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We consider frequency comb generation in dispersive singly resonant second-harmonic-generation cavity
systems. Using a single temporal mean-field equation for the fundamental field that features a noninstantaneous
nonlinear response function, we model the temporal and spectral dynamics and analyze comb generation,
continuous wave bistability, and modulational instability. It is found that, owing to the significant temporal
walk-off between the fundamental and second-harmonic fields, modulational instability can occur even in the
complete absence of group-velocity dispersion. We further consider the relation of our model to a previously
proposed modal expansion approach, and present a derivation of a general system of coupled mode equations.
We show that the two models provide very similar predictions and become exactly equivalent in the limit that
absorption losses and group-velocity dispersion at the fundamental frequency are neglected. Finally, we perform
numerical simulations that show examples of the variety of comb states that are possible in phase-matched
quadratic resonators, and discuss the dynamics of the comb formation process.
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I. INTRODUCTION

Optical frequency combs have attracted a significant
amount of interest in recent years. The ability to generate
ultrabroadband combs with a uniform frequency spacing is
widely seen as a breakthrough technology for creating a
novel class of phase-coherent light sources that offer a wealth
of potential applications in areas such as metrology and
spectroscopy [1,2]. While early comb sources were based on
mode-locked lasers, subsequent research has demonstrated
the possibility of comb generation also in continuously
pumped microresonator devices made of nonlinear materials,
exploiting the intensity-dependent Kerr effect of the cubic χ (3)

nonlinearity [3,4]. This has allowed a reduction in size and
an increase in efficiency of frequency comb sources to such a
degree that it may soon be possible to create fully integrated
chip-scale comb synthesizers.

Very recently, an alternative approach for comb generation
has emerged, based on direct comb formation in quadratic
χ (2) nonlinear media [5–7]. In particular, by pumping a cavity
containing a quadratic nonlinear crystal that is phase matched
for second-harmonic generation, frequency combs have
simultaneously been observed around both fundamental and
second-harmonic wavelengths [7]. Quadratic comb sources
are interesting for several reasons. They could, e.g., reduce
the power requirements for comb generation when compared
with Kerr combs, due to the inherently higher strength of the
quadratic nonlinearity. Moreover, they could allow the transfer
of comb lines to new spectral regions, either where they are
prevented by dispersion, such as in the visible, or where the
availability of suitable pump sources is limited, such as in the
mid-infrared spectral range.

*tobias.hansson@emt.inrs.ca

The generation mechanism of quadratic combs relies
on cascaded χ (2) processes that resemble an effective χ (3)

nonlinearity (not necessarily of the Kerr type), which allow for
the generation of sidebands above a certain power threshold
through a subharmonically pumped optical parametric oscil-
lation (OPO) process [7–9]. In quadratic comb generation,
pump photons are first converted through second-harmonic
generation (SHG) from the fundamental field to the second
harmonic, before being down-converted back to signal-idler
sidebands through nondegenerate OPO. Remarkably, this pro-
cess has been found to occur not only in the presence of a large
phase mismatch, a condition that is well known to produce an
effective Kerr (or cascading) nonlinearity in quadratic media
[10], but also with perfect phase matching [7]. The reason
is the presence of a large temporal walk-off, that arises due to
the difference in group velocities between the fundamental and
the second-harmonic fields. The walk-off occurs in dispersive
SHG cavities, and underpins the dynamics by inhibiting com-
peting sum-frequency generation (SFG) processes [11]. The
result is the generation of sidebands around both fundamental
and second-harmonic frequencies through a modulational in-
stability process which bears resemblance to that occurring in
cubic Kerr media. After their formation, the subharmonic fields
can subsequently interact to create new frequency components
through different cascaded second-order processes, resulting
in the generation of two broad and equally spaced frequency
combs around the fundamental and the second harmonic.

The magnitude of the walk-off, in combination with the
presence of higher-order dispersion, is in fact a distinguishing
feature of temporally dispersive cavities with respect to more
widely studied spatially diffractive SHG cavities [12], and
results in the observation of different dynamics for the two
types of systems. Moreover, the dynamics in cavity SHG is also
fundamentally different when compared to SHG generation in
single pass systems [13], owing to the resonant nature of the
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cavity configuration and the presence of boundary conditions
that result in a dissipative system driven by the external
pump laser.

In the following, we will limit the discussion to singly
resonant SHG [11], where only frequencies around the fun-
damental field are resonant, while the second-harmonic field
leaves the cavity at the end of each roundtrip. Other configura-
tions such as doubly resonant SHG have recently been studied
elsewhere [14], and a corresponding more detailed analysis
for those configurations will be the subject of future work.
In the next section, we will introduce a theoretical formalism
for describing the temporal dynamics of quadratic frequency
combs. We show that, for singly resonant conditions, a single
mean-field equation can be derived which is analogous to the
Lugiato-Lefever equation for Kerr media [15,16], however
with an effective noninstantaneous χ (3) nonlinearity. The
significance of this mean-field equation is that it provides
a simple model that captures the essential physics of SHG
frequency comb generation, speeds up numerical simulations,
and permits analytical investigations.

