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VKORC1 and CYP2C9 polymorphisms related to
adverse events in case-control cohort
of anticoagulated patients
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Abstract
Vitamin K antagonists (VKAs) are highly effective but have a narrow therapeutic index and require routine monitoring of the INR. The
primary aim of pharmacogenetics (PGx) is to optimize patient care, achieving drug treatments that are personalized according to the
genetic profile of each patient. The best-characterized genes involved in VKA PGx involve pharmacokinetics (VKORC1) and
pharmacodynamics (CYP2C9) of VKAmetabolism. The role of these genes in clinical outcomes (bleeding and thrombosis) during oral
anticoagulant (OAC) therapy is controversial. The aim of the present study was to evaluate any potential association between
genotype VKORC1 and CYP2C9 and adverse events (hemorrhagic and/or thrombotic), during initiation and long-term VKA
treatment, in Caucasian patients. Furthermore, we aimed to determine if the concomitant prescription of other selected drugs
affected the association between genotype and adverse events.
We performed a retrospective, matched case-control study to determine associations betweenmultiple gene variants, drug intake,

and any major adverse effects in anticoagulated patients, monitored in 2 Italian anticoagulation clinics.
Our results show that anticoagulated patients have a high risk of adverse events if they are carriers of 1 or more genetic

polymorphisms in the VKORC1 (rs9923231) and CYP2C9 (rs1799853 and rs1057910) genes.
Information onCYP2C9 and VKORC1 variants may be useful to identify individualized oral anticoagulant treatment for each patient,

improve management and quality of VKA anticoagulation control, and monitor drug surveillance in pharmacovigilance programs.

Abbreviations: AF = atrial fibrillation, CYP2C9 = cytochrome P450 2C9, DOAcs = direct oral anticoagulants, DVT = deep vein
thrombosis, MHV =mechanical heart valves, MI =myocardial infarction, OAC = oral anticoagulant, PE = pulmonary embolism, PGx
= pharmacogenetics, RTCs = randomized clinical trials, SNPs = single nucleotide polymorphisms, TIA = transient ischemic attack,
TTR = time in therapeutic range, VKAs = vitamin K antagonists, VKORC1 = vitamin K epoxide reductase complex subunit 1, VTE =
venous thromboembolism.
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1. Introduction after mechanical heart valve (MHV) replacement.[1] VKAs are
Vitamin K antagonists (VKAs: warfarin, acenocoumarol,
phenprocoumon, phenindione) are prescribed commonly for
treatment of venous thromboembolism (VTE), prevention of
thromboembolic complications in atrial fibrillation (AF), and
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highly effective but they have a narrow therapeutic index and
they require routine monitoring of the International Normalized
Ratio (INR). Over recent years, the oral anticoagulant (OAC)
therapy scenario has changed as a result of the introduction of
direct oral anticoagulants (DOAcs)[2,3] and improvements in
OACmanagement with VKAs, including pharmacogenetic (PGx)
studies, focused on identifying genetic determinants affecting
VKA dose requirements.[4–6] The best-characterized genes
involved in VKA PGx are vitamin K epoxide reductase complex
subunit 1 (VKORC1) and cytochrome P450 2C9 (CYP2C9). The
human VKORC1 gene (16p11.2) comprises 3 exons encoding
the catalytic subunit of the vitamin K epoxide reductase complex,
which is the key enzyme in the Vitamin K cycle.[7–10] A single
nucleotide polymorphism (SNP) in the VKORC1 promoter
(�1639G>A, rs9923231) results in a decreased transcription of
the gene and has been strongly associated with warfarin dose
requirements.[11,12] The CYP2C9 gene (10q24) encompasses 9
exons and it is highly polymorphic, as more than 60 variant
alleles have been identified (http://www.cypalleles.ki.se, last
access February 2016). CYP2C9 is one of the most abundant
cytochrome P450 in the liver and it metabolizes approximately
15%of clinical drugs.[13,14] Allelic variants aremissense, nonsense
or frame shift variations, causing a reduced or a null enzyme
activity.Themost frequent variant alleles inCaucasianpopulation,
CYP2C9∗2 (rs1799853) and CYP2C∗3 (rs1057910), in the
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homozygous condition, reduce enzyme activity to 12% and 5%,
respectively, compared to the wild-type genotype CYP2C9∗
1∗1.[15–16] The U.S. Food and Drug Administration (FDA)
updated the warfarin label, providing dose recommendations
based on different combinations of VKORC1 and CYP2C9
genotypes, in 2007 and 2010.[17] Guidelines for clinicians and
genetic-based algorithms have been implemented by the Interna-
tional PGx Warfarin Consortium.[18] Two recent randomized
clinical trials (RTCs)[19,20] aimed to assess the effect of the PGx-
guided initial drug dosing on improvement of Time in Therapeutic
Range (TTR). The RTCs showed contradictory results because of
the differences in the study design, and stimulated a considerable
debate on this matter.[21–30] Although there is robust evidence of
the association of genetic variants on dose requirement, the role of
these genes on the clinical outcome (bleeding and thrombosis)
during OAC therapy is controversial, as outlined in contradictory
results reported in recent meta-analyses.[31,32] The aim of the
present study is to evaluate potential associations between
genotype VKORC1 and CYP2C9 and adverse events (hemor-
rhagic and/or thrombotic) during initiation and long-term VKA
treatment, in aCaucasian population. Patientmonitoring occurred
in 2 specialized anticoagulation clinics. Furthermore, we aimed
to determine if the concomitant prescription of other selected
drugs (amiodarone,HMGCo-A reductase inhibitors [simvastatin],
antiplatelet medication) affected the association between genotype
and adverse events.
2. Materials and methods

