existence of smooth solutions to the Cauchy problem

for the amplitude equation in noncanonical variables, and we derive the regularity of the first order

corrections of the asymptotic expansion.

1. Introduction

Plasma-vacuum interface problems appear in the mathematical modeling of plasma confinement by
magnetic fields in thermonuclear energy production (as in Tokamaks and Stellarators; see, e.g., [4]). In
this model, the plasma is confined inside a perfectly conducting rigid wall and isolated from it by a region
containing very low density plasma, which may qualify as vacuum, due to the effect of strong magnetic
fields. In Astrophysics, the plasma-vacuum interface problem can be used for modeling the motion of a
star or the solar corona when magnetic fields are taken into account.

For the sake of simplicity, in [11] we consider the plasma-vacuum interface problem in two-dimensions,
with the coupling of the incompressible MHD equations in the plasma region and the Maxwell equations
in the vacuum region. The solution is close to a stationary basic state with parallel magnetic fields at
the flat interface.

To study the time evolution of the plasma-vacuum interface we follow the approach of Al̀ı and Hunter
in [1] and we show that, in a unidirectional surface wave, the normalized displacement x2 = ϕ(t, x1) of
a weakly stable surface wave along the interface, in a reference frame moving with the linearized phase
velocity of the wave, satisfies the quadratically nonlinear, nonlocal asymptotic equation

ϕt + 1
2H[Φ2]xx + Φϕxx = 0, Φ = H[ϕ] . (1)

Here H denotes the Hilbert transform defined by

H[ϕ](x) =
1

π
p.v.

∫ +∞

−∞

ϕ(y)

x− y
dy,

and such that
H[eikx] = −i sgn(k) eikx , F [H[ϕ]] = −i sgn(k)F [ϕ],

for F denoting the Fourier transformation.
Equation (1) coincides with the amplitude equation for nonlinear Rayleigh waves [5] and current-

vortex sheets in incompressible MHD [1, 2]. It is interesting that exactly the same equation appears for
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the incompressible plasma-vacuum interface problem, where in the vacuum part the electric and magnetic
fields are ruled by the Maxwell equations. The derivation of the same equation confirms that (1) is a
canonical model equation for nonlinear surface wave solutions of hyperbolic conservation laws, analogous
to the inviscid Burgers equation for bulk waves. Equation (1) also admits the alternative spatial form

ϕt + [H,Φ]Φxx + H[Φ2
x] = 0 , (2)

where [H,Φ] is the commutator of H with multiplication by Φ, see [8]. The alternative form (2) shows
that (1) is an equation of first order, due to a cancelation of the second order spatial derivatives appearing
in (1).

By adapting the proof of [7], in [11] we show the local-in-time existence of smooth solutions to the
Cauchy problem for amplitude equation in noncanonical variables, and we derive a blow up criterion.
Numerical computations [1, 5] show that solutions of (1) form singularities in which the derivative ϕx
blows up, but ϕ appears to remain continuous. As far as we know, the global existence of appropriate
weak solutions is an open question.

In the present note, from the previous existence result for the solution to the amplitude equation we
also derive the regularity of the first order asymptotic corrections of the plasma variables and magnetic
and electric fields in vacuum.

2. The plasma-vacuum interface problem

We consider the equations of incompressible magneto-hydrodynamics (MHD), i.e. the equations gov-
erning the motion of a perfectly conducting inviscid incompressible plasma. In the case of a homogeneous
plasma (the density ρ ≡ const > 0), the equations in a dimensionless form read:

∂tv +∇ · (v ⊗ v −B⊗B) +∇q = 0 ,

∂tB−∇× (v ×B) = 0 ,

divv = 0 , divB = 0 ,

(3)

where v denotes the plasma velocity, B is the magnetic field (in Alfvén velocity units), q = p+ |B|2/2 is
the total pressure, p being the pressure.

For smooth solutions, system (3) can be written in equivalent form as a symmetric system
∂tv + (v · ∇)v − (B · ∇)B +∇q = 0 ,

∂tB + (v · ∇)B− (B · ∇)v = 0 ,

divv = 0 .

(4)

In addition the magnetic field must satisfy the constraint

divB = 0 ,

which is preserved by the evolution in time if it is satisfied by the initial data.
Let Ω+(t) and Ω−(t) be space-time domains occupied by the plasma and the vacuum respectively,

separated by an interface Γ(t). That is, in the domain Ω+(t) we consider system (4) governing the
motion of the plasma and in the domain Ω−(t) we have the Maxwell system{

ν∂tH +∇× E = 0 ,

ν∂tE−∇× H = 0 ,
(5)

describing the vacuum magnetic and electric fields H,E ∈ R3. Here, the equations are written in
nondimensional form through a suitable scaling (see Mandrik–Trakhinin [9]), and ν = v̄

c , where v̄ is the
velocity of a uniform flow and c is the speed of light in vacuum. If we choose v̄ to be the speed of sound
in vacuum, we have that ν is a small, even though fixed parameter. System (5) is supplemented by the
divergence constraints

divH = divE = 0

on the initial data.
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For the sake of simplicity we consider the case of two space dimensions and write

v = (v1, v2)T , B = (B1, B2)T .