The temporal mean-field model was first presented by the
authors in Ref. [11]. In this paper, we consider an extension of
the model that includes higher-order dispersion and perform
an analysis of both the continuous wave (CW) bistability and
the modulational instability (MI). Moreover, we demonstrate
that the coupled mode equations previously proposed in Ref.
[7] can be derived using a modal expansion approach, thus
proving explicitly the connection between the temporal and
frequency domain formalisms. In fact, we find that the two
approaches are only approximately equivalent in the mean-
field limit, due to subtle differences in the averaging procedure.
Finally, we perform numerical simulations which show some
of the rich spectral dynamics that can be observed across the
whole parameter space, and reveal the dynamics underpinning
the formation of temporal patterns corresponding to phase-
locked quadratic optical frequency combs.

II. THE MEAN-FIELD MODEL

A resonant cavity containing a quadratic nonlinear medium
can, under quite general circumstances, be modeled by using
an infinite-dimensional map of evolution equations for the
fundamental field (FF) and second-harmonic (SH) field, to-
gether with boundary conditions that relate the fields between
different roundtrips. We take Am(z,τ ) and Bm(z,τ ) to be the
slowly varying envelopes of the electric field in units of [

√
W ]

at the fundamental (ω0) and second-harmonic (2ω0) frequency,
respectively. Propagation through the mth roundtrip of the
quadratic medium of length L is then described by the two
coupled equations [11,17],

∂Am

∂z
=

[
−αc1

2
+ iD1

(
i

∂

∂τ

)]
Am + iκBmA∗

me−i�kz, (1)

∂Bm

∂z
=

[
−αc2

2
− �k′ ∂

∂τ
+ iD2

(
i

∂

∂τ

)]
Bm + iκA2

mei�kz,

(2)

where z is the longitudinal coordinate and τ is a (fast)
time variable in a reference frame moving at the group
velocity of the fundamental frequency. Dispersion is included
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FIG. 1. Schematic example of a singly resonant SHG cavity
system. A cavity containing a medium with a χ (2) nonlinearity is
driven by a CW field Ain at frequency ω0. The resonant fundamental
field A generates a nonresonant second-harmonic field B at frequency
2ω0 that leaves the cavity at each roundtrip. Modulational instability
due to temporal walk-off leads to frequency combs being generated
at cavity modes around both FF and SH frequencies.

in the model, to all orders, through the two operators
D1,2(x) = ∑

l�2(k(l)
1,2/l!)xl , with k

(l)
1,2 = dlk/dωl |ω0,2ω0 being

dispersion coefficients obtained by Taylor series expansion of
the propagation constants. In Eqs. (1) and (2) we have defined
�k = 2k1 − k2 as the wave-vector mismatch for the SHG pro-
cess, while �k′ = k

(1)
2 − k

(1)
1 is the group-velocity mismatch

between the fundamental and second-harmonic fields. The
nonlinear coefficient is given by κ = √

8ω0χ
(2)
eff /

√
c3n2

1n2ε0,
where χ

(2)
eff is the effective second-order susceptibility, c the

speed of light, n1,2 are refractive indices evaluated at the
FF and SH, respectively, and ε0 is the vacuum permittivity.
Additionally, the absorption coefficients are αc1,2, the power
coupling coefficients are θ1,2 and the phase detunings are δ1,2

for each of the two fields, respectively. The map is completed
by requiring that the fields should satisfy the following cavity
boundary conditions,

Am+1(0,τ ) =
√

1 − θ1Am(L,τ )e−iδ1 +
√

θ1Ain, (3)

Bm+1(0,τ ) =
√

1 − θ2Bm(L,τ )e−iδ2 . (4)

As we are here considering SHG, the resonator is assumed
to be driven at the FF by the external continuous wave field
Ain. The map Eqs. (1)–(4) can be used to model degenerate
intracavity SHG and OPO [with a change of driving term
to Eq. (4)] for a wide range of experimentally relevant
circumstances. However, a more general model is necessary
for describing ultrabroadband fields with multiple harmonics
or where the fundamental and second harmonic are partially
overlapping [18].

We now focus on singly resonant SHG, where only the
fundamental field is resonant. A schematic of an example
system is illustrated in Fig. 1. The buildup of the SH field
occurs only during a single pass of the nonlinear crystal, with
the SH field leaving the cavity at each roundtrip without being
reinjected, i.e., θ2 = 1. This corresponds to the initial condition
Bm(0,τ ) = 0, and implies that the SH field will be slaved to
the fundamental. Under these conditions it becomes possible
to reduce the map to a single temporal mean-field equation
[11]. The derivation is as follows. Equation (2) is first solved
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formally using the Fourier transform to obtain the solution,

F [Bm(z,τ )] = iκek̂z

∫ z

0
e(i�k−k̂)z′

F
[
A2

m(z′,τ )
]
dz′, (5)

where F [·] = ∫ ∞
−∞ ·ei�τ dτ and k̂(�) = −αc2/2 + i[�k′� +

D̂2(�)] (the hat signifies a function defined in the Fourier
domain). The inverse transform of this result is next used to
eliminate the SH field Bm from Eq. (1), which then yields a
single evolution equation for the fundamental field, viz.