2.1. Design overview

We performed a retrospective, matched case-control study
to examine associations among CYP2C9∗2, CYP2C9∗3,
VKORC1: c. �1639G>A polymorphisms, drug intake, and
any hemorrhagic and/or thrombotic event, in oral anticoagulated
patients. Cases and controls were enrolled and monitored in 2
Italian anticoagulation clinics (Anticoagulation Centre, Brescia
and Haemostasis and Thrombosis Centre, Cremona) between
2009 and 2014. Both centers are affiliated with the Italian
Federation of Anticoagulation Clinics (FCSA) and are placed in
hospitals in the main city.
2.2. Patients: eligibility criteria

In order to achieve a cohort representative, as far as possible, of
real life conditions, no explicit exclusion criteria were defined,
except for age and Caucasian ethnicity.
Cases included patients receiving OAC therapy with the

following characteristics:
-
-

Age greater than 18 years
Caucasian origin
-
 OAC therapy use for any condition (atrial fibrillation, AF;

venous thromboembolism, VTE; implanted mechanical heart
valves, MHV)
History of an adverse event (thrombotic and/or ischemic)
-

during therapy with VKAs.
Adverse events are those indicated in the Italian FCSA

guidelines[33]:
Major hemorrhages (cerebral bleeding; extra-cerebral bleeding
-

in a critical area or organ; a decline in hemoglobin levels by
2g/dL and/or requiring transfusion)
Thromboembolic events (stroke; transient ischemic attack, TIA;
-

myocardial acute infarction, IMA; venous thromboembolism,
2

VTE, including deep vein thrombosis, DVT, and pulmonary
embolism, PE).

Minor hemorrhagic events were excluded.
The control group consisted of 120 unrelated subjects who did

not experienced any adverse event and were matched to cases for
age, sex, clinical indication, and duration of anticoagulation.
2.3. Data source and genotyping

Electronic search was performed through software ParmaGTS

(Instrumentation Laboratory, Bedford, MA) in Brescia Haemo-
stasisCenter and inCremonaHaemostasis andThrombosisCentre
through TAONET (EDP-Project, Bozen, Italy), used for the
management, archiving, and referral of inpatients and outpatients
to the clinic. In the Brescia Haemostasis Centre, we initially
identified patients (N=458) with a history of any adverse event
occurring between 2009 and 2014. We excluded patients
experiencing a minor adverse event, those who died from any
cause, and patients who were not of Caucasian origin. We
identified 196 patients with major adverse events. We then
excluded patients who interruptedOAC (N=92); did notmeasure
INR as prescribed; or did not communicate the INR value, when
measured in a different setting, onmore than 3 occasions (N=28).
We obtained a total of 74 effective final cases. In order to achieve
the predetermined statistical power for the study, a further 46 cases
were enrolled from the Cremona Haemostasis and Thrombosis
Center. All controls were selected from Brescia Anticoagulation
Center. For both cases and controls, only patients with complete
clinical information were selected (Fig. 1). Clinical data, including
patient age, sex, indication for and duration of OAC therapy,
concomitant medication, medical history, and INR values, were
collected at the time of enrollment. In this phase of the study, we
only collected information regarding the following drugs:
amiodarone, HMGCo-A reductase inhibitors (simvastatin),
antiplatelet medication. Venous blood samples were collected in
tubes containing sodium citrate and genomic DNA was extracted
by the automated nucleic acid extraction systemMagCore HF 16
(RBC Bioscience, Taiwan) using the Whole Blood Kit and
following the manufacturer’s instructions. Genotyping was
performed using the PGX-Thrombo StripAssay (ViennaLab
Diagnostics, Vienna, Austria), with slight modification to the
manufacturer’s instructions. The process was performed using
the automated instrument ProfiBlot T48 (Tecan, Männedorf,
Switzerland), which allow simultaneous processing of 48 samples.
The study protocol was reviewed and approved by the Ethics
Committees of the participating hospitals. Written informed
consent was obtained for all patients.