In the (three-dimensional) Maxwell equations (5) we assume that

H = (H1, H2, 0)T ,

and that there is no dependence of H on the third space variable x3. It follows from (5) that E takes the
form

E = (0, 0, E)T ,

and the Maxwell equations reduce to
ν∂tH1 + ∂2E = 0 ,

ν∂tH2 − ∂1E = 0 ,

ν∂tE − ∂1H2 + ∂2H1 = 0 ,

(6)

under the constraint

∂1H1 + ∂2H2 = 0

on the initial data. From now on we write

H = (H1, H2)T ,

hoping that this small abuse of notation will create no confusion for the reader.
Let us assume that the moving interface Γ(t) takes the form

Γ(t) := {(x1, x2) ∈ R2 , x2 = ζ(x1, t)} ,

where t ∈ [0, T ], and that Ω±(t) = {x2 ≷ ζ(x1, t)}.
The plasma variables are connected with the vacuum magnetic and electric fields on the interface Γ(t)

through the relations [4]

∂tζ = v ·N , q = 1
2

(
H2

1 +H2
2 − E2

)
,

B ·N = 0 , H ·N = 0 , E − νζtH1 = 0 on Γ(t) ,
(7)

where N = (−∂1ζ, 1) is a normal vector and [q] = q|Γ − 1
2 |H|

2
|Γ + 1

2 |E|
2
|Γ is the jump of the total pressure

across the interface.
A stationary solution of the 2-D equations (4) and (6), (7) with interface located at {x2 = 0} is given

by the constant states

v0 = (v0
1 , 0)T , B0 = (B0

1 , 0)T ,

H0 = (H0
1 , 0)T , E0 = 0, q0 =

1

2
(H0

1 )2.

We will consider the propagation of surface waves localized near the interface. The corresponding solutions
must satisfy the decay conditions

lim
x2→+∞

(v,B, q) = U0 := (v0
1 , 0, B

0
1 , 0, q

0) ,

lim
x2→−∞

(H, E) = V 0 := (H0
1 , 0, 0) .

(8)
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3. The asymptotic expansion

As in [1] we suppose that the perturbed interface has a slope of the order ε, where ε is a small
parameter. With respect to dimensionless variables in which the wavelength of the perturbation and
the velocity of the surface wave are of the order one, the time scale for quadratically nonlinear effects
to significantly alter the wave profile is of the order ε−1. We therefore introduce a “slow”time variable
τ = εt. We also introduce a spatial variable θ = x1 − λt in a reference frame moving with the surface
wave. Here, λ is the linearized phase velocity of the wave, which we will determine as part of the solution.

We write the perturbed location of the interface as

x2 = εϕ(θ, τ ; ε),

and define a new independent variable

η = x2 − εϕ(θ, τ ; ε),

so that the perturbed interface is located at η = 0. We look for an asymptotic expansion of the solution
U = (v,B, q)T , V = (H, E)T and ϕ as ε→ 0 of the form

U(θ, η, τ ; ε) = U0 + εU (1)(θ, η, τ) + ε2U (2)(θ, η, τ) +O(ε3), η > 0,
V (θ, η, τ ; ε) = V 0 + εV (1)(θ, η, τ) + ε2V (2)(θ, η, τ) +O(ε3), η < 0,
ϕ(θ, τ ; ε) = ϕ(1)(θ, τ) + εϕ(2)(θ, τ) +O(ε2).

(9)

We expand the partial derivatives with respect to the original time and space variables as

∂t = −λ∂θ + ε(∂τ + λϕθ∂η)− ε2ϕτ∂η,
∂x1

= ∂θ − εϕθ∂η,
∂x2

= ∂η.

We substitute these expansions in (4), (6), Taylor expand the result with respect to ε and equate coeffi-
cients of ε1 and ε2 to zero. In the interior the asymptotic solution satisfies at the first order

(λ− v0
1)∂θv

(1) +B0
1∂θB

(1) −

(
∂θ

∂η

)
q(1) = 0 ,

(λ− v0
1)∂θB

(1) +B0
1∂θv

(1) = 0 ,

∂θv
(1)
1 + ∂ηv

(1)
2 = 0 , for η > 0,

(10)


νλ∂θH

(1)
1 − ∂ηE(1) = 0 ,

νλ∂θH
(1)
2 + ∂θE

(1) = 0 ,

νλ∂θE
(1) + ∂θH

(1)
2 − ∂ηH(1)

1 = 0 , for η < 0.

(11)

We expand the jump conditions in (7), with ζ = εϕ, and equate coefficients of ε1 and ε2 to zero. We find
that the solutions satisfy at the first order the following jump conditions

(λ− v0
1)∂θϕ

(1) + v
(1)
2 = 0 ,

B0
1∂θϕ

(1) −B(1)
2 = 0 , H0

1∂θϕ
(1) −H(1)

2 = 0 ,

q(1) = H0
1H

(1)
1 , E(1) + νλH0

1∂θϕ
(1) = 0 , for η = 0.

