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Abstract: We demonstrate optically stable amorphous silicon nanowires 
with both high nonlinear figure of merit (FOM) of ~5 and high nonlinearity 
Re(γ) = 1200W−1m−1. We observe no degradation in these parameters over 
the entire course of our experiments including systematic study under 
operation at 2 W coupled peak power (i.e. ~2GW/cm2) over timescales of at 
least an hour. 
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1. Introduction 

Single crystal silicon-on insulator (SOI), compatible with computer chip technology (CMOS), 
has attracted huge interest over the past 10 years as a platform for nonlinear nanophotonic 
devices for all-optical signal processing [1], primarily because of its ability to achieve 
extremely high nonlinearities (Re(γ) = ω n2 / c Aeff, where Aeff is the waveguide effective area) 
exceeding 300W−1 m−1 [2]. All-optical signal processing at bit rates of 160Gb/s [3] to over 
1Tb/s [4], third harmonic generation [5] ultra-fast optical monitoring [6] and efficient 
correlated photon pair generation [7] have now been achieved. However, significant two-
photon absorption (TPA) of crystalline silicon (c-Si) at telecom wavelengths is such that its 
nonlinear figure of merit (FOM = n2 / βTPAλ, where βTPA is the TPA coefficient and n2 is the 
Kerr nonlinearity) is in the range of FOM = 0.3 to 0.5 [1] – much less than ideal for nonlinear 
optical applications. This has significantly limited the efficiency of these nonlinear devices - 
the largest parametric gain achieved in the telecom band in c-Si, for example, is only about 
2dB [2]. The critical impact of the low FOM of c-Si was dramatically illustrated in recent 
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experiments [8–12] using mid-infrared [13, 14] optical pumps at wavelengths above the TPA 
threshold wavelength of 2.2µm where c-Si’s FOM is much higher (up to ~4 [9]). This 
resulted for instance, in extremely high parametric gain over 50dB [10], super continuum 
generation [11], and high cw FWM conversion efficiency [12] in Si wires. However, the low 
FOM of c-Si in the telecom band is a fundamental material property that cannot be improved. 

It was recently suggested [15] that amorphous silicon could represent a promising 
alternative to crystalline silicon due to its expected lower nonlinear absorption resulting from 
the larger electronic bandgap of amorphous silicon compared to c-Si [16]. Although initial 
nonlinear measurements in amorphous silicon devices yielded a FOM no better than c-Si 
(~0.5) [17, 18], recent demonstrations have confirmed the possibility of increasing the FOM 
from around 1 [19, 20] to as high as 2 at telecommunication wavelengths [21, 22], allowing 
very high parametric gains of over + 26dB over the C-band [21] to be achieved. However, to 
date a key drawback for this material has been a lack of stability, resulting in a dramatic 
degradation in performance over relatively short timescales (on the order of a few tens of 
minutes) [22]. Unless this problem can be solved, despite its very promising nonlinear 
performance, amorphous silicon could well be in danger of becoming an academic curiosity. 

In this paper, we demonstrate amorphous silicon nanowires combining high nonlinear 
FOM, high nonlinearity and good material stability at telecom wavelengths. We observe no 
degradation in the nonlinear characteristics at comparable power levels, and over longer 
timescales than those studied in [22]. We experimentally measure self-phase modulation and 
nonlinear transmission, fit to standard theory, in order to estimate both a high nonlinear FOM 
and nonlinear Re(γ) factor. 

2. Experiment 

The hydrogenated amorphous silicon nanowires (a-Si:H) waveguides were fabricated in a 
200mm CMOS pilot line at CEA-LETI, France. The a-Si:H film was deposited by plasma 
enhanced chemical vapor deposition (PECVD) at 350°C on 1.7µm oxide deposited on a bulk 
wafer. After deposition of a silica hard mask, two steps of 193nm DUV lithography and HBr 
silicon etching were used to define grating couplers that were well aligned with serpentine 
waveguides with varying lengths (1.22 cm to 11 cm). The fabricated waveguides are ~220nm 
in thickness and ~500nm in width. The cross-section is shown in Fig. 1. A 500nm oxide was 
deposited to provide an upper cladding. The group velocity dispersion for the TE mode 
confined within a 500nm × 220nm nanowire was calculated with FEMSIM, yielding an 
anomalous second-order dispersion parameter β2 = −4.2 × 10−25 s2/m at λ = 1550nm. 