2.4. Statistical analysis

Sample size was estimated assuming a case-control design, with a
control-case ratio of 1, a significance level of 5%, and a power of
at least 80%. We assumed a mutation frequency of at least 14%
and an odds ratio (OR) of at least 2.5. This resulted in a sample
size of 118 subjects per group. This figure was rounded up to 120,
for a total of 240 cases and controls, overall. Adverse events were
not separated for thrombotic or hemorrhagic events. Estimation
of OR for event occurrence was performed with conditional
logistic models, to account for case/control matching and
assuming the additive genetic effect for rs9923231 (VKORC1),
rs1799853 (CYP2C9∗2), rs1057910 (CYP2C9∗3). In this model,
each genotype is a distinct group; homozygous patients for major
alleles (GG and ∗1∗1) are the reference group. Data are reported



Figure 1. Patient-enrollment flow diagram.
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as OR estimates and 95% confidence intervals. Similarly, time to
event was modeled using marginal Cox models, with sandwich
variance estimators to account for matching. The statistical
significance level was set at P=0.05.

3. Results

3.1. Characteristic of the selected cohort

A total of 120 cases and 120 controls were enrolled in the study.
Patient mean age was 76±10 years, and 44% of subjects were
female. Themajority of the patients were prescribed VKAs for the
following conditions: atrial fibrillation (N=134, 55.8%),
mechanic heart valve replacement (N=56, 23.2%), and venous
thromboembolism (N=50, 20.8%). Mean follow-up time was
8±6 years. There were no statistically significant differences in
3

comorbidity between cases and controls, except for history of
hypertension, which was slightly more prevalent among controls
than among cases (87.5% vs 78.3%, respectively; P=0.047).
There were no significant differences in the use of amiodarone,
simvastatin, and antiplatelet agents and no significant differences
in the TTR between the 2 groups of patients (Table 1).
3.2. Genetic polymorphisms and adverse events
association

In 65% of the selected cases, major bleeding events were
observed, and in 35%, a thromboembolic event was noted
(Table 2). Out of 120 cases, an adverse event occurred in 114
patients (95%) during themaintenance phase of the therapy (over
the first 3 months) and in 6 patients (5%) during the induction

http://www.md-journal.com


Table 1

Demographic and clinical characteristics of patient’s cohort.

Characteristic Cases (N=120) Controls (N=120) OR (95% CI) P

Female, N, % 53 (44.17%) 53 (44.17%) Matching variables
Age, y, mean±SD 76.9±10.4 76.7±10.3
Indication for OAC
AF, N, % 67 (55.83%) 67 (55.83%)
MHV, N, % 28 (23.33%) 28 (23.33%)
VTE, N, % 25 (20.83%) 25 (20.83%)

Average follow-up, y, mean±SD 8.23±5.52 8.51±6.06
Type of VKA, N, %
Warfarin 108 (90.00%) 104 (86.67%) 1 –

Acenocoumarol 12 (10.00%) 16 (13.33%) 0.75 (0.33–1.71) 0.49
Comorbidities, N, %
Hypertension, yes vs no 94 (78.33%) 105 (87.5%) 0.45 (0.21–0.99) 0.047
Dyslipidemias, yes vs no 40 (33.33%) 47 (39.17%) 0.79 (0.45–1.37) 0.40
Chronic renal impairment,

