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This paper deals with damped transverse vibrations of elastically coupled double-beam system under
even compressive axial loading. Each beam is assumed to be elastic, extensible and supported at the
ends. The related stationary problem is proved to admit both unimodal (only one eigenfunction is in-
volved) and bimodal (two eigenfunctions are involved) buckled solutions, and their number depends on
structural parameters and applied axial loads. The occurrence of a so complex structure of the steady
states motivates a global analysis of the longtime dynamics. In this regard, we are able to prove the
existence of a global regular attractor of solutions. When a finite set of stationary solutions occurs, it
consists of the unstable manifolds connecting them.
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1. Introduction

In this paper we investigate the properties of damped trans-
verse vibrations and dynamical buckling of a coupled double-
beam system under even compressive axial loading. The system
models a sandwich structure with an elastic filler. It is composed
of two equal WK-beams (according to the nonlinear model of
Woinowsky-Krieger [37]), which are connected by linear springs
and simply supported at the ends (see Fig. 1).

The in-plane dynamics is ruled by the following nonlinear system:

( )

( )

δ ν γ

κ

δ ν γ

κ

∂ + ∂ + ∂ − ℓ + ∥∂ ∥ ∂

+ [ − ] =

∂ + ∂ + ∂ − ℓ + ∥∂ ∥ ∂

− [ − ] = ( )

( )

( )

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

u u u u u

u u f

u u u u u

u u f

,

, 1

tt xxxx t x L L xx

tt xxxx t x L L xx

1 1 1 1 0,
2

1

1 2 1

2 2 2 2 0,
2

2

1 2 2

2

2

).
where the unknown variables [ ] × →+ u L: 0,i (i¼1,2) represent
the downward deflections in the vertical plane of the midline of the
beams with respect to their reference configuration at rest. Both
beams are hinged at their ends, so that

( )( ) = ( ) = ∂ ( ) = ∂ ( ) = ∈ [ ∞) = 2u t u L t u t u L t t i0, , 0, , 0, 0, , 1, 2.i i xx i xx i

The unknown fields are required to satisfy the following initial con-
ditions:

( ) = ( ) ∂ ( ) = ( ) ∈ [ ] = ( )u x u x u x v x x L i, 0 , , 0 , 0, , 1, 2, 3i i t i i
0 0

where u1
0, u2

0, v1
0 and v2

0 are given functions which fulfill (2). The WK-
beams are assumed to have equal length L and unitary mass. In the
reference (natural) configuration they are straight and parallel, and
their spacing is d. They are connected by linear elastic springs with
common stiffness κ and free length d. Sources fi, i¼1,2, represent the
given vertical load distributions. The positive constants δ and ν denote
the flexural rigidity of the beams and the viscosity of the external
environment, respectively. Finally, γ is a positive constant, whereas the
parameter ℓ summarizes the effect of the axial force acting at one end
of each beam and is positive when both beams are stretched, negative
when compressed.
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Fig. 1. In-plane oscillations of a double-beam sandwich system.
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A derivation of the WK-beam model within a thermoelastic
framework can be found in [18]. According to the modeling ap-
proach devised therein, the WK-beam equation is a simplification
of the nonlinear von Kármán one-dimensional model, where
longitudinal (horizontal in our case) displacements are condensed
by integrating the corresponding equation in which longitudinal
inertia is neglected. Unlike the usual Euler–Bernoulli linear theory,
a nonlinear but uniform term accounting for extensibility of the
beam is retained into the equation of the transversal vibration. We
stress that all material constants in (1) are dimensionless (see [18]
for details). In particular

δ = > ℓ = ∈ 
h
L

D
L6

0,
2

,
2

2

where h and D are the thickness of the beam and its longitudinal
displacement at the ends, respectively. As usual, both are assumed
to be considerably shorter than the length L. Finally, we remark
that the elongation of the coupling springs must take account of
the horizontal displacements of their anchor points. Nevertheless,
in (1) the strain in the springs is approached by the difference
between the vertical displacements of the two beams. This may be
accounted for assuming the maximum horizontal displacement,
| |D , to be negligible if compared with the reference spacing of the
beams, namely | |⪡D d.

System (1) may be also used to describe out-of-plane oscilla-
tions, both vertical and torsional, of a girder bridge where the road
bed is modeled by an elastic rug connecting two lateral WK-beams
(see Fig. 2). In this case, however, the lateral movements of the
beams are neglected by the model.

Although all results obtained hereafter apply to both material
models, for the sake of definiteness we shall refer to the former,
only. In addition, due to the recasting of the problem into an ab-
stract setting, we stress that the present analysis can be easily
extended to (Berger) plate-type sandwich structures with hinged
and normally loaded boundaries. In spite of a relatively wide lit-
erature concerning statics and dynamics of a single WK-beam (see
e.g. [2,3,5,7,8,14,15,19,22,31,37] and references therein), we are
not aware of analytic studies which consider the elastic coupling of
two or more nonlinear beams of this type. On the other hand,
mathematical models of sandwich beam-type and plate-type
structures raised a wide interest in the literature, due to their re-
levance in many branches of modern civil, mechanical and aero-
space engineering. In particular in the 80s the phenomenon of
nonlinear buckling mode interaction stimulated much interest and
has been investigated by many authors. In particular we recall the
fundamental contribution by Budiansky [11] and the many tech-
nical papers by Sridharan (see for instance [4,32]). Recently, after
Fig. 2. Out-of-plane oscillations of a double-beam girder bridge.
some pioneer works (see, for instance, [23,29]) concerning inter-
action buckling between two beams, a lot of papers deal with
mechanical properties of axially loaded and elastically connected
linear double beam systems (see, for instance, [21,25,26,
35,36,38,39]).

