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Global attractors for the coupled suspension
bridge system with temperature

Filippo Dell’Oroa and Claudio Giorgib*†

Communicated by A. Miranville

This paper deals with the long-term properties of the thermoelastic nonlinear string-beam system related to the well-
known Lazer–McKenna suspension bridge model

8>><
>>:

utt C uxxxx � .ˇ C kuxk
2
L2.0,1/

/uxx C .u � v/C C �xx D f
vtt � vxx � .u � v/C C 'x D g
�t � �xx � utxx D h
't � 'xx C vtx D 0.

(0.1)

In particular, no mechanical dissipation occurs in the equations, because the loss of energy is entirely due to thermal
effects. The existence of regular global attractors for the associated solution semigroup is proved (without resorting to a
bootstrap argument) for time-independent supplies f , g, h and any ˇ 2 R. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

We are interested in scrutinizing the thermomechanical dynamics (in the transversal direction) of a string-beam model composed of
an extensible thermoelastic beam with hinged ends coupled with a thermoelastic cable with fixed ends. The corresponding equations
take the following form: 8̂̂

<̂
ˆ̂̂:

utt C uxxxx �
�
ˇ C

R 1
0 jux.x, �/j2 dx

�
uxx C .u � v/C C �xx D f ,

vtt � vxx � .u � v/C C 'x D g,
�t � �xx � utxx D h,
't � 'xx C vtx D 0,

(1.1)

in the unknown variables

u, v, � ,' : Œ0, 1� � Œ0,1/! R.

Here, .u, �/ and .v,'/ are the (transversal) displacement–temperature pairs of the beam and the cable, respectively, and ˇ 2 R is a
fixed constant accounting for the axial force acting on the reference configuration (ˇ > 0 when the beam is stretched, and ˇ < 0 when
it is compressed). In addition, f , g, h 2 L2.0, 1/ are time-independent external sources: f and g stand for the lateral load distributions on
the beam and the cable, respectively, while h is the external heat supply to the beam. Finally,

.u � v/C D maxfu � v, 0g

denotes the positive part of the function u � v. The system is complemented with the hinged boundary conditions for u

a Institute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, Praha 1 115 67, Czech Republic
b Università degli Studi di Brescia, DICATAM – Sezione di Matematica, Via Valotti 9, Brescia 25133, Italy
* Correspondence to: Claudio Giorgi, DICATAM – Sezione di Matematica, Università degli Studi di Brescia, Via Valotti 9, Brescia 25133, Italy.
† E-mail: claudio.giorgi@unibs.it

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 864–875

8
6

4



F. DELL’ORO AND C. GIORGI

u.0, t/ D u.1, t/ D uxx.0, t/ D uxx.1, t/ D 0,

the Dirichlet boundary conditions for v and �

v.0, t/ D v.1, t/ D �.0, t/ D �.1, t/ D 0,

and the Neumann one for '

'x.0, t/ D 'x.1, t/ D 0.

This latter condition and the absence of a source term in the last equation of (1.1) follow from the assumption that the cable is
thermally insulated.

Remark 1.1
It is worth noting that different boundary conditions are physically significant as well, for instance, clamped rather than hinged ends
or mixed conditions (one end clamped and the other one hinged) for the variable u, and Dirichlet boundary conditions for the variable
'. However, in this case, the analysis carried out in the present work requires major modifications, and the proofs become much more
technical. In this situation, existence (and regularity) of attractors for the associated solution semigroup is an open problem at the
moment and might be the object of future investigations.

System (1.1) models a one-dimensional suspension bridge with thermal effects and prescribed axial load ˇ. The suspension cable
(string) and the roadbed (beam) are thermoelastic and are coupled by means of a distributed system of one-sided springs. In partic-
ular, the roadbed equation contains a geometric nonlinearity accounting for elastic extensions, so that the resulting system is doubly
nonlinear. When the suspension cable and the suspenders are neglected, the model reduces to a nonlinear parabolic system describ-
ing thermoelastic extensible beams, whose solution semigroup is known to possess a rich set of steady states [1] and a regular global
attractor [2].