∗
yes vs no 18 (15.0%) 12 (10.0%) 1.5 (0.67–3.34) 0.32

Diabetes mellitus, yes vs no 17 (14.17%) 16 (13.33%) 1.07 (0.52–2.22) 0.85
History of cancer, yes vs no 16 (13.33%) 13 (10.83%) 1.17 (0.54–2.52) 0.70
Liver disease, yes vs no 7 (5.83%) 9 (7.50%) 0.78 (0.29–2.09] 0.62

Concomitant drugs, N, %
Statins, yes vs no 45 (37.50%) 43 (35.83%) 1.40 (0.73–2.67) 0.31
Amiodarone, yes vs no 35 (29.17%) 30 (25.00%) 1.26 (0.69–2.30) 0.45
Antiplatelet agents, yes vs no 22 (18.33%) 16 (13.33%) 1.07 (0.64–1.77) 0.80

TTR, median, IQR†

0–3 mo 0.52 (0.37) 0.56 (0.34) 0.33 (0.10–1.09) 0.07
3–12 mo 0.69 (0.27) 0.74 (0.26) 0.32 (0.07–1.40) 0.13
0–12 mo 0.65 (0.21) 0.70 (0.22) 0.50 (0.10–2.57) 0.41

Data are expressed as N (%), unless specified.
AF= atrial fibrillation, CI= confidence interval, IQR= interquartile range, MHV=mechanical heart valves, OAC = oral anticoagulant, OR= odds ratio, SD= standard deviation, TTR = time in therapeutic range,
VKA = vitamin K antagonist, VTE= venous thromboembolism.
∗
Serum creatinine ≥ 1.5mg/dL.

† OR for unit change.
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phase (data not shown). The frequencies of VKORC1 and
CYP2C9 genotypes are shown in Table 3. All 3 VKORC1
genotypes were considered, whereas CYP2C9 genotypes were
grouped into 2 categories: wild-type (∗1∗1) and carriers of at least
1 variant CYP2C9 allele (∗1∗M or ∗M∗M). Genotypes were in
Hardy–Weinberg equilibrium for both cases and controls. The
effects of 3 genetic polymorphisms on adverse events were
evaluated. The variant VKORC1: �1639 G>A and CYP2C9
Table 2

Adverse events in the selected cohort.

Event N (%)

Major hemorrhage 78 (65.0%)
Gastrointestinal 21 (17.50%)
Epistaxis

∗
19 (15.83%)

Intracranial 13 (10.83%)
Hematuria/proctorrhagia

∗
9 (7.50%)

Hematoma
∗

9 (7.50%)
Other† 7 (5.83%)
Thromboembolic 42 (35.0%)
Transient ischemic attack 20 (16.67%)
Stroke 12 (10.00%)
Myocardial infarction 7 (5.83%)
Venous thromboembolism‡ 3 (2.50%)
∗
Epistaxis, Hematuria, Proctorrhagia, and Hematoma with Hb reduction by ≥2g/dL and/or requiring

transfusion have been considered.
† Includes any extra-cerebral bleeding in a critical area (articular, retroperitoneal, and ocular [with
blindness]).
‡ Includes deep vein thrombosis and pulmonary embolism.

4

variant alleles were significantly associated with any thrombotic
and/or hemorrhagic adverse event. VKORC1: �1639 G>A was
associated with a 1.5-fold increase in the risk of adverse events
(OR 1.60, 95% CI interval 1.06–2.42; P=0.025). Each CYP2C9
variant allele was associated with a 2-fold increase of the same
risk (OR 2.28, 95% CI interval 1.34–3.86; P=0.002). The
combined VKORC1 and CYP2C9 genotype effect were
associated with a 2-fold increase in adverse events (OR 2.37,
95% CI interval 1.37–4.10; P=0.002). To take into account
several confounding factors, we applied survival models to assess
the association between VKORC1 and CYP2C9 polymorphisms
and primary outcomes. Adjusting for concomitant drugs
(Amiodarone, Simvastatin, and antiplatelet medication), carriers
of one of the analyzed SNPs had a significant increased hazard
ratio for adverse events (Table 4). VKORC1: �1639 AA
homozygous was associated with a 2-fold increased hazard ratio
of an adverse event (HR 1.97, 95% CI interval 1.13–3.43; P=
0.02) compared to wild-type (GG), whereas CYP2C9∗2/∗3
carriers had a 1.6-fold increased risk (HR 1.58, 95% CI interval
1.14–2.35; P=0.008). In CYP2C9∗2/∗3 carriers (HR 1.6, 95%
CI interval 1.00–2.56; P=0.05), the same risk was observed for
simultaneous use of antiplatelet medication (Table 4.)
4. Discussion

Our findings suggest that patients undergoing long-term oral
anticoagulation (OAC) therapy with VKAs have a high risk of
thrombotic and/or major bleeding adverse events if they are
carriers of 1 or more polymorphisms in the VKORC1
(rs9923231) and CYP2C9 (rs1799853 and rs1057910) genes.