(12)

At the second order we obtain
(λ− v0

1)∂θv
(2) +B0

1∂θB
(2) −

(
∂θ

∂η

)
q(2) = p1 ,

(λ− v0
1)∂θB

(2) +B0
1∂θv

(2) = p2 ,

−∂θv(2)
1 − ∂ηv(2)

2 = p3 , for η > 0,

(13)


νλ∂θH

(2)
1 − ∂ηE(2) = p′1 ,

νλ∂θH
(2)
2 + ∂θE

(2) = p′2 ,

νλ∂θE
(2) + ∂θH

(2)
2 − ∂ηH(2)

1 = p′3 , for η < 0,

(14)
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and the jump conditions
(λ− v0

1)∂θϕ
(2) + v

(2)
2 = r1 ,

B0
1∂θϕ

(2) −B(2)
2 = r2 , H0

1∂θϕ
(2) −H(2)

2 = r3 ,

q(2) −H0
1H

(2)
1 = r4 , E(2) + νλH0

1∂θϕ
(2) = r5 , for η = 0,

(15)

where we have denoted

p1 := (∂τ + λϕ
(1)
θ ∂η)v(1) + (v

(1)
1 ∂θ + v

(1)
2 ∂η − v0

1ϕ
(1)
θ ∂η)v(1)

−(B
(1)
1 ∂θ +B

(1)
2 ∂η −B0

1ϕ
(1)
θ ∂η)B(1) −

(
ϕ

(1)
θ ∂ηq

(1)

0

)
,

p2 := (∂τ + λϕ
(1)
θ ∂η)B(1) + (v

(1)
1 ∂θ + v

(1)
2 ∂η − v0

1ϕ
(1)
θ ∂η)B(1)

−(B
(1)
1 ∂θ +B

(1)
2 ∂η −B0

1ϕ
(1)
θ ∂η)v(1) ,

p3 := −ϕ(1)
θ ∂ηv

(1)
1 ,

p′1 := ν(∂τ + λϕ
(1)
θ ∂η)H

(1)
1 , p′2 := ν(∂τ + λϕ

(1)
θ ∂η)H

(1)
2 + ϕ

(1)
θ ∂ηE

(1) ,

p′3 := ν(∂τ + λϕ
(1)
θ ∂η)E(1) + ϕ

(1)
θ ∂ηH

(1)
2 ,

r1 := (∂τ + v
(1)
1 ∂θ)ϕ

(1) , r2 := −B(1)
1 ∂θϕ

(1) ,

r3 := −H(1)
1 ∂θϕ

(1) , r4 :=
1

2

(
|H(1)|2 − (E(1))2

)
,

r5 := −νλH(1)
1 ∂θϕ

(1) + νH0
1∂τϕ

(1) .

The next step is the resolution of equations (10)–(15).

4. The first order equations

We first solve system (10)–(12) by Fourier transformation. Introducing the Fourier transforms

Û (1)(k, η, τ) =
1

2π

∫ +∞

−∞
U (1)(θ, η, τ)e−ikθdθ,

V̂ (1)(k, η, τ) =
1

2π

∫ +∞

−∞
V (1)(θ, η, τ)e−ikθdθ,

ϕ̂(1)(k, τ) =
1

2π

∫ +∞

−∞
ϕ(1)(θ, τ)e−ikθdθ,

and Fourier transforming (10)–(12) with respect to θ, we find a system of the form

ikAÛ (1) + B∂ηÛ (1) = 0 , (16)

with suitable real symmetric matrices A,B. As shown in [11], the general solution of (16) is

Û (1)(k, η, τ) = a(k, τ)e−kηR + b(k, τ)ekηR , η > 0 , (17)

where

R = (λ− v0
1 , i(λ− v0

1),−B0
1 ,−iB0

1 , d)T and d := (λ− v0
1)2 − (B0

1)2.

Here a(k, τ) and b(k, τ) are arbitrary complex-valued functions, the bar denotes a complex conjugate.
The condition (8) at infinity implies

lim
η→+∞

Û (1)(k, η, τ) = 0 , (18)

yielding from (17)

Û (1)(k, η, τ) =

{
a(k, τ)e−kηR, if k > 0 ,

b(k, τ)ekηR, if k < 0 .
(19)

Then we consider problem (11) for η < 0. First of all we see that Ê(1) obeys the equation

∂2
ηÊ

(1) + k2(ν2λ2 − 1)Ê(1) = 0. (20)
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Thus, in order to have
lim

η→−∞
V̂ (1)(k, η, τ) = 0 (21)

(obtained from (8)), we need to prescribe in (20)

ν|λ| < 1. (22)

It is easily seen that the general solution of (11) is

Ĥ
(1)
1 (k, η, τ) = σ(λ)

iνλ

{
α(k, τ)eσ(λ)kη − β(k, τ)e−σ(λ)kη

}
,

Ĥ
(1)
2 (k, η, τ) = − 1

νλ

{
α(k, τ)eσ(λ)kη + β(k, τ)e−σ(λ)kη

}
,

Ê(1)(k, η, τ) = α(k, τ)eσ(λ)kη + β(k, τ)e−σ(λ)kη ,

(23)

where α(k, τ) and β(k, τ) are arbitrary complex-valued functions and

σ(λ) :=
√

1− ν2λ2 > 0 .

Finally, imposing the condition (21) at infinity to (23) we find that

V̂ (1)(k, η, τ) =



α(k, τ)eσ(λ)kη

−iσ(λ)/νλ

−1/νλ

1

 , if k > 0 ,

β(k, τ)e−σ(λ)kη

iσ(λ)/νλ

−1/νλ

1

 , if k < 0 .