∂Am

∂z
=

[
−αc1

2
+ iD1

(
i

∂

∂τ

)]
Am − κ2A∗

m

×F−1

[∫ z

0
e(k̂−i�k)(z−z′)F

[
A2

m(z′,τ )
]
dz′

]
. (6)

Equation (6) can be used, together with the boundary condition
Eq. (3), to model the evolution of the FF, but consider-
able simplification can be obtained by using the mean-field
approximation. Here the FF is assumed to evolve slowly
enough during each roundtrip, so that its z variation can
be neglected to the first order. By assuming the coupling
coefficient θ1 and the detuning δ1 to be quantities of the first
order, and averaging Eq. (6) over the roundtrip length [19],
we obtain a mean-field equation in the slow time variable
t (A(t = mtR,τ ) = Am(z = 0,τ )), viz.

tR
∂A(t,τ )

∂t
=

[
−α1 − iδ1 + iLD1

(
i

∂

∂τ

)]
A

− ρA∗[A2(t,τ ) ⊗ I (τ )] +
√

θ1Ain, (7)

where tR is the roundtrip time, α1 = (αc1L + θ1)/2 the
roundtrip loss, ρ = (κL)2, ⊗ denotes convolution, and I (τ ) =
F−1[Î (�)] is a nonlinear response function given by

Î (�) = 1

L2

∫ L

0

∫ z

0
e(k̂−i�k)(z−z′)dz′dz = 1 − e−ix − ix

x2
, (8)

with x(�) = [�k + ik̂(�)]L. It is often useful to work with a
normalized form of the equation; see Appendix.

The mean-field Eq. (7) is seen to exhibit an effective
third-order nonlinearity with a noninstantaneous response
that is resemblant of the delayed Raman response found in
cubic Kerr media [20] and other noninstantaneous nonlinear
Schrödinger models [21]. However, contrary to those models
there is also a phase dependence, since the square of the
field, rather than the intensity, is involved. In the case that
losses at the SH can be neglected, the argument x(�) is
purely real and the response function can be written as
Î (�) = (1/2)sinc2(x/2) + i(1/x)(sinc(x) − 1). The response
function, shown in Fig. 2, can be interpreted as representing
a complex coupling coefficient for an SFG process between
the pump and a signal wave for the interaction ω0,ω0 + � →
2ω0 + �. The nature of the interaction and the direction of
energy flow depends on the relative phases between the FF and
SH fields, and is determined by the response function whose
real part represents a frequency-dependent nonlinear loss, akin

�a��k�0

�k�6.5�L

�2 �1 1 2
�THz�

0.1

0.2

0.3

0.4

0.5

Re�I� �	

�b��k�0

�k�6.5�L

�2 �1 1 2
�THz�

�0.3

�0.2

�0.1

0.1

0.2

0.3

Im�I� �	

FIG. 2. Real (a) and imaginary (b) part of the (dimensionless)
nonlinear response function Î (�) with and without phase mismatch.
Parameters corresponding to a LiNbO3 crystal: �k′ = 792 ps/m,
k

(2)
2 = 0.714 ps2/m, αc2 = 0, and L = 15 mm.

to that due to two-photon absorption or to the presence of a
saturable absorber, while the imaginary part represents a phase
modulation.

In Fig. 2 we have plotted the response function both with
and without a finite phase mismatch �k. In the latter, phase
matched, case a signal mode at � = 0 experiences a pure loss;
while in the former, phase mismatched, case we find that the
effect of the nonlinearity is primarily to provide self-phase
modulation of the field. The relative contributions of the two
effects depend on the size of the mismatch. Self-phase modu-
lation is also seen to occur at the pump frequency with a sign
that is conditional on that of the phase mismatch. Assuming
that the linear absorption loss at the second harmonic is small,
we find that nonlinear losses have minima for x ≈ 2πn with n

being an integer different from zero. These minima correspond
to frequencies �n ≈ (�kL + 2πn)/(�k′L) and coincide with
spectral positions at which sidebands are likely to develop.
Conversely, the peak of the nonlinear loss occurs for n = 0.

Using Cauchy’s integral theorem, it can be demonstrated
that the time domain response I (τ ) disappears outside of 0 �
τ � �k′L for �k′ > 0 (or �k′L � τ � 0 for �k′ < 0), since
the integrand of the inverse Fourier transform is an analytic
function outside of this region. The walk-off thus determines
whether or not a memory effect is present and the duration of
the noninstantaneous response. Finally, we remark that the SH
field is slaved to the fundamental in accordance with Eq. (5),
from which we can obtain an expression for the output field at

013805-3



T. HANSSON et al. PHYSICAL REVIEW A 95, 013805 (2017)

0 5 10 15 20
0

2

4

6

8

10

�kL

Δ 1
�L

0.0 0.1 0.2 0.3 0.4 0.5
0
2
4
6
8
10
12
14

�Ain 2 �W�
P
0
�W
�

FIG. 3. Bistability regions as a function of phase mismatch and
detuning. Unshaded and shaded regions correspond to parameter
ranges where the stationary CW solution can have either one or three
simultaneous real solutions, respectively. Inset shows bistability of
intracavity power for δ1/L = 3 and �kL = 6.5.

the second harmonic, viz.