Actually, a more general and realistic approach can be performed by including also the width of the roadbed and the torsional oscil-
lations. In this connection, a two-dimensional suspension bridge should be modeled as a long and narrow vibrating plate, coupled
with a pair of main cables by means of two series of nonlinear suspenders fixed at the lateral sides (e.g., [3, 4]). The resulting system
turns out to be too hard to handle if nonlinearities occur; this is the reason why we only deal with the one-dimensional situation. How-
ever, although simpler, our model (1.1) is somehow challenging from a mathematical viewpoint, because no mechanical dissipation is
present in the equations. In particular, the asymptotic analysis is highly nontrivial and requires the exploitation of certain dissipation
integrals and sharp energy-type estimates. In addition, unlike some previous papers on cable–beam systems involving the coupling
between parabolic and hyperbolic equations [5, 6], we are able here to obtain existence and optimal regularity of the global attractor
without resorting to a bootstrap argument.

1.1. Plan of the paper

In Section 2, we discuss some earlier contributions on the long-term properties of string-beam systems modeling suspension bridges.
In particular, we stress that all the previous results take advantage of the dissipation due to some external mechanical damping. In
Section 3, we introduce the functional setting, while Section 4 is devoted to the well-posedness of the problem. In Section 5, we dwell
on the dissipative character of the system, witnessed by the existence of bounded absorbing sets. Finally, Section 6 deals with the main
result about existence and regularity of global attractors.

2. Earlier results on string-beam models of suspension bridges

In recent years, an increasing attention has been payed to the analysis of buckling, vibrations, and post-buckling dynamics of nonlinear
suspension bridge models (e.g., [7–10]). To the best of our knowledge, the major part of the papers published in the field deals with
approximations and numerical simulations. Only few works are devoted to derive exact solutions, at least under stationary conditions
[11, 12], and to scrutinize their periodic or global dynamics by analytical methods (see, e.g., [3] and references therein). This section is
devoted to a brief survey on the subject. We begin by sketching out and discussing some linear and nonlinear models (with mechanical
damping) that appeared so far in the literature.

2.1. String-beam models for suspension bridges

In the nineties, Glover, Lazer, McKenna, and Walter proposed and studied a nowadays well-known suspension bridge model where the
coupling of the span with the main cable is taken into account [13–15]. Specifically, they considered the following damped system:�

�1utt C ı1uxxxx C �1ut C k.u � v/C D f ,
�2vtt � ı2vxx C �2vt � k.u � v/C D g.

(2.1)

The first equation of (2.1) describes the vertical oscillations of a one-dimensional beam, which represents the center span of the road
bed, hanging by elastic cable stays. The second equation models the vertical vibrations of the main cable, whose ends are fixed to
the pair of lateral piers. Accordingly, u and v represent the downward deflection in the vertical plane of the deck midline and the
suspension main cable, respectively, with respect to their reference configurations. The constants �1, �2 > 0 are the mass densities per
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unit length of the roadbed and the cable, while ı1, ı2 > 0 are the flexural rigidity of the beam and the coefficient of tensile strength of
the suspension string. Moreover, the terms �1ut and �2vt , with �1, �2 > 0, account for an external resistance force linearly depending on
the velocity and acting on the string-beam system. The sources f and g are (given) vertical dead-load distributions acting on the deck
and the main cable, respectively. The nonlinear terms˙ k.u�v/Cmodel the restoring force due to the suspenders, which are assumed
to behave as one-sided springs, with k > 0 being the common stiffness. Such a restoring force is proportional to the elongation of
the suspenders if they are stretched and vanishes if they are compressed. In addition, it holds the roadbed up and pulls the cable
down; therefore, into the first equation, the plus sign in front of k.u � v/C occurs, but into the second equation, the sign in front of
the same term is minus. This model is quite naive: it neglects torsional effects and the influence of the side-part and pier deformations.
Nevertheless, statics and dynamics of (2.1) are nontrivial (e.g., [7, 11]). The existence of a global attractor for the semigroup generated
by this system has been recently obtained in [16, 17].