The aim of this paper is to give a contribution on this subject by
scrutinizing statics and dynamics of the initial boundary value
problem (1)–(3). Its novelty and relevance relies on the complete
characterization of the long time behavior, which emphasizes the
different behavior of the nonlinear system (1) with respect to
double-beam linear systems previously considered. It is worth
noting that in a wider context concerning the localization of vi-
bration modes and buckling patterns [24,27,30], nonlinearities
play the same role than imperfections do in linear systems.

The occurrence of a very complex structure of the steady states
motivates a global analysis of the longtime dynamics of system (1)
(Sections 4 and 5). In this regard, due to the dissipative nature of
the system (ν > 0), we are able to prove the existence of a global
regular attractor of solutions. In particular, when a finite set of
stationary solutions occurs, the global attractor is given by the
union of the unstable manifolds connecting them (Section 5.3).
2. Preliminary results

Introducing a suitable functional framework, we recast the
original system (1) into an abstract setting. Let ( 〈· ·〉 ∥·∥)H, , , be a
real Hilbert space, and let ( )⋐ →A A H H: be a strictly positive
selfadjoint operator, whose distinct eigenvalues and eigenfunc-
tions are λ > 0i and ψi, ∈ i , respectively. For τ ∈ , we introduce
the Hilbert spaces

= ( ) 〈 〉 = 〈 〉 ∥ ∥ = ∥ ∥τ
τ

τ
τ τ

τ
τH A u v A u A v u A u, , , , ./4 /4 /4 /4

The symbol 〈· ·〉, will also be used to denote the duality product
between τH and its dual space τ−H . In particular, we have the
compact embeddings ⋐τ τ+H H1 , along with the generalized Poin-
caré inequalities

λ ∥ ∥ ≤ ∥ ∥ ∀ ∈ ( )τ τ τ+ +w w w H, , 41
4

1
4

1

and we define the family of product Hilbert spaces

τ= × × × ∈ [ ]τ τ τ τ τ+ +H H H H , 0, 2 .2 2

In all these notations the index τ is omitted when τ = 0. Then, we
state on the following abstract Cauchy problem:
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The original problem (1)–(3) can be viewed as a special case of
(5)–(6) by assuming = ∂A xxxx and = ( )H L L0,2 . We stress that this
abstract formulation cannot be applied when boundary conditions
differ from (2) (for instance, if clamped–clamped or hinged–
clamped ends are prescribed). Really, the original coupled system
can be described by means of a single operator A only if the beams
are assumed to be hinged at their ends. Afterwards, a weak solu-
tion of (5)–(6) will be denoted by σ →+: ,

σ ( ) = ( ( ) ∂ ( ) ( ) ∂ ( ))t u t u t u t u t, , , .t t1 1 2 2

For further convenience, (5) may be rewritten as a system with
a symmetric nonlinear coupling term independent of κ. Indeed,
letting

= ( + ) = ( − ) = ( + ) = ( − )w u u v u u f f f g f f, , , ,1
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(5) takes the following form:
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2.1. Energy norm and semigroup of solutions

Henceforth, c will denote a generic positive constant which
possibly (but implicitly) depends on the structural constants of the
problem. In addition, →+ + Q: 0 will denote a generic increasing
monotone function which explicitly depends only on R, but im-
plicitly also depends on the structural constants of the problem.
The actual expressions of c and Q may change, even within the
same line of a given equation.

The total energy of a solution s is defined as
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After assuming that a continuous solution σ ( )t , ≥t 0, does exist,
suitable identities and energy estimates are obtained. They all are
written here in a formal setting and could be made rigorous with
the use of mollifiers (a procedure which involves boring and
routine calculations). The very same identities and estimates apply
to the Galerkin approximation scheme which is required to prove
existence.

The energy identity is (formally) obtained after multiplying (5)1

by ∂ ut 1 and (5) 2 by ∂ ut 2. It reads

σ ν( ( )) + (∥∂ ( )∥ + ∥∂ ( )∥ )

= (〈∂ ( ) 〉 + 〈∂ ( ) 〉) ( )

d
dt

E t u t u t

u t f u t f

2

2 , , . 8

t t

t t

1
2

2
2

1 1 2 2

Lemma 1. Let fi ∈ −H 2, i¼1,2, and ℓ ∈ , γ δ ν κ >, , , 0. For all >t 0
and initial data = ( ) ∈z u v u v, , ,1

0
1
0

2
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2
0 with ∥ ∥ ≤z R, we have

σ( ( )) ≤ ( )t Q R .

Proof. We introduce the functional → : given by

( )σ σ( ) = ( ) − + ( )E u f u f2 , , . 91 1 2 2

Along any solution σ ( )t to (5), the time function σ( ( ))t is non-
increasing. Actually, from the energy identity (8) it follows

σ ν( ( )) = − (∥∂ ( )∥ + ∥∂ ( )∥ ) ≤ ( )
d
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t u t u t2 0, 10t t1
2

2
2

which ensures that

σ( ( )) ≤ ( ) ≤ ( )t z Q R ,

for all ∈z with ∥ ∥ ≤z R. Since ≥E , from (9) we obtain the
estimate
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which finally yields
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Lemma 2. Let ∈ −f Hi 2, i¼1,2, and ℓ ∈ , γ δ ν κ >, , , 0. For all initial
data ∈z , the abstract Cauchy problem (5)–(6) admits a unique
solution σ ∈ ( )T0, ; , which continuously depends on the initial
data.