(24)

Next, we use the solution (19), (24) in the jump conditions (12). First we consider the case k > 0.
Under the assumption λ − v0

1 6= 0 or B0
1 6= 0, the resulting equations may be written as a linear system

for the unknowns (a, α, kϕ̂(1)):1 0 1
0 1 iνλH0

1

d iσ(λ)H0
1/νλ 0

 a
α

kϕ̂(1)

 = 0. (25)

This system has a nontrivial solution if and only if

d = (λ− v0
1)2 − (B0

1)2 = (H0
1 )2σ(λ). (26)

Real roots λ of (22), (26) do not exist for all stationary states (v0
1 , B

0
1 , H

0
1 ), but only for those satisfying

a suitable physical condition, as discussed in the following lemma.

Lemma 1. (1) If |B0
1 | > |v0

1 |+ 1/ν, equation (26) does not have any real root.
(2) If |B0

1 | = |v0
1 | + 1/ν, for all |H0

1 | > 0 and v0
1 6= 0 there exists one real root λ = −sgn(v0

1)/ν. If
v0

1 = 0 then λ = ±1/ν. Thus in any case |λ| = 1/ν.
(3) If |v0

1 | − 1/ν ≤ |B0
1 | < |v0

1 |+ 1/ν, for all |H0
1 | > 0 there exist one or two real roots λ of (26) such

that |λ| < 1/ν.
(4) If |B0

1 | < |v0
1 | − 1/ν, there exists H∗ > 0 such that, for all |H0

1 | ≥ H∗, there exist two real roots
λ of (26) such that |λ| < 1/ν (coincident roots if |H0

1 | = H∗); if |H0
1 | < H∗ (26) does not have

any real root.

Proof. See [11]. �

We choose λ to be one of the values found in Lemma 1 such that |λ| < 1/ν (cases 3 and 4). Observe
that for all such |λ| < 1/ν, from (26) there holds λ 6= v0

1 and λ 6= v0
1 ±B0

1 , i.e. d 6= 0.
The solution of (25) is then

a = −kϕ̂(1), α = −νλH0
1 ikϕ̂

(1) if k > 0 . (27)

For k < 0 the analysis is similar and gives the solution

b = kϕ̂(1), β = −νλH0
1 ikϕ̂

(1) if k < 0 , (28)
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under the same condition (26).
Summarizing these results, we have shown that when λ satisfies (22), (26), the solution of (10)–(12),

(18), (21) is given by

Û (1)(k, η, τ) =

{
−|k|ϕ̂(1)(k, τ)e−kηR, if k > 0 ,

−|k|ϕ̂(1)(k, τ)ekηR, if k < 0 ,
(29)

V̂ (1)(k, η, τ) = H0
1 ϕ̂

(1)(k, τ)eσ(λ)|k|η

−σ(λ)|k|
ik
−iνλk

 . (30)

This solution depends on the unknown function ϕ̂(1)(k, τ), which describes the profile of the surface wave,
and will be determined through a solvability condition for the equations for the second order corrections.

5. The second order equations

We introduce the Fourier transforms

Û (2)(k, η, τ) =
1

2π

∫ +∞

−∞
U (2)(θ, η, τ)e−ikθdθ,

V̂ (2)(k, η, τ) =
1

2π

∫ +∞

−∞
V (2)(θ, η, τ)e−ikθdθ,

ϕ̂(2)(k, τ) =
1

2π

∫ +∞

−∞
ϕ(2)(θ, τ)e−ikθdθ.

5.1. The second order equations in the plasma region. Fourier transforming (13) with respect to
θ gives the system of equations

ikAÛ (2) + B∂ηÛ (2) = p̂ , (31)

where A,B are the same matrices of (16). From (8), the solution of (31) must satisfy the decay condition

lim
η→+∞

Û (2)(k, η, τ) = 0 . (32)

In order to solve (31), (32), in [11] we proceed as in [1]. We look for a solution of (31) in the form

Û (2)(k, η, τ) = S(k, η, τ) + a(k, η, τ)R + b(k, η, τ)R, (33)

with a suitable vector-valued function S and scalar functions a, b. We look for S such that

L · BS = L · BS = 0 , (34)

where L is an eigenvector of

L · (iA− B) = 0 ,

normalized by

L · BR = L · BR = 1 ,

that is

L = − 1

2id(λ− v0
1)
R .

In [11] we show that the solution S is given by

S =

(
1

k
L1 · p̂, 0,

1

k
L3 · p̂,

1

k
L4 · p̂, 0

)T
, (35)

where

L1 =
1

d

(
−i(λ− v0

1), 0, iB0
1 , 0, 0

)T
, L3 =

1

d

(
iB0

1 , 0,−i(λ− v0
1), 0, 0

)T
,

L4 =

(
0, 0, 0,− i

λ− v0
1

, 0

)T
.
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As for a, b, they are given by

a(k, η, τ) = e−kη
(
a0(k, τ) +

∫ η

0

L · p̂(k, η′, τ)ekη
′
dη′
)
, (36)

b(k, η, τ) = ekη
(
b0(k, τ) +

∫ η

0

L · p̂(k, η′, τ)e−kη
′
dη′
)
, (37)

where a0(k, τ), b0(k, τ) are arbitrary functions of integration, that will be chosen later.