2.2. String-beam models with large deflections

Actually, if large deflections occur, the Lazer–McKenna model becomes inadequate, and the extensibility of the deck has to be consid-
ered. This can be performed by introducing a geometric nonlinear term, as proposed in the fifties by Woinowsky-Krieger [18], in order
to account for a nonlinear dependence of the axial strain on the deformation gradient. This is of some importance in the modeling of
large deflections of both suspension and cable-stayed bridges (e.g., [10]). Considering jointly the suspended bridge and the cable, we
end up with the following system:(

�1utt C ı1uxxxx C �1ut �
�
ˇ C kuxk

2
L2.0,1/

�
uxx C k.u � v/C D f ,

�2vtt � ı2vxx C �2vt � k.u � v/C D g.
(2.2)

As previously stated, v measures the displacement of the main cable, and u represents the bending displacement of the roadbed of the
bridge. The existence of nontrivial steady states and regular global attractors has been proved in [19], [5], and [20].

Other realistic models can be constructed by considering a more general form F of the restraining force experienced by both the
roadbed and the suspension cable as transmitted through the tie lines (stays). If this is the case, the previous system takes the form(

�1utt C ı1uxxxx C �1ut �
�
ˇ C kuxk

2
L2.0,1/

�
uxx C F.u � v, ut � vt/ D f ,

�2vtt � ı2vxx C �2vt � F.u � v, ut � vt/ D g.
(2.3)

When F.�1, �2/ D k�C1 , we recover at once (2.2). Assuming F to represent the action of one-sided elastic springs and viscous dampers,
the corresponding solution semigroup is known to possess a regular global attractor [6]. On the other hand, there are some cases in
which F can be reasonably assumed to be linear (e.g., [21]). Indeed, let the roadbed be supported by a symmetrical system of one-sided
elastic springs (cable stays), each of which fastened on two symmetrically placed main (suspension) elastic cables, one above and one
below the roadbed. Then, the (damped) dynamics of the resulting suspension bridge is described by the following system:(

�1utt C ı1uxxxx C �1ut �
�
ˇ C kuxk

2
L2.0,1/

�
uxx C k.u � v/C h.ut � vt/ D f ,

�2vtt � ı2vxx C �2vt � k.u � v/ � h.ut � vt/ D g,
(2.4)

with h � 0. If the set of cables stays below the road bed is removed and h D 0, then (2.4) turns into the previous model (2.2).

Remark 2.1
We stress that the main novelty of the system considered in this paper with respect to the existing literature on string-beam models
of suspension bridges lies in the fact that the dissipation is entirely provided by the two heat equations. Hence, it seems interesting to
investigate and extend the analysis to other types of temperature equations (e.g., Maxwell-Cattaneo or Gurtin-Pipkin [22, 23]) and/or
to different mechanical nonlinearities. This will be the goal of a future work.

3. Preliminaries

3.1. Functional setting and notation

In what follows, h�, �i and k � k will denote the standard inner product and norm on the Hilbert space H D L2.0, 1/. Introducing the
biharmonic operator A : D.A/ b H! H defined as

Au D uxxxx with D.A/ D fu 2 H4.0, 1/ : u.0/ D u.1/ D uxx.0/ D uxx.1/ D 0g,

we consider the compactly nested family of Hilbert spaces generated by the powers of A (r will be always omitted whenever zero)

Hr D D

�
A

r
4

�
, hu, vir D hA

r
4 u, A

r
4 vi, kukr D kA

r
4 uk.

In particular,

H2 D H2.0, 1/ \ H1
0.0, 1/ b H1 D H1

0.0, 1/ b H D L2.0, 1/.
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Moreover, for r > 0, it is understood that H�r denotes the completion of the domain, so that H�r is the dual space of Hr . Accordingly,
the symbol h�, �i also stands for duality product between Hr and H�r , and we have the generalized Poincaré inequalities

�1kuk4
r � kuk4

rC1, 8u 2 HrC1

where �1 > 0 is the first eigenvalue of A. These inequalities, as well as the Hölder and the Young inequalities, will be tacitly used several
times in the sequel. Finally, we consider the Hilbert space

OH D

�
' 2 H :

Z 1

0
'.x/dx D 0

�

of zero-mean functions, along with the space
OH1 D H1.0, 1/ \ OH

endowed with the gradient norm (because of the Poincaré inequality). The phase space of our problem will be

H D H2 � H � H1 � H � H � OH

normed by
k.u, Qu, v, Qv, � ,'/k2

H D kuk2
2 C kQuk

2 C kvk2
1 C kQvk

2 C k�k2 C k'k2.

We will also encounter the more regular space

V D H4 � H2 � H2 � H1 � H2 � OH1.