The proof is omitted in that it can be obtained by paralleling
Proposition 1 in [9], and relies on a standard Faedo–Galerkin ap-
proximation scheme (see [2,3]) together with a slight general-
ization of the usual Gronwall lemma. In particular, the uniform-in-
time estimates needed to prove the global existence are exactly
the same as in Lemma 1.

According to Lemma 2, system (5)–(6) generates a strongly
continuous semigroup (or dynamical system) S(t) on , i.e. for a
given initial data ∈z ,

σ ( ) = ( ) ( ) = ‖ ( ) ‖t S t z t S t z, .2

Moreover, S(t) admits a Lyapunov functional, according to the
following result.

Lemma 3. If ∈ −f Hi 2, i¼1,2, then , defined in (9) is a Lyapunov
functional for S(t), that is a function ∈ ( )C , satisfying the fol-
lowing conditions:

(i) ( ) → ∞z if and only if ∥ ∥ → ∞z ;
(ii) ( ( ) )S t z is nonincreasing for any ∈z ;
iii) ( ( ) ) = ( )S t z z for all >t 0 implies that ∈z , where

= { ∈ ( ) = ∀ > }z S t z z t: , 0

is the set of all stationary solutions.

Proof. By the continuity of , and by means of the estimates

( ) − ≤ ( ) ≤ ( ) + ∀ ∈E z c z E z c z, ,1
2

3
2

assertion (i) can be easily proved. The nonincreasing monotonicity
of , along the trajectories departing from z, namely (ii), has been
yet shown in the proof of Lemma 1. Finally, if is constant in time,
from (10) we have ∂ ( ) = ∂ ( ) =u t u t 0t t1 2 for all >t 0, which implies
that ( ) = ¯u t u1 1, ( ) = ¯u t u2 2 are constants and that they satisfy (1).
Hence, = ( ) = ( ¯ ¯ )z S t z u u, 0, , 01 2 for all >t 0, and then ∈z . □
3. Steady states

In this section we analyze the stationary problem related to (5)
in the homogeneous case ( = ≡ )f f 01 2 . Depending on the model
parameters κ and ℓ, there exist nontrivial (buckled) solutions, both
unimodal and bimodal. In spite of the perfect symmetry of the
system, for special values of the parameters we obtain non-sym-
metric static solutions where the elastic energy is not evenly
distributed between the two beams. The proof of these results can
be found in [16] and is summarized in the Appendix. The non-
homogeneous case can be handled according to [15].

Let 0 be the set of stationary solutions to the homogeneous
problem. It is made of vectors = ( ) ∈z u u, 0, , 00 1 2 such that
( ) ∈ ×u u H H,1 2 2 2 are weak solutions to the system
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when = ∂A xxxx and λ π= n L/n
4 4 4, ψ π( ) = ( )x n x Lsin /n . Of course, the

trivial solution = =u u 01 2 does always exist.

3.1. Unimodal solutions

First, we look for solutions where each field involves only one
eigenfunction, namely we consider

ψ ψ( ) = ( ) ( ) = ( ) ∈ u x a x u x b x m n, , , .n n m m1 2

After replacing these expressions, from (12) we achieve the system

λ λ ψ ψ
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When ≠m n, it easily follows that = =a b 0n m and = =u u 01 2 .
Accordingly, if a nontrivial solution ( )u u,1 2 of this kind does exist
then it is unimodal, in the sense that both u1 and u2 should involve
the same eigenfunction,

ψ ψ( ) = ( ) ( ) = ( ) ∈ ( )u x a x u x b x n, , . 14n n n n1 2

In the sequel, we consider a fixed ∈ n .

Theorem 1. Depending on the values of ℓ ∈ , there exist at most
nine unimodal solutions to (11) involving the n-th eigenfunction of A.
In particular:

� when δ λℓ ≥ − n there exists only the null solution

( ) = ( )( ) ( )a b, 0, 0n n
0 0 ;

� at δ λℓ = − n the null solution bifurcates into a couple of in-
phase solutions,

( ) α α= ( ± ± )( ) ( )a b, , ;n n n n
1 1

� at δ λ λℓ = − − k2 /n n the null solution bifurcates into a couple
of out-of-phase solutions,

( ) ( )β β= ± ∓( ) ( )a b, , ,n n n n
2 2

� at δ λ λℓ = − − k3 /n n each out-of-phase solution bifurcates
into a couple of solutions with unequally distributed energy,
namely

( ) ( ) ( ) ( )ω ω ω ω= ± ∓ = ± ∓( ) ( ) + − ( ) ( ) − +a b a b, , , , , .n n n n n n n n
3 3 4 4
Fig. 3. The energy level sets of E at ℓ
Summarizing, there are

� one solution (the null solution) in the range δ λℓ ≥ −/ n ;
� three solutions in the range λ δ λ δ λ− − ( ) ≤ ℓ < −k2 / /n n n ;
� five solutions in the range λ δ λ δ λ δ λ− − ( ) ≤ ℓ < − − ( )k k3 / / 2 /n n n n ;
� nine solutions in the range δ λ δ λℓ < − − ( )k/ 3 /n n .

Remark 1. This situation occurs also in the study of buckling for a
rectangular plate under in-plane loading. This phenomenon is
named mode jumping: its buckling pattern exhibits a symmetric
breaking (secondary) bifurcation, that is the symmetry group of
the equations remains unchanged, but the solutions which bi-
furcate break the symmetry (see [34, pp. 149, 242]).