In order to verify the decay condition (32) for Û (2)(k, η, τ), we first explicitly calculate S(k, η, τ) from
(35). This is a very long expression that we don’t report for the sake of brevity. The fact that we need
here is that S depends on η only through the exponentials of −|k|η and −(|k − `|+ |`|)η, so that

lim
η→+∞

S(k, η, τ) = 0 .

Thus Û (2)(k, η, τ) satisfies (32) if and only if

lim
η→+∞

a(k, η, τ) = 0 , (38)

lim
η→+∞

b(k, η, τ) = 0 . (39)

From (36), (37), and the explicit calculation of L · p̂(k, η, τ),L · p̂(k, η, τ), it follows that condition (38) is
automatically satisfied if k > 0, and (39) is automatically satisfied if k < 0. It follows that a0 remains
undetermined for k > 0, and b0 remains undetermined for k < 0. Instead, (36)–(39) may be used to
determine a0 if k < 0, and b0 if k > 0, as functions of ϕ̂(1):

a0(k, τ) = −
∫ +∞

0

L · p̂(k, η′, τ)ekη
′
dη′ , if k < 0 , (40)

b0(k, τ) = −
∫ +∞

0

L · p̂(k, η′, τ)e−kη
′
dη′ , if k > 0 . (41)

5.2. The second order equations in vacuum. We take the Fourier transform of (14) in θ for η < 0.

The problem is easily solved by substitution of ikĤ
(2)
2 = (p̂′2 − ikÊ(2))/νλ in the other equations to give

∂2
ηÊ

(2) + k2(ν2λ2 − 1)Ê(2) = −P, (42)

where P = νλikp̂′3 − ikp̂′2 + ∂ηp̂
′
1. We solve (42) with the decay condition

lim
η→−∞

Ê(2)(k, η, τ) = 0 ,

then we substitute in the other equations to find the other components of V̂ (2)(k, η, τ) and obtain

V̂ (2)(k, η, τ) = α′(k, τ)eσ(λ)kη

 σ(λ)
iνλ
− 1
νλ
1



+
1

2|k|σ(λ)


1

νλik

{∫ 0

−∞ e−σ(λ)|k||η−ζ|∂ζP (k, ζ, τ) dζ − e−σ(λ)|kη|P (k, 0, τ)
}

− 1
νλ

∫ 0

−∞ e−σ(λ)|k||η−ζ|P (k, ζ, τ) dζ∫ 0

−∞ e−σ(λ)|k||η−ζ|P (k, ζ, τ) dζ

+

 1
νλik p̂

′
1

1
νλik p̂

′
2

0

 , if k > 0 ,

(43)
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V̂ (2)(k, η, τ) = β′(k, τ)e−σ(λ)kη

−σ(λ)
iνλ
− 1
νλ
1



+
1

2|k|σ(λ)


1

νλik

{∫ 0

−∞ e−σ(λ)|k||η−ζ|∂ζP (k, ζ, τ) dζ − e−σ(λ)|kη|P (k, 0, τ)
}

− 1
νλ

∫ 0

−∞ e−σ(λ)|k||η−ζ|P (k, ζ, τ) dζ∫ 0

−∞ e−σ(λ)|k||η−ζ|P (k, ζ, τ) dζ

+

 1
νλik p̂

′
1

1
νλik p̂

′
2

0

 , if k < 0 .

(44)

Notice that we need to determine the arbitrary functions α′(k, τ) if k > 0, and β′(k, τ) if k < 0.

5.3. The second order jump conditions. The first-order solution depends on the unknown function
ϕ̂(1)(k, τ), which describes the profile of the surface wave, while the second order solution depends,
in addition, on unknown functions a0(k, τ), b0(k, τ) and α′(k, τ), β′(k, τ). Now we study the second
order jump conditions and show that they reduce to a singular linear system of algebraic equations for
(a0, b0, α

′, β′, ϕ̂(2)), where ϕ̂(2)(k, τ) is the Fourier transform of the second-order displacement of the
interface. Imposing solvability conditions on this system gives the evolution equation for the function
ϕ̂(1)(k, τ) that we seek.

We take the Fourier transform of (15), where we substitute the second order corrections obtained in
the previous sections, evaluated at η = 0.

Let us first assume k > 0, recalling that in this case we need to determine a0(k, τ), α′(k, τ) and
ϕ̂(2)(k, τ) (for k > 0). In this case we obtain the linear system

1 0 1
1 0 1
0 1/νλ iH0

1

d iσ(λ)H0
1/νλ 0

0 1 iνλH0
1


 a0

α′

kϕ̂(2)

 =


r̂′1
r̂′2
r̂′3
r̂′4
r̂′5

 , (45)

where r̂′1, . . . , r̂
′
5 depend on the first order corrections and b0 given by (41) (in case k > 0 it is known).