B(L,τ ) = iκF−1

[
ek̂L − ei�kL

k̂ − i�k
F [A2]

]
. (9)

We now consider the CW case when only a single
fundamental and second-harmonic mode of the system is
excited. The CW solution is valid whenever the pump power
is below the parametric threshold and its analysis will help in
determining the stability criterion. The stationary solution of
the mean-field Eq. (7) satisfies A0 = √

θ1Ain/[(α1 + ρRP0) +
i(δ1 + ρJP0)], where we have defined R = Re[Î (0)], J =
Im[Î (0)], and P0 = |A0|2 is the CW intracavity power. The
steady-state power is a real solution of the cubic equation,

θ1|Ain|2 = P0[(α1 + ρRP0)2 + (δ1 + ρJP0)2]. (10)

From Eq. (10) it is readily seen that there are no negative
solutions, so that the physical requirement that the power
must be positive is always satisfied. The intracavity power
can exhibit a bistable behavior and have either one or three
simultaneous positive solutions, depending on the values of

the phase mismatch and the detuning. In case of bistability
the intracavity power will have an S-shaped dependence
on the pump power (see inset of Fig. 3) and the condition
for this to take place is that the equation d|Ain|2/dP0 = 0
has real solutions, which is found to occur within a certain
range of input pump powers, for a detuning satisfying δ1 � δ+
if −J >

√
3R or δ1 � δ− if J >

√
3R, where the critical

detuning values are given by [22,23]

δ± = α1

J 2 − 3R2
[−4RJ ±

√
3(R2 + J 2)]. (11)

The parameter range for which bistability can occur is plotted
as a shaded region in Fig. 3, assuming a cavity with a finesse of
160 (α1 = π/160). Note that both a finite phase mismatch and
a detuning of the FF with the same sign of the mismatch are
necessary conditions to obtain a bistable behavior, so the plot
is symmetric with respect to a reflection through the origin.
This can be understood from Eq. (10) and Fig. 2 which shows
that the phase mismatch introduces a Kerr-type self-phase
modulation (J 	= 0), that results in a nonlinear tilt of the
resonance when the intracavity power is plotted as a function of
the detuning as shown in Fig. 4. The maximal intracavity power
is obtained when the system is on the peak of the resonance,
i.e., when the nonlinear phase shift compensates the detuning
so that δ1 + ρJP0 = 0. Contrary to the case of Kerr comb
generation, the peak intracavity power is not only proportional
to the pump power |Ain|2, but it displays a saturation effect,
and is further reduced by the nonlinear loss for R > 0, so
that Pmax = θ1|Ain|2/(α1 + ρRPmax)2. This is also clearly seen
in Fig. 4, which shows that the peak intracavity power for
parameters corresponding to the experiment in Ref. [7] and
an input pump power of 0.5 W is substantially smaller in the
phase-matched case.

Frequency comb generation in a quadratic resonator ini-
tiates through optical parametric oscillation and the growth
of subharmonic fields as the CW solution becomes unstable
above a certain power threshold. An analysis of the linear
stability of the CW solution (10) can be accomplished
by injecting the ansatz A = A0 + a1 exp (λt/tR + i�τ ) +
a−1 exp (λ∗t/tR − i�τ ) into Eq. (7) and linearizing the
resulting equation around the CW solution. This gives the
eigenvalues (cf. Ref. [11]),

λ± = −(α1 + iLD̂1,o(�) + ρP0[Î (�) + Î ∗(−�)]) ±
√

|Î (0)|2ρ2P 2
0 − (δ1 − LD̂1,e(�) − iρP0[Î (�) − Î ∗(−�)])2, (12)

where D̂1,e(�) = ∑
l�1[k(2l)

1 /(2l)!]�2l and D̂1,o(�) =∑
l�1[k(2l+1)

1 /(2l + 1)!]�2l+1 represent even and odd
dispersion terms, respectively. The instability growth rate
is given by the real part of the eigenvalue, and is as usual
independent of the odd-order dispersion terms. The first (real)
parts of the eigenvalue expression correspond to linear and
nonlinear losses, while the first and second terms inside
the square root correspond to the OPO gain and the phase
mismatch for the MI process, respectively. MI involving
the growth of sidebands with frequency ω0 ± � occurs
via OPO down-conversion of the SH field at 2ω0, which

acts as an intermediary stage for the cascaded process.
However, a competing sum-frequency generation process
between the pump mode and the subharmonic sidebands will,
in the absence of walk-off, limit the growth rate and suppress
the development of MI [11].