Remark 3.1
Along the paper, we will perform several formal energy-type estimates, which can be rigorously justified in a Galerkin approximation
scheme.

3.2. Two technical lemmas

The first is a slightly modified version of the standard Gronwall lemma.

Lemma 3.2
Letƒ : Œ0,1/! Œ0,1/ be an absolutely continuous function satisfying for some ~ > 0 and almost every t the inequality

d

dt
ƒ.t/C 2~ƒ.t/ �  .t/ƒ.t/,

where  : Œ0,1/! Œ0,1/ fulfills Z t

�

 .y/dy � ~.t � �/Cm

for every t > � � 0 and some m � 0. Then
ƒ.t/ � ƒ.0/eme�~t .

Next, we report the following Gronwall-type lemma with parameters from the recent paper [24].

Lemma 3.3
Given "0 > 0, letƒ" : Œ0,1/! Œ0,1/ be a family of absolutely continuous functions satisfying for every " 2 .0, "0� the inequalities

1

2
E � ƒ" � 2E C k

d

dt
ƒ" C "ƒ" � C"2ƒ3=2

" C C

for some k � 0, C � 0 and E : Œ0,1/ ! Œ0,1/ continuous. Then there are constants ı > 0, R � 0 and an increasing function I � 0
such that

E.t/ � I.E.0//e�ıt C R.

4. The dynamical system

We begin with a well-posedness result.

Theorem 4.1
For all initial data z 2 H, problem (1.1) admits a unique weak‡ solution

‡Namely, all the equations of system (1.1) are satisfied in the (usual) weak sense.
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Z 2 C.Œ0,1/,H/.

Moreover, given any pair of initial data z1, z2 2 H such that kzikH � R, the corresponding solutions fulfill the continuous
dependence estimate

kZ1.t/ � Z2.t/kH � eQ.R/tkz1 � z2kH, 8t � 0,

for some positive increasing function Q.

The proof of this result is based on a standard Galerkin approximation procedure together with the use of a slight generalized version
of the Gronwall lemma (cf. [25]) and is not reported here. As a consequence, system (1.1) generates a strongly continuous semigroup

S.t/ : H! H

acting as

z D .u0, u1, v0, v1, �0,'0/ 7! S.t/z D Z.t/,

where Z.t/ is the unique solution to (1.1) with initial datum Z.0/ D z.
Next, we define the energy at time t � 0 corresponding to the initial datum z 2 H as

E.t/ D
1

2
kS.t/zk2

H C
1

4

�
ˇ C ku.t/k2

1

�2
C

1

2
k.u.t/ � v.t//Ck2,

and we multiply the first equation of (1.1) by ut , the second by vt , the third by � , and the fourth by '. Summing up, we find the energy
identity (valid for all sufficiently regular initial data)

d

dt
E C k�k2

1 C k'k
2
1 D hf , uti C hg, vti C hh, �i, (4.1)

where we made use of the relations
1

4

d

dt

�
ˇ C ku.t/k2

1

�2
D �

�
ˇ C ku.t/k2

1

�
huxx.t/, ut.t/i

and
1

2

d

dt
k.u.t/ � v.t//Ck2 D h.u.t/ � v.t//C, ut.t/ � vt.t/i

(e.g., [2, 5]).

Remark 4.2
Neglecting the last two equations of (1.1) and performing similar calculations, one can easily see that the mechanical part of the
system is conservative.

5. Absorbing sets

In this section, we prove the existence of an absorbing set for the semigroup S.t/. By definition, this is a bounded set B � H with the
following property: for any bounded set B � H, there exists an entering time te D te.B/ � 0 such that

S.t/B � B, 8t � te.

The absorbing set B is called invariant under the action of the semigroup if

S.t/B � B, 8t � 0.

Remark 5.1
Once we have B, we can always construct the invariant absorbing set

[
t�te

S.t/B � B, te D te.B/.

The existence of an invariant absorbing set for S.t/ is an immediate consequence of the next result.
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Theorem 5.2
We have the dissipative estimate

E.t/ � I.E.0//e�ıt C R

for some structural quantities ı > 0, R � 0 and I : Œ0,1/! Œ0,1/ increasing.