By replacing (14) into the expression of the total energy E, we get

λ δ
γ

λ
γ

λ

κ

( ) = ( + ) + ℓ + + ℓ +

+ ( − )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
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,
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2

1
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2 2 2 2
2

2
2

2

and using the level-set representation we infer that (see
Figs. 3 and 4)

� in the range δ λℓ ≥ − n the null solution is the unique mini-
mum of E;

� in the range δ λ λ δ λ− − ≤ ℓ < −k2 /n n n the energy E admits
two minima and a saddle point (the null solution);

� in the range δ λ λ δ λ λ− − ≤ ℓ < − −k k3 / 2 /n n n n the energy
E admits two minima, two saddle points and a maximum (the
null solution);

� in the range δ λ λℓ < − − k3 /n n the energy E admits four
minima, four saddle points and a maximum (the null solution).

If we restrict our attention to the amplitude an of u1, Fig. 5
shows the corresponding bifurcation diagram depending on the
values of δ λ= − ℓ −qn n .

Remark 2. After the secondary bifurcation, the double-beam
system exhibits steady-states where the beams have different
elastic energies. Such non-symmetric equilibria correspond to
unstable branches and cannot be observed. In spite of this, their
occurrence is relevant in the longtime global dynamic of the two
beams, for it may lead up to non-symmetric energy exchanges
= − −2.5, 3.5 (γ δ κ λ= = = = 1n ).



Fig. 4. The energy level sets of E at ℓ = − 5 (γ δ κ λ= = = = 1n ).
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between them.
3.2. Bimodal solutions

It is well known that all the steady states of a single extensible
beam are expressed as unimodal functions (see, for instance
[7,15]). We scrutinize here whether this is the case even for the
double-beam system under consideration. At a first attempt, we
are looking for bimodal solutions. Of course, if solutions of this
kind do exist, they cannot take the in-phase shape because of the
system uncoupling. A more general approach is devised in [16].

3.2.1. The resonant set
Let

μ δ λ ν κ μ κ λ= ( ) = + ∈ n, 2 / , ,n n n n n

which represent the eigenvalues of the operators δA1/2 and
δ κ+ −A A21/2 1/2, respectively. According to the previous section,
system (12) exhibits unimodal in-phase bifurcation when μℓ = − n
and unimodal out-of-phase bifurcation when ν κℓ = − ( )n .

Without any loss of generality, we assume ∈ m n, , >m n.
Then μ μ>m n, but ν κ( )n could overlap either μm or ν κ( )m if κ is
properly chosen. In the former case,

ν κ μ κ δ λ λ λ( ) = ⟺ = −⋆ ⋆ ⎡
⎣⎢

⎤
⎦⎥2
.n mn m mn n m n

In the latter case,
Fig. 5. The buckled solutions ( )an
i , =i 1, 2, 3, 4, for a fixed ∈ n .
ν κ ν κ κ δ λ λ( ) = ( ) ⟺ =† † †

2n mn m mn mn n m

and then ν κ μ μ( ) = +†
n mn n m. The set of all the values of κ that

produce some overlapping is named resonant set:

{ }κ κ κ κ κ= ∈ = = >+ † ⋆ m n: either or , for some integer .mn mn

Now, we look for nontrivial bimodal solutions of the form

ψ ψ ψ ψ( ) = ( ) + ( ) ( ) = ( ) + ( )u x a x c x u x b x d x, ,n n m m n n m m1 2

where ≠a b c d, , , 0.n n m m When both beams have the same elastic
energy, the following result holds (see the Appendix).

Theorem 2. Given >m n, bimodal solutions such that
∥ ∥ = ∥ ∥u u1 1 2 1 are allowed only if κ ∈ . In particular,

� when κ κ= †
mn there exist ∞1 bimodal solutions, where both modes

are out-of-phase, provided that μ μℓ < − ( + )n m ;
� when κ κ= ⋆

mn there exist ∞1 bimodal solutions, where the m-mode
is in-phase and the n-mode is out-of-phase, provided that

μℓ < − m.

It is apparent that after bifurcation infinitely many (n,m) bimodal
solutions just occur instead of n and m unimodal ones when their
critical values νn and νm overlap.

A different result holds if the total elastic energy at equilibrium
are unequally distributed among the beams. After introducing
ζ λ λ= >/ 1mn m n and

ϕ κ ζ ζ κ κ
ζ κ κ

( ) = ( + ) + ( − )( − )
( − ) ( )

†

†
1 1 1 2 /

1 2 /
,

15mn
mn mn mn

mn mn

2

ψ κ ζ ζ κ κ
κ κ

( ) = ( + ) − ( − )( − )
− ( )

†

†
1 1 1 2 /

1 2 /
,

16mn
mn mn mn

mn

2

we are able to prove (see the Appendix).

Theorem 3. Given >m n, four distinct bimodal solutions such that
∥ ∥ ≠ ∥ ∥u u1 1 2 1 exist if and only if either

κ κ κ κ κ< < ℓ ( ) < ℓ < ℓ ( )† † ⁎ ⁎and2 ,mn mn 1 2

or

κ κ κ< ℓ < ℓ ( )⋆ ⁎and, ,mn 1

where

κ ν κ κ
ϕ κ
λ

κ ν κ κ
ψ κ
λ

ℓ ( ) = − ( ) +
+ ( )

ℓ ( ) = − ( ) +
+ ( )⁎ ⁎1

,
1

.n
mn

n
m

mn

m
1 2
4. The exponential decay

Within this section, we restrict our attention to the homo-
geneous system, namely we assume fi¼0 into (5). It is easy to
check that the linear part of the differential operator acting on ui
fulfills the following lemma.