Equation (12) shows that periodic perturbations grow
due to walk-off induced modulational instability, at a rate
determined by the nonlinear response function. In fact, since
Î (�) → 0 as � → ±∞, we see that MI can occur in a
singly resonant SHG cavity even in the complete absence
of group-velocity dispersion with the asymptotic growth
rate λ+ = −α1 +

√
|Î (0)|2ρ2P 2

0 − δ2
1 [cf. blue solid line of
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FIG. 4. Intracavity FF power as a function of normalized detuning
with and without phase mismatch. The power is much larger in the
former case and exhibits bistability that is seen as a nonlinear tilt of
the resonance.

Fig. 5(b)]. We emphasize that this situation is fundamentally
different from the case of MI in cubic nonlinear media and
systems such as optical fibers, where MI occurs due to an
interplay between group-velocity dispersion and the self-phase
modulation effect [24,25]. The dispersion D̂1,e(�) at the
fundamental frequency can be seen to limit the attainable
gain bandwidth by providing a phase mismatch �φ = δ1 −
LD̂1,e(�) − iρP0[Î (�) − Î ∗(−�)] at frequencies with a large
offset from the pump. The MI bandwidth can be maximized
by pumping close to a zero dispersion wavelength, at which
point it will be limited by higher-order dispersion. Contrary
to the Kerr case, the eigenvalues are generally complex and
will give rise to a drift of the temporal pattern even without
higher-order dispersion. The velocity of the drift depends on
the imaginary part of the eigenvalue and can be influenced
by odd-order dispersion terms. It may therefore be possible to
compensate for it using dispersion engineering.

A simple estimate for the minimum intracavity (threshold)
power required for MI to develop can be obtained by balancing
the linear roundtrip loss with the OPO gain. This gives Pmin ≈
α1/(ρ|Î (0)|), and the corresponding power of the external
pump laser can be obtained from Eq. (10); cf. Ref. [23]. The
frequency of the first oscillating sideband is determined by the
phase-matching condition and is, in addition to the frequency
dependence of the nonlinear loss introduced by the response
function, generally sensitive to both the detuning as well as
the temperature of the nonlinear crystal [7].

III. RELATION TO COUPLED MODE EQUATIONS

We will now consider the relation of the present temporal
mean-field model to the frequency-domain coupled mode
equations of Ref. [7]. We first show that the components
of the roundtrip fundamental and second-harmonic fields Am

and Bm satisfy the same single-pass evolution equations as
in that paper. For notational convenience we will in the
following suppress the roundtrip index m. Inserting the modal

expansions,

Am =
∑

μ

Aμ(z) exp[i(KA,μz − �A,μτ )], (13)

Bm =
∑

ν

√
2Bν(z) exp[i(KB,νz − �B,ντ )], (14)

into the stationary reference frame versions of Eqs. (1) and
(2), i.e., written out with separate group-velocity terms, and
projecting onto each frequency component we find that

Ȧμ =
[
−αc1

2
+ i

(
k

(1)
1 �A,μ + D̂1(�A,μ) − KA,μ

)]
Aμ

+ i
√

2κ
∑
ρ,σ

BρA
∗
σ ei(KB,ρ−KA,σ −KA,μ−�k)z, (15)

Ḃν =
[
−αc2

2
+ i

(
k

(1)
2 �B,ν + D̂2(�B,ν) − KB,ν

)]
Bν

+ i
κ√
2

∑
ρ,σ

AρAσ ei(KA,ρ+KA,σ −KB,ν+�k)z, (16)

where the dot is shorthand for slow-time (t) derivatives and the
summations should be carried out over frequencies that satisfy
the relations �A,μ = �B,ρ − �A,σ and �B,ν = �A,ρ + �A,σ ,
respectively. Assuming that the modes have an equidistant
frequency spacing � we may take

KA,μ = k
(1)
1 �A,μ + D̂1(�A,μ) = k1,μ − k1,

KB,ν = k
(1)
2 �B,ν + D̂2(�B,ν) = k2,ν − k2,

�A,μ = �μ ≈ ωμ − ω0, �B,ν = �ν ≈ ων − 2ω0,

with μ,ν being integer mode numbers and k1,μ,k2,ν wave
vectors corresponding to the propagation constants of the
respective sideband frequencies. Defining κ̂ = √

2κ and using
the phase-mismatch relation �k = 2k1 − k2 we find that the
above equations reduce to

Ȧμ = −αc1

2
Aμ + iκ̂

∑
ρ,σ

μ=ρ−σ

BρA
∗
σ ei(k2,ρ−k1,σ −k1,μ)z, (17)

Ḃν = −αc2

2
Bν + i

κ̂

2

∑
ρ,σ

ν=ρ+σ

AρAσ e−i(k2,ν−k1,ρ−k1,σ )z, (18)

which in the absence of intrinsic losses (αci → 0) are equiv-
alent to the complex conjugate of the single-pass equations
presented in Table I of Ref. [7].