Proof
Along the proof, C � 0 will denote a generic constant depending on the structural quantities of the problem but independent of the
initial energy E.0/. In light of (4.1), the functional

L.t/ D E.t/ � hf , u.t/i � hg, v.t/i

fulfills the differential equality
d

dt
LC k�k2

1 C k'k
2
1 D hh, �i.

Observing that

hh, �i �
1

2
k�k2

1 C C,

we obtain
d

dt
LC 1

2
k�k2

1 C k'k
2
1 � C. (5.1)

Next, defining the primitive§

O'.x, t/ D

Z x

0
'.y, t/dy,

we introduce the auxiliary functional
†.t/ D hvt.t/, O'.t/i.

Here and in all the proofs carried out in the paper, we deal with proper energy-type functionals satisfying differential equalities that
follow in a straightforward way from system (1.1). For instance, computing the time derivative of†,

d

dt
† D hvtt , O'i C hvt , O'ti D hvxx C .u � v/C � 'x C g, O'i C hvt ,'x � vti,

and thus
d

dt
†C kvtk

2 D �hvx ,'i C h.u � v/C, O'i C k'k2 C hg, O'i C hvt ,'xi.

For clarity of presentation, these details will be often omitted, using expressions like by means of direct computations or by direct
calculations. Because the right-hand side of the previous identity is controlled by

1

8
kvtk

2 C
1

16
kvk2

1 C
1

16
k.u � v/Ck2 C Ck'k2

1 C C,

we arrive at the differential inequality

d

dt
†C

7

8
kvtk

2 �
1

16
kvk2

1 C
1

16
k.u � v/Ck2 C Ck'k2

1 C C. (5.2)

At this point, we consider the further functionals

‡.t/ D hut.t/, u.t/i C hvt.t/, v.t/i,

‰.t/ D hut.t/, �.t/i�1.

Concerning‡ , we have
d

dt
‡ C kuk2

2 C kvk2
1 C

�
ˇ C kuk2

1

�2
� ˇ

�
ˇ C kuk2

1

�
C k.u � v/Ck2

D kutk
2 C kvtk

2 � huxx , �i � hv,'xi C hf , ui C hg, vi.

Estimating

�huxx , �i � hv,'xi C hf , ui C hg, vi �
1

4
kuk2

2 C
1

4
kvk2

1 C Ck�k2
1 C Ck'k2

1 C C

and
1

2

�
ˇ C kuk2

1

�2
� ˇ

�
ˇ C kuk2

1

�
D

1

2
kuk4

1 �
1

2
ˇ2 � �C,

we infer that

d

dt
‡ C

3

4
kuk2

2 C
3

4
kvk2

1 C
1

2

�
ˇ C kuk2

1

�2
C k.u � v/Ck2

� kutk
2 C kvtk

2 C Ck�k2
1 C Ck'k2

1 C C.
(5.3)

§In particular, O' 2 H1
0.0, 1/.
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Regarding‰,
d

dt
‰ C kutk

2 D k�k2 � hut , �i � h.u � v/C, �i�1 C hut , hi�1

C hf , �i�1 C huxx , �i �
�
ˇ C kuk2

1

�
hu, �i.

We easily see that
k�k2 � hut , �i � h.u � v/C, �i�1 C hut , hi�1 C hf , �i�1 C huxx , �i

�
1

8
kutk

2 C
1

16
kuk2

2 C
1

16
k.u � v/Ck2 C Ck�k2

1 C C.

Moreover, because
kuk1 � Cjˇ C kuk2

1j
1=2 C Cjˇj1=2 � CE1=4 C C,

we obtain
�
�
ˇ C kuk2

1

�
hu, �i � Ck�k

�
kuk3

1 C 1
�

� Ck�kE3=4 C Ck�k

� Ck�kE3=4 C Ck�k2
1 C C.