Figure 1 shows a schematic of the experimental setup used for the measurement of both 
the linear and nonlinear propagation characteristics of our a-Si:H nanowires. A mode-locked 
fiber laser with near transform limited ~1.8ps long pulses at a repetition rate of 20MHz at 
1550nm was coupled into the TE mode of our a-Si:H nanowires via in-plane gratings. The 
fiber to waveguide coupling loss per coupler was ~10.6dB and 12.4dB per entry and exit, 
respectively, which was higher than expected due to the grating couplers not being optimized. 
The propagation loss of the TE mode was measured to be ~4.5 dB/cm, via a cut-back method 
on serpentine waveguides with lengths varying from 1.22 cm to 11 cm. A comparison with 
linear measurements performed on 1.3mm long straight nanowires yielded a loss contribution 
due to the bends (10 μm radius) of about 4dB, i.e. on the order of 0.04dB/ bend. 

To determine the nonlinear parameters of our waveguides, we performed a series of self- 
phase modulation (SPM) measurements in a 1.22 cm long nanowire, with a coupled peak 
power up to ~3W. The output spectrum was then measured as a function of input power. 
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Fig. 1. (a) Experimental setup for observing SPM in a-Si:H waveguide. (b) SEM cross-section 
of the a-Si:H nanophotonic wire embedded in silica. 

3. Results and discussion 

Figure 2(a) shows the measured output spectra of the pulses for three coupled peak powers, 
while Fig. 3(a) shows the experimental contour plots of the output spectra as a function of 
coupled peak power ranging between 0.03W and 3W. Strong spectral broadening is observed, 
which is the signature of self-phase modulation of the pulse propagating along the nonlinear 
nanowire. Note that for higher coupled powers (>1.8W), the spectral broadening of the pulse 
was limited by the spectral transfer function of the grating couplers, which have a 3dB 
bandwidth of around ~35nm centered near 1550nm. In Fig. 4, we plot the inverse of the 
waveguide transmission T as a function of coupled peak power. The effect of the couplers can 
be seen at high powers on this curve as well. As the spectral broadening induced by SPM 
increases with the power, the lateral sidebands of the output pulse spectrum are attenuated by 
the transfer function of the couplers, causing a drop in the transmission (i.e. a more rapid 
increase in 1/T). Due to this limitation, the 1/T curve is fit at low powers up to ~1.2W with the 
following linear equation valid in the presence of both linear propagation loss and TPA [23]: 

 
1 (0)

2 Im( ) (0)
( )

L L
eff

P
L e P e

T P L
α αγ= = +  (1) 

where P(0) and P(L) are the optical peak power at the entrance (coupled peak power) and at 
the end of the waveguide, respectively, α = 179/m is the equivalent linear propagation loss 
including the bend loss contribution, Im(γ) = βTPA/(2Aeff) is the imaginary part of the γ 
nonlinear coefficient due to TPA, L is the physical length and Leff the effective length reduced 
by the linear propagation loss through Leff = (1-e-αL)/α. This allows us to extract Im(γ) = 
18/W/m ± 5%. Assuming a nonlinear modal area Aeff of 0.07μm2, we infer a TPA coefficient 
βTPA equal to 0.25 × 10−11m/W ± 5%. The uncertainty in this parameter, generally dominated 
by the uncertainty of the coupled power [18], is reduced here by comparing the nonlinear 
measurements when coupling to the waveguide from one direction and the other. This yields 
a difference of ~1.8dB ± 0.15dB between the left and right hand side insertion loss. 
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Fig. 2. Output spectra for 0.03W, 1.21W and 3.03W coupled peak power - (a): Experiment, 
(b): Simulation. The curves are normalized and shifted upwards with increasing powers for 
clarity. 
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Fig. 3. (a) Experimental and (b) theory 2D plots showing the spectral broadening of the output 
pulse spectra vs coupled peak power. Note the linear intensity scale at the right is relative. 
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Fig. 4. Inverse of the measured waveguide transmission versus coupled peak power (circles) 
along with a linear fit at low power. 

Split-step-Fourier method simulations were then performed to solve the nonlinear 
Schrödinger equation governing the propagation of the picosecond optical pulse in the 
nonlinear waveguide, in the presence of second-order dispersion β2 and TPA. The impact of 
dispersion was negligible, as expected for a β2 = −4.2 × 10−25s2/m, associated with a 
dispersion length exceeding 7m for the 1.8ps pulses, i.e. well over the physical length of the 
waveguide. Figures 2(b) and 3(b) show the output spectra resulting from these numerical 
simulations, showing a good agreement with the measurements, when taking the TPA 
contribution stated above and a nonlinear waveguide parameter Re(γ) = 1200/W/m, 
associated with a refractive index n2 = 2.1 x 10−17 m2/W ± 5%. The good agreement is 
highlighted in Fig. 5, by directly comparing the nonlinear phase-shift as a function of coupled 
power for both experiment and simulations. Note that the low TPA of a-Si:H is also reflected 
in the absence of any blue shift in the output spectra. The latter is a signature of free carriers 
generated by TPA over the pulse duration and is generally observed in c-Si waveguides for 
near-infrared picosecond pulses exhibiting similarly high nonlinear phase shifts [24–26]. 
Although we did not observe any signature at all of free carriers in our material, we note that 
in principle free carriers can be important and this critically depends on the material system 
used. For instance all-optical modulation based on free carrier absorption [27] in a-Si:H 
waveguides has been demonstrated and free carrier lifetimes of ~ps have been measured in 
[19]. 
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Fig. 5. Nonlinear phase shift versus coupled peak power extracted from experiment (stars) and 
simulations (red line). 