To derive a mean-field model for the coupled mode
equations we ignore absorption losses in the following and
consider them instead to be included in the coupling loss
coefficient. Following a procedure similar to the continuous
derivation in the previous section, the mean-field solution for
the SH field is found by neglecting the z variation of the FF over
the duration of the roundtrip and is given by the convolution,

Bν = i
κ̂

2

∑
ρ

AρAν−ρ

∫ z

0
e−iξρ,ν−ρz′

dz′, (19)

cf. Eq. (5), where ξρ,σ = k2,ρ+σ − k1,ρ − k1,σ . Substituting
this result into the equation for the fundamental field, we find
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that

Ȧμ = − κ̂2

2

∑
ρ,σ

υ=μ+σ−ρ

AρAυA∗
σ eiξμ,σ z

∫ z

0
e−iξρ,υ z′

dz′, (20)

where υ = ν − ρ. Applying now the boundary condition
Eq. (3) to each individual frequency component and perform-
ing the averaging over the roundtrip time yields the mean-field
equation,

daμ

dt
= − (γ + i�)aμ − g0

∑
ρ,σ

υ=μ+σ−ρ

ημσρυaρaυa∗
σ

+ δμ,0

√
2γ /tRAin, (21)

where the cavity field at roundtrip m is given by aμ(t = mtR) =
A(m)

μ (z = 0), the slow time t derivative is defined by the relation
daμ/dt ≈ [A(m+1)

μ (0) − A(m)
μ (0)]/tR , and δμ,0 is the Kronecker

delta. Additionally, we have introduced the cavity loss γ =
θ1/2tR , the detuning � = δ1/tR , the nonlinear coefficient g0 =
(κ̂L)2/4tR , and the coupling coefficient,

ημσρυ = 2

L2

∫ L

0

∫ z

0
ei(ξμ,σ z−ξρ,υ z′)dz′dz

= 2

L2

∫ L

0
eiξμ,σ z 1 − e−iξρ,υ z

iξρ,υ

dz. (22)

Equation (21) is, baring notation, equivalent to the complex
conjugate of the general system of coupled mode equations
previously derived by a heuristic method in Ref. [23]. Mode-
dependent cavity losses and detunings can be included by
generalization of Eq. (3). The special case of Ref. [7] is
obtained in the three-wave approximation when only the pump
frequency and two sideband modes are considered in the
model. These results demonstrate that the evolution equations
of the modal expansion approach can be obtained from the map
given by Eqs. (1)–(4). However, it does not necessarily follow
that the two mean-field approximations are exactly equivalent.

To establish the relation between the temporal mean-field
Eq. (7) and the previously derived frequency-domain coupled
mode equations above, we introduce the modal expansion,

A =
∑

μ

aμ(t) exp[i(ζμt − ωμτ )], (23)

into Eq. (7) and proceed analogously to the previous derivation
by projecting the field onto each frequency component to
obtain

tR
daμ

dt
= [−α1 − iδ1 + i(LD̂1(ωμ) − tRζμ)]aμ

− (κL)2
∑
ν,ρ,σ

aρaνa
∗
σ ei(ζρ+ζν−ζσ −ζμ)t Î (ωρ + ων)

+ δωμ,0

√
θ1Aine

−iζμt , (24)

together with the energy conservation requirement given by
the frequency condition ωμ = ων + ωρ − ωσ . Assuming that

ζμ = (L/tR)D̂1(ωμ) and ωμ = �μ Eq. (24) simplifies to

daμ

dt
= − (α1/tR + i�)aμ − 2g0

∑
ρ,σ

ν=μ+σ−ρ

Î [�(μ + σ )]aρaνa
∗
σ

× ei(L/tR )[D̂1(�ρ)+D̂1(�ν)−D̂1(�σ )−D̂1(�μ)]t

+ δμ,0

√
2γ /tRAin. (25)

The two systems of coupled mode Eqs. (21) and (25) can be
seen to represent the same system in the limit situation where
absorption losses are neglected, i.e., α1/tR → γ . However,
the nonlinear coupling coefficients still differ somewhat due
to the fact that the contribution to the propagation constant
from the group-velocity dispersion at the fundamental fre-
quency has not been averaged in Eq. (25). Particularly, since
the mode numbers should satisfy μ + σ = ρ + υ we have

iξμ,σ = (k̂[�(μ+ σ )] − i�k) + (αc2/2)−D̂1(�μ)−D̂1(�σ ),

iξρ,υ = (k̂[�(μ+ σ )] − i�k) + (αc2/2)−D̂1(�ρ)−D̂1(�υ),

which, comparing Eqs. (8) and (22), shows that ημσρυ =
2Î [�(μ + σ )] and that the modal equations are identical only
if second- and higher-order group-velocity dispersion at the
fundamental frequency and absorption losses at the second
harmonic are neglected.