Lemma 4. (See [6, Lemma 4.5]) Let δ( ) = + ℓℓ u Au A ui i i
1/2 ( = )i 1, 2

and

δ λ
δ λ

=
ℓ ≥

+ ℓ − < ℓ <
( )

ℓ

⎧
⎨⎪

⎩⎪
⎛
⎝⎜

⎞
⎠⎟

C

if

if

1 0,

1 0.
171

1

Then
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δ( ) ≥ ‖ ‖ℓ ℓu u C u, ,i i i 2
2

provided that δ λℓ > − 1 .

As a consequence, letting ( )S t0 be the semigroup which is generated
by (5) when fi¼0, we are able to prove the following result.

Theorem 4. Let ∈z , ∥ ∥ ≤z R. Provided that δ λℓ > − 1 , all
solutions ( )S t z0 decay exponentially, i.e. there exists a positive con-
stant c such that

( ) ≤ ( ) −t Q R e .ct

Proof. We introduce the functional

Φ ε ε
γ

= + ∂ + ∂ − ℓ
( )

E u u u u, ,
1

,
18

t t1 1 2 2
2

and we choose

ε ν δλ δλ
ν

=
( )ℓ

ℓ⎧⎨⎩
⎫⎬⎭C

C
min 1, , ,

2
19

1
1

Taking into account (17), this constant is positive provided that
δ λℓ > − 1 . After recalling the definition of E, we remark that

( )
Φ

γ ε ε

κ

= ( ) + ( ) + ∥∂ ∥ + ∥∂ ∥

+ ‖ ‖ + ‖ ‖ + ∂ + ∂

+ ∥ − ∥ ( )

ℓ ℓu u u u u u

u u u u u u

u u

, ,

, ,

. 20

t t

t t

1 1 2 2 1
2

2
2

1
2 1 1

4
2 1

4
1 1 2 2

1 2
2

The first step is to prove the equivalence between andΦ, that
is

Φ≤ ≤ ( ) ( )
ℓC

Q R
2

. 21

Indeed, a lower bound is provided by virtue of (19) and Lemma 4,

Φ ε δ ε
λ

≥ − ∥∂ ∥ + ∥∂ ∥ + − ‖ ‖ + ‖ ‖

≥

ℓ

ℓ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟u u C u u

C

1
2 2

2
.

t t1
2

2
2

1
1 2

2
2 2

2

On the other hand, by applying Young inequality and Lemma 1
tailored to ( )S t0 , the upper bound of Φ follows:

Φ κ
λ δ δ λ

ε
λ δ

γ
λ δ

≤ + + |ℓ| + + ( ) = ( )
⎡
⎣⎢

⎤
⎦⎥

Q R
Q R2

2 2
.

1 1

2

1 1
2

The last step is to prove the exponential decay ofΦ. To this aim,
we obtain the identity

Φ εΦ ν ε ε γ

ε ν ε

+ + ( − )(∥∂ ∥ + ∥∂ ∥ ) + (‖ ‖ + ‖ ‖ )

+ ( − )( ∂ + ∂ ) =

d
dt

u u u u

u u u u

2
2

, , 0,

t t

t t

1
2

2
2

1 1
4

2 1
4

1 1 2 2

where ε is given by (19). Exploiting (4), (21) and the Young in-
equality, we have

Φ εΦ ν ε ε
ν ε

λ
ε ν
δλ

Φ

+ + ( − )(∥∂ ∥ + ∥∂ ∥ ) ≤
( − )

‖ ‖ + ‖ ‖

≤
ℓ

⎛
⎝⎜

⎞
⎠⎟

d
dt

u u u u

C

4

2
,

t t1
2

2
2 2

1
1 2

2
2 2

2

2

1

from which it follows

Φ ε
δλ

δλ εν Φ+ − ≤
ℓ

ℓ
⎡
⎣⎢

⎤
⎦⎥

d
dt C

C
2

2 0.
1

1

Letting ε δλ εν δλ= −ℓ ℓ⎡⎣ ⎤⎦c C C2 /21 1 , which is positive by virtue of
(19), we conclude
Φ Φ( ) ≤ ( ) ≤ ( ) ≤ ( ) □ℓ − −C
t t e Q R e

2
0 .ct ct

5. The global attractor

The existence of a Lyapunov functional (see Lemma 3) ensures
that bounded sets of initial data have bounded orbits. In this
section, we provide the existence of the global attractor by
showing a suitable (really, exponential) asymptotic compactness
property of the semigroup. Namely, we prove the following.

Theorem 5. Let ∈ =−f H i, 1, 2i 2 , be fixed. Then, the semigroup S(t)
acting on possesses a connected global attractor ⊂ . In par-
ticular, is bounded in 2, so that its regularity is optimal.

By standard arguments of the theory of dynamical systems (see
[1,20,33]), the first part of Theorem 5 can be established by ex-
ploiting the following:

Lemma 5. Assume that S(t) fulfills the asymptotic compactness
property. That is, for every >R 0, there exist a function ψ →+ + :R
vanishing at infinity and a compact set ⊂R such that the semi-
group S(t) can be split into the sum ( ) + ( )L t K t , where the one-
parameter operators L(t) and K(t) fulfill

ψ∥ ( ) ∥ ≤ ( ) ( ) ∈L t z t K t z, ,R R

whenever ∥ ∥ ≤z R and ≥t 0. Then, S(t) possesses a connected
global attractor ⊂ R0 for some >R 00 .