First of all we see that the first two lines of the matrix in the left-hand side of (45) are equal, and we can
also verify that r̂′1 = r̂′2. Moreover, the last row of the matrix in (45) equals the third one multiplied by
νλ, and actually one verifies that r̂′5 = νλr̂′3. Thus (45) may be reduced to1 0 1

0 1/νλ iH0
1

d iσ(λ)H0
1/νλ 0

 a0

α′

kϕ̂(2)

 =

r̂′1r̂′3
r̂′4

 . (46)

The determinant of the matrix of this system is zero because of (26), i.e. the equation defining λ. It is
easily seen that the rank of this matrix is 2. Then, the linear system (46) is solvable if and only if the
rank of the augmented matrix is also equal to 2, and this is true if the following condition holds:

dr̂′3 + iH0
1 r̂
′
4 − iH0

1dr̂
′
1 = 0 . (47)

Developing the terms in (47) we get the solvability condition(
2
λ− v0

1

d
+

ν2λ

σ(λ)2

)
ϕ̂(1)
τ (k, τ) + i

∫ +∞

−∞
Λ+(k, `)ϕ̂(1)(k − `, τ)ϕ̂(1)(`, τ) d` = 0 , k > 0 , (48)

where we have denoted

Λ+(k, `) = `
|k − `|(|k − `| − |`|) + (k − `)|`| − |k − `|`

|k − `|+ |k|+ |`|
+

(k − `)|`|(|`| − `)
|k|+ |`|

− (k − `)|`|

+ σ(λ)
{
− k|`|+ 1

2

(
(k + `)`− |k − `||`|

)}
. (49)

Thus, when k > 0, the system (46) is solvable if and only if ϕ̂(1) satisfies equation (48) and then
the rank of the augmented matrix of the system is equal to 2. Given the solution ϕ̂(1) of (48) we

compute Û (1), V̂ (1) from (29), (30). Thus the leading-order term of the asymptotic expansion is uniquely
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determined. From system (46) we may obtain a0, α
′ in terms of an arbitrary second order wave profile

ϕ̂(2), and in turn Û (2), V̂ (2) from the expressions obtained in the previous sections. The wave profile ϕ̂(2)

should be determined by considering higher order terms of the asymptotic expansion, see [10].
The analysis for k < 0 is similar and leads to the solvability condition(

2
λ− v0

1

d
+

ν2λ

σ(λ)2

)
ϕ̂(1)
τ (k, τ) + i

∫ +∞

−∞
Λ−(k, `)ϕ̂(1)(k − `, τ)ϕ̂(1)(`, τ) d` = 0 , k < 0 , (50)

where we have denoted

Λ−(k, `) = `
|k − `|(|k − `| − |`|)− (k − `)|`|+ |k − `|`

|k − `|+ |k|+ |`|
+

(k − `)|`|(|`|+ `)

|k|+ |`|
− (k − `)|`|

+ σ(λ)
{
− k|`| − 1

2

(
(k + `)`− |k − `||`|

)}
. (51)

Given the solution ϕ̂(1) of (50) we compute Û (1), V̂ (1) from (29), (30). We may get b0, β
′ in terms of

an arbitrary second order wave profile ϕ̂(2), and in turn Û (2), V̂ (2) from the expressions obtained in the
previous sections. Again, also for k < 0 the wave profile ϕ̂(2) should be determined by considering higher
order terms of the asymptotic expansion, see [10].

5.4. The kernel. The equations (48), (50) can be written in more compact form as(
2
λ− v0

1

d
+

ν2λ

σ(λ)2

)
ϕ̂(1)
τ (k, τ) + i

∫ +∞

−∞
Λ0(k, `)ϕ̂(1)(k − `, τ)ϕ̂(1)(`, τ) d` = 0 , ∀ k 6= 0 , (52)

with kernel

Λ0(k, `) =

{
Λ+(k, `) k > 0,

Λ−(k, `) k < 0,

where Λ± are defined in (49), (51). This form is not convenient and so we look for a different formula.
First we write it as

Λ0(k, `) = sgn(k) Λ̃0(k− `, `),
so that the integral in (52) takes the form of a convolution product. Moreover, the new kernel Λ̃0(k, `)
can be equivalently replaced in (52) by the symmetrized kernel

Λ̃(k, `) =
1

2

(
Λ̃0(k, `) + Λ̃0(`, k)

)
, (53)

because the antisymmetric part of Λ̃0 gives a vanishing integral. Thus we can write (52) as(
2
λ− v0

1

d
+

ν2λ

σ(λ)2

)
ϕ̂(1)
τ (k, τ) + i sgn(k)

∫ +∞

−∞
Λ̃(k− `, `) ϕ̂(1)(k− `, τ) ϕ̂(1)(`, τ) d` = 0 , ∀ k 6= 0 .

(54)

The explicit formula of Λ̃ is still rather complicated, see [11], but there is the way to simplify it. First of

all we verify that Λ̃ satisfies the following properties

Λ̃(k, `) = Λ̃(`, k) (symmetry),

Λ̃(k, `) = Λ̃(−k,−`) (reality),

Λ̃(αk, α`) = α2Λ̃(k, `) ∀α > 0 (homogeneity).