Because of the difference in averaging of the FF dispersion,
the two approaches will generally give slightly different
results. We thus made a comparison of the eigenvalues
predicted by the temporal mean-field model and the modal
expansion approach. Modeling the frequency dependence of
the refractive index with a Sellmeier equation for LiNbO3

and assuming quasiphase matching, we found as shown in
Fig. 5(a) that the two approaches give almost identical MI
growth rates for parameters corresponding to the experiment
in Ref. [7]. To highlight the difference, a comparison of the MI
gain over a wide bandwidth in the absence of a phase mismatch
�φ for the MI process [i.e., assuming that the expression in
parentheses under the square root of Eq. (12) vanishes] is
also shown in Fig. 5(b). The distinction between the temporal
mean-field model (blue) and the modal expansion approach
(yellow, dashed), is that the OPO gain in the latter case depends
on the group-velocity dispersion and has a finite bandwidth.
However, this effect is negligible for realistic systems where
the effects of chromatic dispersion are overshadowed by
the action of temporal walk-off. The two approaches are in
excellent agreement when considering the full MI gain and
the difference between them are therefore minor in practice.
Note also that fast Fourier transform techniques cannot be
used to speed up numerical simulations of the coupled mode
equations, unless the nonlinear coupling between the fields
in Eq. (21) can be written as a convolution [26]. However,
Eq. (21) cannot in general be written as a single convolution,
which increases the computational complexity in comparison
to Eq. (7).

IV. COMB DYNAMICS

To begin characterizing the comb dynamics, we show
in Fig. 6 two plots of the spectral evolution of the comb
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FIG. 5. Comparison of MI gain predicted by the temporal mean-
field model (blue, solid line) and the modal expansion approach
(yellow, dashed). (a) Full MI gain. (b) MI gain when neglecting
the phase mismatch �φ for the MI process. The gain of the temporal
mean-field model does not account for frequency dependence of the
OPO gain and is seen to be asymptotic to a constant value in this case.

states obtained during a slow sweep of the detuning, which
experimentally corresponds to a sweep of the laser frequency
across the resonance. This procedure is similar to a technique
commonly used for the excitation of cavity soliton states in
Kerr resonators [27,28]. An analogous study for a doubly
resonant cavity has also been presented in Ref. [14], where
multiple dynamical regimes and abrupt shifts in the repetition
rate of the temporal MI pattern were numerically observed.
The parameters for the simulations are given in the caption and
correspond to those of the experiment in Ref. [7]. Although
MI is induced by the temporal walk-off, the group-velocity
dispersion is still important for determining the comb band-
width. To highlight the dependence on dispersion, we consider
identical parameters but different signs for the second-order
FF dispersion coefficient in Figs. 6(a) and 6(b), while
neglecting dispersion terms of higher order. We linearly vary
the detuning between δ1 ∈ [−0.1,0.2] and δ1 ∈ [−0.2,0.1],
respectively, over a time scale of 2 million roundtrips (∼4
ms) and record the instantaneous spectras that correspond to
vertical cross sections of the figure. Also plotted in the figures
are white dashed contour lines bounding the regions where
Eq. (12) predicts that MI can occur, and solid white lines
giving the frequencies for the peak MI gain. The variation
of the intracavity power for the CW state is further shown
below the figures. By comparing Figs. 6(a) and 6(b), we
can see that similar dynamics can be observed both in the
normal and the anomalous dispersion regimes, and that the

FIG. 6. Influence of the detuning on the spectral dynamics. Den-
sity plot of the normalized spectrum and variation of the CW intracav-
ity power. (a) Normal dispersion k

(2)
1 > 0. (b) Anomalous dispersion

k
(2)
1 < 0. Parameters corresponding to the experiment in Ref. [7]:

Pin = 2 W, θ1 = α1 = π/160, L = 15 mm, κ = 11.41 W−1/2 m−1,
�k = 0, �k′ = 792 ps/m, |k(2)

1 | = 0.234 ps2/m, and k
(2)
2 =

0.714 ps2/m.

two are roughly mirror images of each other with respect to
the detuning. This behavior can also be seen directly from
the eigenvalue Eq. (12) which predicts the MI gain. When
the walk-off dominates the dispersion at the second har-
monic, i.e., when |�k′| � |k(2)

2 �|/2, the nonlinear response
function will approximately satisfy Î (�0 + �) ≈ Î ∗(�0 − �)
with �0 = �k/�k′. Consequently for �k = 0 we have that
the bandwidth limiting phase mismatch for the MI process
�φ becomes independent of the nonlinear contribution and
reduces to [δ1 − (k(2)

1 L/2)�2]2 = [(−δ1) − (−k
(2)
1 L/2)�2]2.

Spectral dynamics similar to a normal dispersion resonator
with positive detuning can be thus be obtained by operat-
ing a resonator having anomalous dispersion with negative
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detuning. From the simulations of Fig. 6 we can see that
the parameter range for the instability is well predicted
by the MI analysis, and that a variety of both stable and
unstable comb states with different comb line spacings are
possible. Particularly, in the normal dispersion region with
δ1 > 0.07 and the anomalous dispersion region with δ1 <

−0.07 we see discrete jumps in the sideband spacing as
the detuning is varied. This behavior can be understood to
occur because the maximum MI gain frequency (solid white
line) switches between different minima of the nonlinear loss;
cf. Fig. 2.