According to the scheme first devised in [19], we split the so-
lution ( )S t z into the sum

( ) = ( ) + ( )S t z L t z K t z,

where

( ) = ( ( ) ∂ ( ) ( ) ∂ ( ))

( ) = ( ( ) ∂ ( ) ( ) ∂ ( ))

L t z u t u t u t u t

K t z u t u t u t u t

, , , ,

, , ,

L
t

L L
t

L

K
t

K K
t

K

1 1 2 2

1 1 2 2

respectively solve the systems

( )
( )

δ ν γ

δ ν γ

∂ + + ∂ + ℓ + ‖ ‖ + =

∂ + + ∂ + ℓ + ‖ ‖ + =

( ( ) ∂ ( ) ( ) ∂ ( )) = ( )

⎧
⎨
⎪⎪

⎩
⎪⎪

u Au u u A u au

u Au u u A u au

u u u u z

0

0

0 , 0 , 0 , 0 , 22

tt
L L

t
L L L

tt
L L

t
L L L

L
t

L L
t

L

1 1 1 1 1
2 1/2

1 1

2 2 2 2 1
2 1/2

2 2

1 1 2 2

( )

δ ν γ κ

δ ν γ κ

∂ + + ∂ + (ℓ + ‖ ‖ ) − + ( − ) =

∂ + + ∂ + (ℓ + ‖ ‖ ) − − ( − ) =

( ( ) ∂ ( ) ( ) ∂ ( )) =

⎧
⎨
⎪⎪

⎩
⎪⎪ 23

u Au u u A u au u u f

u Au u u A u au u u f

u u u u

,

,

0 , 0 , 0 , 0 0,

tt K K t K K L

tt K K t K K L

K t K K t K

1 1 1 1 1
2 1/2

1 1 1 2 1

2 2 2 2 1
2 1/2

2 2 1 2 2

1 1 2 2

where >a 0 is large enough that the following inequality holds
(see [19])

‖ ‖ ≤ ‖ ‖ + ℓ‖ ‖ + ‖ ‖ ≤ ‖ ‖ ( )u u u a u m u 24
1
2 2

2
2
2

1
2 2

2
2

for all ∈u H2 and for some = (ℓ ) ≥m m a, 1.
The proof of Lemma 5 is carried out in the next two subsec-

tions, and the last part of Theorem 5 follows from the compact
embedding ⋐2 .

5.1. The exponential decay of L(t)

We prove here the following lemma.

Lemma 6. Let ∥ ∥ ≤z R. There is = ( ) >c c R 0 such that

∥ ( ) ∥ ≤ ( ) −L t z Q R e .c t
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Proof. Let 0 be the energy norm of the one-parameter operator L
(t), namely

δ( ( ) )∥ ( ) ∥ = (∥ ( )∥ + ∥ ( )∥ ) + ∥∂ ( )∥

+ ∥∂ ( )∥ ( )

L t z L t z u t u t u t

u t . 25

L L
t

L

t
L

0
2

1 2
2

2 2
2

1
2

2
2

We introduce the functional

( )
( )
( )

Φ Φ

γ

ε

( ) = ( ( ) ( ) ( )) = ( ( ) )

+ ℓ(∥ ( )∥ + ∥ ( )∥ ) + ∥ ( )∥ + ∥ ( )∥

+ ∥ ( )∥ ∥ ( )∥ + ∥ ( )∥ ∥ ( )∥

+ 〈∂ ( ) ( )〉 + 〈∂ ( ) ( )〉

t L t z u t u t L t z

u t u t a u t u t

u t u t u t u t

u t u t u t u t

, ,

, , .

L L L L

L L

t
L L

t
L L

0 0 1 2 0

1 1
2

2 1
2

1
2

2
2

1 1
2

1 1
2

2 1
2

2 1
2

1 1 2 2

Using Lemma 1 and (24), we obtain the following lower and
upper bounds for Φ0:

Φ≤ ≤ ( ) ( )Q R . 26
1
4 0 0 0

The time-derivative of Φ0 along a solution to system (22) reads

Φ εΦ ν ε

γ

ε ν ε

+ + ( − ) ∥∂ ∥ + ∥∂ ∥

= 〈∂ 〉‖ ‖ + 〈∂ 〉‖ ‖

− ( − ) ∂ + ∂

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

d
dt

u u

u A u u u A u u

u u u u

2

2 , ,

, , ,

t
L

t
L

t
L

t
L

L
t

L L
t

L

0 0 1
2

2
2

1
1/2

1 1 1
2

2
1/2

2 2 1
2

1 1 2 2

where the second term can be estimated in terms of 0 as follows:

( )

γ ε ν ε
γ

ε λ
γε

λ
ν ε

ε ν ε

ε
ε ν ε

ε ν ε
λ

〈∂ 〉‖ ‖ − ( − )〈 ∂ 〉

≤ ∥∂ ∥ ‖ ‖ + ∥ ∥ ‖ ‖ + ( − )∥∂ ∥

+ ( − )∥ ∥

≤ ( )∥∂ ∥ + ( ) + ( − )∥∂ ∥ +
−

u A u u u u

u u A u u u

u

Q R u Q R u

2 , ,

1
.