(55)

Considering some particular cases we can considerably simplify Λ̃ as follows

Λ̃(k, `) =

{
−(1 + σ(λ))k` if k > 0, ` > 0 ,

(1 + σ(λ))`(k + `) if k + ` > 0, ` < 0 .
(56)

Then the values of Λ̃ in the other regions of the (k, `)-plane follow from (55), (56). Finally Λ̃ can be
written in a different way as

Λ̃(k, `) = −(1 + σ(λ))
2|k + `| |k| |`|
|k + `|+ |k|+ |`|

, (57)
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and, after an appropriate rescaling in time, we write (54), (57) as

ϕ̂(1)
τ (k, τ) + i sgn(k)

∫ +∞

−∞
Λ(k− `, `) ϕ̂(1)(k− `, τ) ϕ̂(1)(`, τ) d` = 0 , ∀ k 6= 0 , (58)

with the new kernel Λ defined by

Λ(k, `) =
2|k + `| |k| |`|
|k + `|+ |k|+ |`|

. (59)

The spacial form of (58), (59) is, see [2, 5],

ϕ
(1)
τ + 1

2H[Φ2]θθ + Φϕ
(1)
θθ = 0, Φ = H[ϕ(1)] ,

where H denotes the Hilbert transform. After renaming of variables it becomes (1), (2).
Equation (58), (59) is well-known as it coincides with the amplitude equation for nonlinear Rayleigh

waves [5] and describes the propagation of surface waves on a tangential discontinuity (current-vortex
sheet) in incompressible MHD [1]. The derivation of the asymptotic equation (58), (59) also for the
plasma-interface problem confirms that it is a canonical model equation for nonlinear surface wave solu-
tions of hyperbolic conservation laws, analogous to the inviscid Burgers equation for bulk waves.

Λ, defined in (59), is perhaps the simplest kernel arising for surface waves. It satisfies the properties

Λ(k, `) = Λ(`, k) (symmetry), (60a)

Λ(k, `) = Λ(−k,−`) (reality), (60b)

Λ(αk, α`) = α2Λ(k, `) ∀α > 0 (homogeneity), (60c)

Λ(k + `,−`) = Λ(k, `) ∀k, ` ∈ R (Hamiltonian). (60d)

The value 2 of the scaling exponent in (60c) is consistent with the dimensional analysis in [2] for surface
waves. It is shown by Al̀ı et al. [2] that (60d) is a sufficient condition for (54), in addition to (60a), (60b),
to admit a Hamiltonian structure, see also [5, 6].

The results of Sections 3 to 5 are summarized in the following theorem.

Theorem 2. Assume that v0
1 , B

0
1 , H

0
1 are as in (3) or (4) of Lemma 1, and let λ be a real root of (26).

Then the solution U = (v,B, q)T , V = (H, E)T , ϕ of (4), (6), (7) admits the asymptotic expansion (9),
where the first order terms of the expansion are defined in (29), (30). The location of the plasma-vacuum
interface is given by

x2 = εϕ(1)(x1 − λt, εt) +O(ε2),

as ε→ 0, with t = O(ε−1) and λ the linearized phase velocity of the surface wave. After an appropriate
rescaling in time, the Fourier transform of the leading order perturbation ϕ(1)(θ, τ) satisfies the amplitude
equation (58), (59).

We wish to stress that for the existence of surface waves propagating on the plasma-vacuum interface,
it is necessary to have a real root λ of (26) satisfying (22). This is obtained if the basic state v0

1 , B
0
1 , H

0
1

is as in (3) or (4) of Lemma 1.

6. Noncanonical variables and well-posedness

As in [7] we introduce the noncanonical dependent variable ψ(θ, τ) defined by

ψ(θ, τ) = |∂θ|1/2ϕ(1)(θ, τ), ψ̂(k, τ) = |k|1/2ϕ̂(1)(k, τ).

Then rewriting equation (58) in terms of ψ gives

ψ̂τ (k, τ) + i k

∫ +∞

−∞
S(k − `, `) ψ̂(k − `, τ) ψ̂(`, τ) d` = 0 , ∀ k 6= 0 , (61)

with kernel S given by

S(k, `) =
Λ(k, `)

|k`(k + `)|1/2
. (62)
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The definition of S is extended by setting

S(k, `) = 0 if k` = 0 .

The corresponding spatial form of (61) is

∂τψ + ∂θa(ψ,ψ) = 0 , (63)

where the bilinear form a is defined by

â(ψ, φ)(k, τ) =

∫ +∞

−∞
S(k − `, `) ψ̂(k − `, τ) φ̂(`, τ) d`. (64)

(63) has the form of a nonlocal Burgers equation, like (2.8) in [7], or (1.1) in [3].
We consider the initial value problem for the noncanonical equation (63), (64), supplemented by an

initial condition

ψ(θ, 0) = ψ0(θ). (65)

The well-posedness of (63)–(65) easily follows by adapting the proof of Hunter [7] (given for the periodic
setting) to our case.

Theorem 3. For any ψ0 ∈ Hs(R), s > 2, the initial value problem (63)–(65) has a unique local solution

ψ ∈ C(I;Hs(R)) ∩ C1(I;Hs−1(R))

defined on the time interval I = (−τ∗, τ∗), where

τ∗ =
1

Ks‖ψ0‖1−2/s
L2(R) ‖ψ0‖2/sHs(R)

, (66)

for a suitable constant Ks.

For a complete proof of Theorem 3 see [11]. The well-posedness result of Theorem 3 may be easily
recast as a similar result for (58), (59).