Table 3

Genotype VKORC1 and CYP2C9 gene polymorphisms in the
selected cohort.

Polymorphisms Cases (N=120) Controls (N=120)

VKORC1: -1639 G>A (rs9923231)
Genotype
GG, N (%) 37 (30.8%) 49 (40.8%)
GA, N (%) 64 (53.33%) 62 (51.67%)
AA, N (%) 19 (15.83%) 9 (7.50%)

Additive model
OR (95% CI), P value
(GA vs GG) 1.47 (0.84–2.57), 0.17
OR (95% CI), P value
(GA vs GG) 2.76 (1.13–6.72), 0.025
Recessive model
OR (95% CI), P value
(AA+GA vs GG) 1.60 (1.06–2.42), 0.025
CYP2C9∗2 (rs1799853); CYP2C9∗3 (rs1057910)

∗

Genotype
∗1∗1, N (%) 60 (50.0%) 86 (71.67%)
∗1∗M+∗M∗M N (%) 60 (50.0%) 34 (28.33%)

Recessive model
(∗1∗M+∗M∗M vs ∗1∗1) 2.28 (1.34–3.86), 0.002
Combined VKORC1+CYP2C9 genotype
GG/∗1∗1 22 (18.33%) 33 (27.50%)
GA/∗1∗1 29 (24.17%) 47 (39.17%)
AA/∗1∗1 10 (8.33%) 6 (5.0%)
GG/∗1∗M or GG/∗M∗M 15 (12.5%) 16 (13.33%)
GA/∗1∗M or GA/∗M∗M 35 (29.17%) 15 (12.50%)
AA/∗1∗M or AA/∗M∗M 9 (7.50%) 3 (2.50%)

OR (95% CI), P value
(GA vs GG) OR=1.54 (0.86–2.75), 0.15
OR (95% CI), P value
(AA vs GG) OR=3.02 (1.18–7.78), 0.022
OR (95% CI), P value
(∗1∗M+∗M∗M vs ∗1∗1) OR=2.37 (1.37–4.10), 0.002

CI= confidence interval, OR=odds ratio.
∗
M indicates heterozygous or homozygous carrier of either CYP2C9∗2 either CYP2C9∗3 alleles.

Bold numbers: P<0.05.
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To the best of our knowledge, this is the first study on VKA
pharmacogenetics showing an association between genetic
variants and both bleeding and thrombotic events in a cohort
of patients affected by a range of diseases (AF, VTE, MHV
replacement) and experiencing adverse events during OAC
Table 4

Cox’s regression analysis.

Genotype HR (95% CI) P

VKORC1
GA vs GG 1.36 (0.91–2.05) 0.14
AA vs GG 1.97 (1.13–3.43) 0.02

CYP2C9
∗

∗1∗M+∗M∗M vs ∗1∗1 1.58 (1.14–2.35) 0.008
Antiplatelet drugs 1.60 (1.00–2,56) 0.05

VKORC1+CYP2C9
GA vs GG 1.38 (0.92–2.08) 0.12
AA vs GG 1.82 (1.04–3.19) 0.035
CYP2C9 variant vs wild type 1.62 (1.12–2.32) 0.010
Antiplatelet drugs 1.56 (0.95–2.45) 0.08

CI= confidence interval, HR=hazard ratio.
∗
M indicates heterozygous or homozygous carriers of either CYP2C9∗2 either CYP2C9∗3 alleles.