t i i i
L

i
L

t i
L

t i i
L

i i
L

t i
L

i
L

t i t i
L

1/2
1
2

2
1

2
2
2

2

1

1/2 2
2
2 2

2 2

2 0
2

0
2

2

1
0

Choosing ε as small as needed in order that ε ( ) + <ε ν ε
λ

( − )Q R 1
81
, we

obtain

Φ εΦ
ε

ε+ ≤ ( ) ∂ + ∂ +
⎛
⎝⎜

⎞
⎠⎟

d
dt

Q R u u
1

8t t0 0 2 1 2 0 0

and finally, since Φ≤1
4 0 0, we can infer

Φ ε Φ
ε

Φ+ ≤ ( ) ∂ + ∂
⎛
⎝⎜

⎞
⎠⎟

d
dt

Q R u u
2

1
.t t0 0 2 1 2 0

In order to estimate the r.h.s. we need some control on the dis-
sipation of the original semigroup. Hence, by following the pro-
cedure of [9, Lemma 6.2] we obtain,

Lemma 7 (Integral control of dissipation). For any ϵ > 0 and
≥ ≥t s 0,

∫ ( ) ( )∂ + ∂ ≤ ϵ( − ) + ( )ϵ
⎛
⎝⎜

⎞
⎠⎟u y u y dy t s Q R .

s

t

t t1 2

The exponential decay of Φ0 is then entailed by exploiting a
generalized Gronwall Lemma (see [12, Lemma 2.1, 13, Lemma 3.7]).
Finally, from (26) the desired decay of 0 follows. □

5.2. The compactness of R

Now, we prove the existence of a compact set R which con-
tains all orbits ( )K t z , ∥ ∥ ≤z R, ≥t 0. This result is achieved by
two steps: first the boundedness of these orbits in a more regular
space, 2, is proved in Lemma 8, then the compactness of R is
ensured by the compact embedding ⋐2 (see [9,10]).
Lemma 8. Let ∈ =−f H i, 1, 2i 2 , be fixed and let ∈z , ∥ ∥ ≤z R.
Then, there exists >K 0R such that

∥ ( ) ∥ ≤ ∀ ≥ ( )K t z K t, 0. 27R2

Proof. Let introduce the energy norm of order 2 of K(t), namely

( )δ= ‖ ‖ + ‖ ‖ + ‖∂ ‖ + ‖∂ ‖u u u u .K K K
t

K
t

K
1 4

2
2 4

2
1 2

2
2 4

2

For any ε ∈ ( )0, 1 we define the functional

( )ε= + + ∂ + ∂J F u u u u2 , , ,K K K
t

K K
t

K K
1 1 2 2 2 2

where

( ) ( )
( )

γ γ= ℓ + ‖ ( )‖ ‖ ‖ + ℓ + ‖ ( )‖ ‖ ‖

− +

F u t u u t u

f u f u2 , , .

K K K

K K

1 1
2

1 3
2

2 1
2

2 3
2

1 1 2 2 2 2

Choosing ε small enough, the following bounds hold true:

− ( ) ≤ ≤ + ( ) ( )Q R J Q R2 . 28K K K1
2

We estimate the time derivative of JK along a solution ( )K t z . To this
end we first compute

ν

γ

κ

+ = − ‖∂ ‖ + ‖∂ ‖

+ ∂ + ∂

+ ‖ ‖ ∂ + ∥ ∥ ∂

− − ∂ ( − )
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⎞
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We deal with each term at the r.h.s. separately. By virtue of the
interpolation inequality

ϕ ψ ϕ ψ≤ ∥ ∥ ∥ ∥ ( )τ τ τ+ −, , 291 1

taking into account (4) and Lemma 1, we easily obtain ( = )i 1, 2 ,

λ

ε
ε

ε
ε

‖ ‖ ∂ ≤ ‖ ‖ ∥ ∥ ∥∂ ∥ ≤ ( )∥∂ ∥

∂ ≤ ‖ ‖ + ≤ ( ) +

u u u u u u Q R u

a u u
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u
Q R
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,
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2

Analogously

κ
ε

ε− ∂ ( − ) ≤ ( ) +u u u u
Q R

,
8

.t
K K K

1 2 1 2 2

In addition, a straightforward calculation leads to

δ

ν

κ

γ γ

∂ + ∂

= ‖∂ ‖ + ‖∂ ‖ − ‖ ‖ + ‖ ‖

− ∂ + ∂ + +

+ + − − −
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From interpolation inequality (29), we have

− − ≤ ∥ − ∥ ∥ − ∥ ≤ ( )u u u u u u u u Q R, ,K K K K K
1 2 1 2 2 1 2 1 1 2 3

hence
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ν δ
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Collecting all these inequalities we end up with

ν ε ν εδ

ε

+ − ( + ) ‖∂ ‖ + ‖∂ ‖ + ‖ ‖ + ‖ ‖

− ≤ ( ) + ( ) ∂ + ∂ + ( )ε
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Choosing now ε ε= > 00 small enough, in light of (28) this
turns into

ε+ ≤ ( ) + ( ) ∂ + ∂ + + ( )
⎛
⎝⎜

⎞
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⎛
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d
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J J Q R J Q R u u J Q R
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1 .K K K
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Since ( ) =J 0 0K , once more from Lemma 7 and the generalized
Gronwall Lemma (see [12, Lemma 2.1, 13, Lemma 3.7]) we get the
thesis. □
5.3. The structure of the attractor

As well known [1], when a finite set of stationary solutions
occurs, the global attractor of the semigroup S(t) consists of the
unstable manifolds connecting them. Due to Theorems 1–3, we
can conclude:

Corollary 1. Provided that δ λℓ ≤ − 1 and κ ≠ , the global at-
tractor ⊂ consists of the unstable manifolds connecting the
steady states of S(t).

Even if we restrict our attention to unimodal solutions (in this case
reduces to 4), a complete picture of is hard to achieve.