Sketch of proof. The proof is based on the a priori estimate∣∣∣∣ ddτ ‖ψ‖Hs(R)

∣∣∣∣ ≤ CCs‖ψ0‖1−2/s
L2(R) ‖ψ‖

1+2/s
Hs(R), (67)

deduced from the properties (60) of the kernel. Using Gronwall’s inequality, we deduce from (67) the
bound

‖ψ(·, τ)‖Hs(R) ≤ ‖ψ0‖Hs(R)

(
1− 2CCs

s
‖ψ0‖1−2/s

L2(R) ‖ψ0‖2/sHs(R)|τ |
)−s/2

, (68)

for |τ | < τ∗ where τ∗ is given by (66).
The rest of the proof follows from a standard Galerkin approximation. Given any function f ∈ Hs(R)

with Fourier transform f̂ we define the finite dimensional orthogonal projection

fN (θ) = PNf(θ) =

∫
|k|≤N

f̂(k)eikθdk .

We consider the Galerkin approximation ψN = PNψ, defined as the solution of the approximate system
of ODEs {

∂τψ
N + PN∂θa(ψN , ψN ) = 0 ,

ψN (θ, 0) = PNψ0(θ).
(69)

The approximate solutions ϕN satisfy the a priori estimate (68), uniformly in N . By standard arguments
we can extract a subsequence {ϕN} and pass to the limit in (69) to obtain a solution of (63). The
uniqueness of the solution follows by a standard argument. See [11] for details. �

In [11] we also obtain the following blow-up criterion.
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Lemma 4. Under the assumptions of Theorem 3, if ψ ∈ C(0, T ;Hs(R)) with 0 < T < +∞ is a solution
of (63) such that ∫ T

0

‖ψ(·, τ)‖2/s
′

s′ dτ < +∞ (70)

for some s′ > 2, then ψ is continuable to a solution ψ ∈ C(0, T ′;Hs(R)) with T ′ > T .

Proof. See [11]. �

The resolution of (58), (59) via the introduction of the noncanonical variable ψ(θ, τ), stated in Theorem
3, is the chief step. When this is achieved it is not difficult to obtain the regularity of the other first order
terms (29), (30) of the asymptotic expansion (9), as in the following lemma.

Lemma 5. For any ψ0 ∈ Hs(R), with integer s > 2, let

ψ ∈ C(I;Hs(R)) ∩ C1(I;Hs−1(R))

be the solution of (63)–(65), given by Theorem 3. Let ϕ(1) be defined by ψ(θ, τ) = |∂θ|1/2ϕ(1)(θ, τ), and

Û (1), V̂ (1) be defined by (29), (30). Then

U (1) ∈ C(I;Hs(R2
+)) ∩ C1(I;Hs−1(R2

+)), V (1) ∈ C(I;Hs(R2
−)) ∩ C1(I;Hs−1(R2

−)),

where R2
± = {(θ, η)| θ ∈ R,±η > 0}.

Proof. For the proof it is convenient to introduce the homogeneous space Ḣm(R) (w.r.to the independent
variable θ),

Ḣm(R) =

{
u(θ) : R→ R :

∫ +∞

−∞
|k|2m|û(k)|2 dk < +∞

}
,

normed by

‖u‖Ḣm(R) =

(∫ +∞

−∞
|k|2m|û(k)|2dk

)1/2

.

Let us consider integers m, p ≥ 0 such that m+ p ≤ s. For every τ ∈ I we have

‖∂pηU (1)(·, τ)‖2
L2(R+

η ;Ḣm(Rθ))
= ‖|k|m∂pη Û (1)(·, τ)‖2

L2(R2
+)
, (71)

recalling that our Fourier transform is taken w.r.to θ. Substituting the definition (29) gives

‖|k|m∂pη Û (1)(·, τ)‖2L2(R2
+) =

∫ ∞
0

∫
R
|k|2m+2|ϕ̂(1)(k, τ)|2|∂pηe−|k|η|2|R|2dkdη

=
1

2
|R|2

∫ ∞
0

∫
R
|k|2m+2p+1|ϕ̂(1)(k, τ)|22|k|e−2|k|ηdkdη

=
1

2
|R|2

∫
R
|k|2m+2p||k|1/2ϕ̂(1)(k, τ)|2dk =

1

2
|R|2‖ψ(·, τ)‖2

Ḣm+p(R)
. (72)

Adding over m, p ≥ 0 such that m+p ≤ s in (71), (72) gives U (1) ∈ L∞(I;Hs(R2
+)). The same calculation

for a difference at times τ1, τ2 gives

‖∂pηU (1)(·, τ1)− ∂pηU (1)(·, τ2)‖L2(R+
η ;Ḣm(Rθ)) ≤ C‖ψ(·, τ1)− ψ(·, τ2)‖Ḣm+p(R),

and adding again over m + p ≤ s gives the time continuity of U (1) in Hs(R2
+), by the time continuity

of ψ in Hs(R). Thus we have obtained U (1) ∈ C(I;Hs(R2
+)). The proof of U (1) ∈ C1(I;Hs−1(R2

+)) is
similar, thanks to the time continuity of ψτ in Hs−1(R). By the same arguments we prove the regularity
of V (1). �
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