To better understand the comb formation dynamics for fixed
parameters, we consider in Fig. 7 an example of the spectral
evolution of the fundamental field for a characteristic set of
parameters. We perform a numerical simulation of Eq. (7)
with the detuning held fixed and record the instantaneous
spectrum over a period of 10 000 roundtrips (∼20 μs). The
top plot of the figure shows the temporal pattern obtained at
the end of the simulation, and below it is shown the stationary
spectrum together with the initial MI growth rate predicted by
Eq. (12). Following the evolution from the beginning, we see
that the CW pump mode becomes modulationally unstable
and quickly generates a broad spectrum involving a large

FIG. 7. Spectral evolution of the fundamental field (large panel).
Top plot shows temporal profile, below it is shown the final spectrum
and the initial MI growth rate, while the bottom plot shows evolution
of the dimensionless intracavity energy. The parameters are the same
as in Fig. 6(a) with δ1 = −0.02.

number of cavity modes with the fundamental spacing of a
single free-spectral range (FSR). Since these modes originate
from amplified noise, they are however not phase locked,
which manifests itself by a turbulent evolution with a random
scrambling of phases and large amplitude fluctuations of the
individual modes. After roughly 2000 roundtrips a few modes
spaced by 39 FSRs, which is close to the middle of the MI
gain spectrum near its fourth highest peak, become phase
locked, and start to dominate the spectra. As time progresses
we find that additional harmonics further away from the pump
mode also lock. At this point the remaining modes are no
longer experiencing net parametric gain and start to decay
from absorption losses. We see that most modes decay rather
quickly, but that a pair of subcomb sidebands around each
mode of the main comb sees a smaller net loss and persists for
a few thousand roundtrips before eventually disappearing and
leaving behind a stationary, slightly asymmetric, frequency
comb that corresponds to a slowly drifting temporal pattern
(top panel of Fig. 7). Interestingly, the stationary solution is
seen to represent a maximum for the intracavity energy (bottom
panel of Fig. 7). The comb is consequently more energetic
in the final multiple FSR state, with larger amplitude of the
individual comb lines, than in the MI unstable regime where
the spectrum is much denser. The overall dynamics of the
formation process is similar to that of Kerr cavity solitons
and resembles the self-organizing phase synchronization
mechanism of the Kuramoto model [29].

V. CONCLUSIONS

In conclusion, we have considered frequency comb gener-
ation in a singly resonant second-harmonic-generation cavity
system containing a quadratically nonlinear and temporally
dispersive medium. Starting from an infinite-dimensional
map of nonlinear evolution equations for the fundamental
and second-harmonic fields, we have derived an accurate
dynamical model featuring a single mean-field equation with
a noninstantaneous nonlinear response function. The origin of
the nonlinear response is found to be phase-matched cascaded
χ (2) processes that lead to an effective cubic nonlinearity and
allows modulational instability to occur through an interplay
of nonlinearity and the difference in group velocity between
the pump frequency and its second harmonic. We have
further shown that the mean-field model can be related to
a frequency-domain modal expansion approach where the
dynamics of the system is governed by coupled mode equations
for the slow time evolution of each individual mode. The two
approaches are found to involve different mean-field averaging
procedures, but to be approximately equivalent in general, with
equality in the limit that absorption losses and group-velocity
dispersion at the fundamental frequency can be neglected.
Results of numerical simulations have also been presented,
illustrating the range of different comb states that can be gen-
erated in both normally and anomalously dispersive quadratic
resonator systems, together with an example showing typi-
cal comb formation dynamics for a mode-locked temporal
pattern.
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APPENDIX: NORMALIZATION

To eliminate superfluous parameters and make the variables
take on values of order unity it is convenient to express
the mean-field Eq. (7) in dimensionless form. This can,
e.g., be done by introducing the choice of normalization
u = AκL/

√
α1, T = τ

√
2α1/(|k′′

1 |L), and ξ = tα1/tR . If dis-
persion beyond the second order is neglected, the mean-field

equation then takes on the form,

∂u(ξ,T )

∂ξ
=

[
−1 − i�1 − iη1

∂2

∂T 2

]
u

−u∗[u2(ξ,T ) ⊗ I (T )] + S, (A1)

where we have defined �1 = δ1/α1, η1 = sign(k′′
1 ), and

S = κL

√
θ1/α

3
1Ain. The nonlinear response function I (T ) =

F−1[Î (�)] is the same as in Eq. (8), i.e.,

Î (�) = 1 − e−ix − ix

x2
, (A2)

but depends on x(�) = �kL + ik̂(�)α1 and k̂(�) = −μ2 +
i[η2�

2 + d�], with the dimensionless parameters μ2 =
αc2L/(2α1), η2 = k′′

2/|k′′
1 |, and d = �k′√2L/(α1|k′′

1 |).
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