The nonlinear index n2 we obtain for this a-Si:H nanowire is about 4 times higher than c-
Si. Together with the inferred TPA coefficient of 0.25 cm/GW, we estimate a FOM = 5 ± 0.3 
- an order of magnitude higher than c-Si. Table 1 summarizes the results reported so far in the 
literature. As mentioned, other groups have measured high values for the nonlinearity [18, 20] 
or low values of TPA [17, 19] but not both, resulting in an overall modest FOM for a-Si:H in 
the telecom band. Note that in [20], TPA was taken from [15, 18] and not experimentally 
measured. Others reported reasonably high FOM [21, 22], but it is clear from Table 1, that 
our results represent a significant improvement for the FOM, more than two times higher than 
any previous reported results, combined with the high nonlinearity. 

Table 1. Summary of the nonlinear characteristics reported for a-Si waveguides 
fabricated by various groups 

 Ours [21,22] [18] [17] [19] [20] 
n2.[10−17 m2/W] 2.1 1.3 4.2 0.05 0.3 7.43 

γ [W −1m−1] 1200 770 2000 35 N/A N/A 
βTPA [cm/GW] 0.25 0.392 4.1 0.08 0.2 4 from [15,18] 

FOM ± 0.3 2.2 ± 0.4 0.66 ± 0.3 0.4 0.97 1.1 

Most importantly, however, as mentioned a-Si:H has exhibited fundamental instability of 
its nonlinear characteristics when subjected to optical signals in the telecom band [22]. In 
experiments with similar pulsed laser characteristics to ours, a significant degradation in the 
modulation instability sidebands was observed after only a few minutes [22]. Even though 
this could be reversed under annealing, the post-annealed material still exhibited the same 
instability [22]. Figure 6 shows the spectra out of our 1.22cm long waveguide recorded every 
two minutes when pumped with 2.25W of coupled peak power, corresponding to ~3GW/cm2, 
over a timescale of 1hr. The spectra show negligible degradation in the SPM spectral pattern. 
Figures 7(a) and 7(b) display the associated power and RMS spectral broadening of the output 
pulse as a function of time. Both show random fluctuations of a few percent over the course 
of the exposure, which were more likely due to variations in the coupling rather than any 
clear trend associated with material changes induced by the exposure. Further, we observed 
no degradation in the parameters over the entire course of our experiments, which at times 
were conducted at peak powers of up to 3W (~4GW/ cm2), primarily limited by the coupler 
insertion loss. We note that our material has also exhibited stable operation in the context of a 
hybrid integrated laser [28]. 
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Fig. 6. Output spectra as a function time for a coupled peak power of 1.5W. The spectra are 
recorded every 2min over 1 hour. 

 

Fig. 7. (a) Normalized power and (b) RMS spectral broadening of the output pulse measured 
under 2.25W coupled peak power launched over one hour duration. 

Finally, a-Si:H is deposited at low temperature and is compatible with standard CMOS 
technology. a-Si:H based photonics can be considered as an alternative technology to SOI for 
integrating photonic functions on CMOS [29–33]. Our results raise the prospect for a-Si:H to 
provide a truly practical and viable, high performance, platform for nonlinear photonic 
applications in the telecommunications wavelength window. 

4. Conclusion 

We demonstrate a-Si:H nanowires with both high nonlinearity of Re(γ) = 1200 W−1m−1 and 
nonlinear FOM of ~5. We observe no degradation in these parameters under systematic 
studies at 2.2W coupled peak power over timescales up to an hour, nor did we observe any 
degradation in the nonlinear parameters over the entire course of our experiments, at times up 
to 3W coupled peak power. These results represent the first report of simultaneously high 
FOM, nonlinearity and stability under ~watts coupled peak power operation in a-Si:H and as 
such potentially pave the way for a-Si:H to offer a viable high performance nonlinear 
platform for all-optical devices in CMOS compatible integrated nanophotonic circuits, 
operating in the telecommunications window. 
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