Thus, we conclude that
d

dt
‰ C

7

8
kutk

2 �
1

16
kuk2

2 C
1

16
k.u � v/Ck2 C Ck�kE3=4 C Ck�k2

1 C C. (5.4)

Finally, for " > 0 and k � 0, we write
ƒ".t/ D L.t/C 4"‡.t/C 8"f‰.t/C†.t/g C k,

where k is large enough and " is small enough such that

1

2
E.t/ � ƒ".t/ � 2E.t/C k. (5.5)

Then, in light of inequalities (5.1)–(5.4) and (5.5), there exists 0 < "0 < 1 such that, for every " 2 .0, "0�,

d

dt
ƒ" C "ƒ" C

1

4
.1 � C"/

�
k�k2

1 C k'k
2
1

	
� C"k�kE3=4 C C

� C"2ƒ3=2
" C

1

8
k�k2

1 C C.

Therefore, possibly reducing "0 > 0, we end up with

d

dt
ƒ" C "ƒ" � C"2ƒ3=2

" C C.

Exploiting once more (5.5), an application of Lemma 3.3 completes the proof.

Remark 5.3
It is worth noting that, up to minor modifications, the conclusion of Theorem 5.2 holds true also, allowing the presence of time-
dependent source terms f and h in system (1.1). Indeed, the additional terms that pop up in the estimates can be actually handled as
in [2].

6. The global attractor

6.1. Statement of the result

By definition, the global attractor of S.t/ is the unique compact set A � H, which is at the same time

� fully invariant : S.t/A D A for every t � 0 and
� attracting : limt!1 ıH.S.t/B,A/ D 0 for any bounded set B � H.

In the usual notation, ıH.B1,B2/ denotes the standard Hausdorff semidistance between two nonempty sets B1,B2 � H.

Theorem 6.1
The semigroup S.t/ : H! H possesses the connected global attractor A contained and bounded in V .

Remark 6.2
In a Banach space setting, the global attractor of a strongly continuous semigroup S.t/ is always a connected set. We refer the reader
to the classical books [26–29] for more details.

Remark 6.3
Within our hypotheses on the forcing terms, the regularity of A is optimal. However, it is possible to prove that the attractor A is as
regular as f , g, h permit.
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The remaining part of the paper is devoted to the proof of Theorem 6.1. In what follows, B will denote a fixed invariant absorbing set
for S.t/, and C D C.B/ � 0 will stand for a generic constant depending only on B. In particular, we have the uniform bound

sup
t�0

sup
z2B
kS.t/zkH � C. (6.1)

Up to a translation, we can also assume h 	 0 (e.g., [2]).

6.2. Dissipation integrals

We need a dissipation integral for the norm of ut .

Theorem 6.2
For every � > 0 small, the integral estimate Z t

�

kut.y/k
2 dy � �.t � �/C

C

�

holds for all t > � � 0 and all initial data in B.

Proof
The functional L introduced in the proof of Theorem 5.2 satisfies the identity (recall that h 	 0)

d

dt
LC k�k2

1 C k'k
2
1 D 0.

Therefore, integrating on Œ0, t� and exploiting (6.1), we infer that

Z 1
0
k�.y/k2

1 dy � C. (6.2)

Referring once more to the proof of Theorem 5.2, we consider the functional‰, which fulfills

d

dt
‰ C kutk

2 D k�k2 � hut , �i � h.u � v/C, �i�1

C hf , �i�1 C huxx , �i �
�
ˇ C kuk2

1

�
hu, �i.

By means of (6.1), we can estimate

�hut , �i C k�k
2 � h.u � v/C, �i�1 C hf , �i�1 C huxx , �i �

�
ˇ C kuk2

1

�
hu, �i � � C

C

�
k�k2

1,

for all positive � � 1, and hence
d

dt
‰ C kutk

2 � � C
C

�
k�k2

1.

Integrating the last inequality on Œ� , t� and using (6.1)–(6.2), we are finished.