Bold numbers: P<0.05.
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therapy. Published data on the increased risk of side effects
associated with genetic variants among VKA users is controver-
sial, as highlighted by recently published guidelines concerning
the appropriateness of genetic testing in warfarin therapy.[34] A
recent meta-analysis showed that only the CYP2C9∗3 allele, but
not theCYP2C9∗2 allele, was associated with a significant risk of
bleeding.[35] However, another meta-analysis concluded that
CYP2C9∗2 and CYP2C9∗3, but not VKORC1 genotypes, were
associated with warfarin hemorrhagic complications.[31] A recent
case-control study[36] showed that VKORC1 1173 C>T
(rs9934438) and CYP2C9∗2/∗3 polymorphisms are not associ-
ated with increases in the risk of major bleeding in long-term
warfarin users. Conversely, an extensive genetic analysis of an
RTC has clearly showed the influence of VKORC1 and CYP2C9
variants on bleeding events in patients with nonvalvular AF and
treated with warfarin.[37] The patient cohort presents increased
variability compared to other studies; nevertheless, our results
corroborate previous findings of major bleeding and thrombotic
risks in patients with CYP2C9 and VKORC1 variants. Tomek
et al[38] showed that anticoagulated Caucasian patients carriers
of 3 variant alleles of the genes CYP2C9 and VKORC1 exhibited
a significantly higher risk of major bleeding during the initiation
and maintenance phases of warfarin therapy. Kawai et al[39]

showed that the CYP2C9∗3 allele could double the risk of major
bleeding among patients administered warfarin for 30 or more
days. However, the authors did not find any association with
VKORC1 variants and the study population largely consisted of
Caucasians, although it also included Afro-Americans and others
ethnic groups. Recent research identified the VKORC1 gene as
a susceptibility factor for ischemic cerebrovascular disease in a
Chinese subpopulation,[40] and Wang et al[41] demonstrated the
involvement of VKORC1 in arterial vascular disease. Our results
partially corroborate recent evidence on drug–drug interactions
(DDIs). Santos et al[42] showed that simultaneous use of warfarin
and amiodarone was not associatedwith adverse events in chronic
OAC therapy. Also, a previous study[43] found that the
combination of single antiplatelet therapy with an anticoagulant
was associated with a significantly greater risk of bleeding. Sconce
et al[44] showed that simvastatin reduced themeanwarfarin dose in
patients on chronic OAC therapy, whereas the statin effect on
bleeding risk in patients on VKA is controversial.[45,46]

Our study has several limitations. Some adverse events may not
have been considered, for example, in patients who discontinued
OAC therapy after an adverse event, patients who refused to be
enrolled into the study, and patients who died before hospital
admission due to any cause. Moreover, we enrolled patients
monitored in anticoagulation clinics and these may not be
representative of the general VKA patient population. Also, we
gained information on selected interacting drugs, which are
frequently used in associated comorbidities. However, we
reduced potential bias by selecting cases from 2 institutions
(Brescia Anticoagulation Centre and Cremona Haemostasis and
Thrombosis Centre). Furthermore, controls were matched to
cases for all variables (age, sex, clinical indication for therapy,
and duration of OAC therapy) except for the occurrence of an
adverse event. A strength of the study is that we had a
homogenous population of Caucasians, important for genetic
analyses, largely because CYP2C9∗2 and CYP2C9∗3 polymor-
phisms are primarily found in Caucasian population. Our
findings may have some important implications, regarding
selection and monitoring of VKA patients. A recent pharma-
coeconomic study[47] showed that an indiscriminate use of
DOACs in patients with atrial fibrillation is less cost-effective
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than the preemptive genotyping approach. It follows that
preemptive genotyping may be recommended even in warfa-
rin-naive patients, for whom DOACs are not suitable, and this
approach could improve patient care, reducing the risk of adverse
events and the planned days required to achieve the target daily
drug dosage by INR monitoring. Genotype determination could
be useful even in long-term VKA patients, to improve the quality
of OAC therapy, by increasing the frequency of INR monitoring
or identifying interacting drugs with greater accuracy. These
considerations are of particular relevance in the elderly and in
patients with decreased or impaired renal function, as VKAs
remain the mainstay of anticoagulation therapy in these patients.
Finally, implementation of pharmacogenetics could improve
pharmacovigilance practice, as highlighted in guidelines recently
released by the European Medicines Agency.[48] VKAs are one
of the most common drugs resulting in emergency department
admissions[49,50] and VKORC1 and CYP2C9 genetic variants
may represent useful predictors of adverse drug reactions. In
conclusion, our results suggest that the information on CYP2C9
and VKORC1 variants may potentially enable clinicians to
determine individualized anticoagulant treatment for each
patient; improve use, management and quality of VKA anti-
coagulation control; and monitor drug surveillance as part of
pharmacovigilance programs.
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