6.3. The decomposition

In the same spirit of [30], we split the solution S.t/z originated from initial data z 2 B into the sum

S.t/z D L.t/zC K.t/z,

where
L.t/z D .w.t/, wt.t/, p.t/, pt.t/, �.t/,	.t//

K.t/z D .r.t/, rt.t/, q.t/, qt.t/, 
.t/, �.t//

solve¶ 8̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂ˆ̂̂:

wtt C wxxxx �
�
ˇ C kuk2

1

�
wxx C `wC �xx D 0,

ptt � pxx C 	x D 0,

�t � �xx � wtxx D 0,

	t � 	xx C ptx D 0,

.w.0/, wt.0/, p.0/, pt.0/, �.0/,	.0// D z,

(6.3)

¶Systems (6.3) and (6.4) are complemented with the hinged boundary conditions for w, r, the Dirichlet boundary conditions for p, q, � , � , and the Neumann one for�,�.
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and 8̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂:

rtt C rxxxx �
�
ˇ C kuk2

1

�
rxx C .u � v/C � `wC 
xx D f ,

qtt � qxx � .u � v/C C �x D g,


t � 
xx � rtxx D 0,

�t � �xx C qtx D 0,

.r.0/, rt.0/, q.0/, qt.0/, 
.0/, �.0// D 0.

(6.4)

Here, ` D `.B/ > 0 is a positive constant large enough in order to have

1

2
kwk2

2 C `kwk2 C
�
ˇ C kuk2

1

�
kwk2

1 �
1

4
kwk2

2. (6.5)

This is possible because of (6.1) and the interpolation inequality

kwk2
1 � kwkkwk2.

Moreover, it is also clear that 	.t/ and �.t/ are zero-mean functions for every t � 0.

Lemma 6.5
There exists ~ D ~.B/ > 0 such that

kL.t/zkH � Ce�~t .

Proof
We denote for simplicity

E0.t/ D kL.t/zk2
H.

By direct calculations, the functional
L0.t/ D E0.t/C `kw.t/k2 C

�
ˇ C ku.t/k2

1

�
kw.t/k2

1

fulfills the identity
d

dt
L0 C 2k�k2

1 C 2k	k2
1 D �2huxx , utikwk2

1

and thus, exploiting (6.1),
d

dt
L0 C 2k�k2

1 C 2k	k2
1 � CkutkE0. (6.6)

Then, we consider the auxiliary functionals
†0.t/ D hpt.t/, O	.t/i,

‡0.t/ D hwt.t/, w.t/i C hpt.t/, p.t/i,

‰0.t/ D hwt.t/, �.t/i�1,

where

O	.x, t/ D

Z x

0
	.y, t/dy

is the primitive of the function 	jj. We begin by estimating†0 as

d

dt
†0 C kptk

2 D k	k2 C hpt ,	xi � hpx ,	i �
1

8
kptk

2 C
1

16
kpk2

1 C Ck	k2
1. (6.7)

Next, concerning‡0, we have
d

dt
‡0 C kwk2

2 C kpk2
1 C `kwk2 C

�
ˇ C kuk2

1

�
kwk2

1

D kwtk
2 C kptk

2 C hwx , �xi � hp,	xi

�
1

4
kwk2

2 C
1

4
kpk2

1 C kwtk
2 C kptk

2 C Ck	k2
1 C Ck�k2

1.

(6.8)

Lastly, thanks to (6.1), the functional‰0 satisfies

d

dt
‰0 C kwtk

2 D k�k2 � hwt , �i C hwxx , �i �
�
ˇ C kuk2

1

�
hw, �i � `hw, �i�1

� Ckwtkk�k1 C Ckwk2k�k1 C k�k
2

�
1

8
kwtk

2 C
1

16
kwk2

2 C Ck�k2
1.

(6.9)

At this point, for " 2 .0, 1�, we set
ƒ0.t/ D L0.t/C 4"‡0.t/C 8"f‰0.t/C†0.t/g.

jjAgain, O� 2 H1
0.0, 1/.
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It is apparent from (6.1) and (6.5) that, for " > 0 sufficiently small,

1

2
E0.t/ � ƒ0.t/ � CE0.t/. (6.10)

Moreover, collecting (6.6)–(6.9) and exploiting (6.5) once more, for every " > 0 small enough, the functional ƒ0 fulfills the differential
inequality

d

dt
ƒ0 C "E0 � CkutkE0 �

"

2
E0 C

C

"
kutk

2E0.

Thus, in light of (6.10), we end up with
d

dt
ƒ0 C 2~ƒ0 � Ckutk

2ƒ0

for some ~ D ~.B/ > 0. Up to fixing � > 0 in Theorem 6.2 sufficiently small in order to have

Z t

�

kut.y/k
2 dy � ~.t � �/C C,

appealing to Lemma 3.2 and (6.10) the claim follows.

Lemma 6.6
We have the uniform estimate

sup
t�0
kK.t/zkV � C.

Proof
We begin by observing that, due to (6.1) and Lemma 6.5, the following estimate holds

krk2
3 � krk2krk4 � Œkwk2 C kuk2� krk4 � Ckrk4. (6.11)

Next, setting

E1.t/ D kK.t/zk2
V ,

we consider the functional
L1.t/ D E1.t/C

�
ˇ C ku.t/k2

1

�
kr.t/k2

3 C 2h.u.t/ � v.t//C, rxxxx.t/i

C 2h.u.t/ � v.t//C, qxx.t/i � 2hf , rxxxx.t/i C 2hg, qxx.t/i.

By means of (6.1), (6.11), and Lemma 6.5, we have

d

dt
L1 C 2k
k2

3 C 2k�k2
2 D �2hut , uxxikrk2

3 C 2hŒ.u � v/C�t , rxxxxi

C 2hŒ.u � v/C�t , qxxi C 2`hwxx , rtxxi

� Ckrk2
3 C C Œkutk C kvtk� Œkrk4 C kqk2�C Ckrtk2

� Ckrk4 C Ckqk2 C Ckrtk2.

(6.12)

At this point, we introduce the further functionals

†1.t/ D �hqt.t/, �x.t/i,

‡1.t/ D hrt.t/, r.t/i2 C hqt.t/, q.t/i1,

‰1.t/ D hrt.t/, 
.t/i1

that will be estimated using (6.1), (6.11), and Lemma 6.5 without explicit mention. Regarding†1, we have

d

dt
†1 C kqtk

2
1 D k�k

2
1 C hqtx , �xxi � hqxx , �xi � h.u � v/C, �xi � hg, �xi

�
1

8
kqtk

2
1 C

1

16
kqk2

2 C Ck�k2
2 C C.

(6.13)

Concerning‡1, we infer that

d

dt
‡1 C krk2

4 C kqk2
2 C kuk2

1krk2
3 D krtk

2
2 C kqtk

2
1 � ˇkrk2

3 � h.u � v/C, qxxi

� h.u � v/C, rxxxxi C `hw, rxxxxi � h
xx , rxxxxi

C h�x , qxxi C hf , rxxxxi � hg, qxxi

�
1

4
krk2

4 C
1

4
kqk2

2 C krtk
2
2 C kqtk

2
1 C Ck�k2

2 C Ck
k2
2 C C.

(6.14)
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Finally, the functional‰1 fulfills

d

dt
‰1 C krtk

2
2 D k
k

2
2 C hrxx , 
i2 �

�
ˇ C kuk2

1

�
hr, 
i2 C h.u � v/C, 
xxi

� `hw, 
xxi � hrt , 
i2 � hf , 
xxi

�
1

8
krtk

2
2 C

1

16
krk2

4 C Ck
k2
2 C C.

(6.15)

At this point, for " > 0, we consider the functional

ƒ1.t/ D L1.t/C 4"‡1.t/C 8"f‰1.t/C†1.t/g,

which, collecting (6.12)–(6.15), satisfies the inequality

d

dt
ƒ1 C "E1 C .1 � C"/

�
k
k2

3 C k�k
2
2

	
C "krk2

4 C "kqk2
2 C "krtk

2
2

� Ckrk4 C Ckqk2 C Ckrtk2 C C

�
"

2
krk2

4 C
"

2
kqk2

2 C
"

2
krtk

2
2 C

C

"
,

for every " small enough. Moreover, it is apparent from (6.1) and (6.11) that, for all " > 0 small,

1

2
E1.t/ � C � ƒ1.t/ � CE1.t/C C.

In conclusion, fixing " > 0 sufficiently small, we arrive at

d

dt
ƒ1 C �ƒ1 � C,

for some � > 0, and an application of the Gronwall lemma completes the proof.

6.4. Conclusion of the proof of Theorem 6.1

Collecting Lemmas 6.5 and 6.6, there exists a closed ball C � V such that

lim
t!1

ıH.S.t/B, C/ D 0.

Because the embedding V b H is compact, by classical arguments (e.g., [26, 29]), we have the existence of the global attractor A � C.
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