Really, some informations may be sketched by means of Poincaré
sections, which are obtained by intersecting trajectories in the
original phase-space with a lower dimensional subspace trans-
versal to the flow of the system. This technique may be exploited
for both the damped and undamped (ν > 0) system, although it is
a routinary tool of the latter case. Unfortunately, there is no gen-
eral method to construct a Poincaré map.

Here, we may take advantage of the representation (7) of the
system. Indeed, when = =f g 0 and assuming suitable initial
conditions, this system admits special dynamical solutions of the
form ( ¯ ( ) )w t , 0 and ( ¯ ( ))v t0, , corresponding to perfectly symmetric
( ¯ = ¯u u1 2) and antisymmetric ( ¯ = − ¯u u1 2) oscillations. If this is the
case, then w̄ and v̄ satisfy the uncoupled first order systems
Fig. 6. A branch of the global attractor (on the left) and basins of attraction (on the right
phase-subspace η( )v ,n n , when β= =n 1 (α and β are the same as in Fig. 7a).
ξ δ νξ γ
ξ

∂ ¯ + ¯ + ¯ + [ℓ + ‖ ¯ ‖ ] ¯ =
∂ ¯ = ¯ ( )

⎪

⎪⎧⎨
⎩

Aw w A w

w

0

30

t

t

1
2 1/2

η δ νη γ
η

∂ ¯ + ¯ + ¯ + [ℓ + ‖ ¯‖ ] ¯ =
∂ ¯ = ¯ ( )

κ
⎪

⎧⎨
⎩

A v v A v
v

0

31
t

t

1
2 1/2

and the phase portraits of their unimodal solutions

ψ ψ¯ ( ) = ¯ ( ) ( ) ¯ ( ) = ¯ ( ) ( ) ∈ w x t w t x v x t v t x n, , , , ,n n n n

can be scrutinized as in [31]. For instance, assuming

δ
λ

δ λ
ℓ < − − k

3 ,n
n

we conclude that in each sub-space ξ( )w ,n n and η( )v ,n n of the four-
dimensional phase-space there is a branch of the attractor ,
and the basins of attraction of the stable steady-states relying
therein may be easily depicted (see Fig. 6).
6. Conclusions

In this paper we scrutinized both statics and dynamics of a
damped elastically coupled WK double-beam system under even
compressive axial loading.

A complete characterization (in closed form) of solutions to the
nonlinear stationary problem with vanishing sources is achieved.
As well as the null solution, the system may exhibit unimodal
(only one eigenfunction is involved) and bimodal (two eigen-
functions are involved) buckled solutions. In Theorem 1 the
number of unimodal solutions is proved to depend on the ratios

δℓ/ and κ δ/ . In spite of the perfect symmetry of the system, for
special values of the parameters we obtain non-symmetric static
solutions where the elastic energy is not evenly distributed be-
tween the two beams (see also the Appendix, Fig. 8).

Since the axial displacement D and the thickness h are com-
parable and considerably shorter than the length L and the spacing
d of the beams, under reasonably physical assumptions on the
stiffness of the elastic core we may conclude that |ℓ| and κ share
the same order of magnitude h L/ , whereas δ is much smaller.
Accordingly, the order of magnitude of δ|ℓ |/ and κ δ/ is ⪢L h/ 1.
Hence, inequalities on λn in Theorem 1 are not narrowed by the
modeling assumptions and all the stationary solutions exhibited
here are physically consistent.

The complete analysis of buckling bifurcations (see Fig. 5) and
the related picture of the energy level sets (see Figs. 3 and 4) re-
veal that stability of unimodal stationary solutions strongly de-
pend on the coupling constant κ. This is not surprising when
nonlinear equations are involved. In nonlinear electroelastostatics,
) in the phase-subspace ξ( )w ,n n , when α= =n 1. The same picture holds true in the
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for instance, the stability of steady states may be crucially de-
pendent on the magnitudes of the electromechanical coupling
parameters (see [17]).

The occurrence of a so complex structure of the steady states
motivates a global analysis of the longtime damped dynamics.
When δ−ℓ/ is larger than the first eigenvalue λ1 of the Laplacian
operator A1/2, then in Theorem 4 we prove exponential stability of
the (unique) trivial solution. On the contrary, when δ λℓ ≤ − 1
buckled steady-states occur and we prove in Theorem 5 the ex-
istence of a global regular attractor of dynamical solutions. If in
addition κ ≠ , the resonant set defined in Section 3.2.1, then there
exists a finite number of stationary solutions and the global at-
tractor ⊂ consists of the unstable manifolds of trajectories
connecting them (see Section 5.3 and figures therein).
Appendix A

A.1. Proof of Theorem 1

When m¼n from (13) we get the system

ω

ω

= ( + )

= ( + ) ( )
⎪

⎪⎧⎨
⎩

b a p a

a b p b

,

, 32

n n n n n

n n n n n

2

2

where

γ λ
δ λ κ

λ
ω λ γ

κ
= ℓ + + =

⎛
⎝⎜

⎞
⎠⎟p

L
L2

,
2

.n
n

n
n

n
n

Assuming ≠a b, 0n n and putting = +Y p an n n
2, from (32) it follows

ω ω
− + − =Y p Y

p
Y

1
0.n n n

n

n
n

n

4 3
2 4

Accordingly, this equation can be written as a product,

ω ω
− − + =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟Y Y p Y

1 1
0,n

n
n n n

n

2
2

2
2

so yielding four solutions

ω ω ω ω= ± = ( ± − ) ( )Y Y p p1/ , 4 /2 . 33n n n n n n n n
2 2

Letting δ λ= − ℓ −qn n and

α
γ λ

β
γ λ

κ
λ

ω
γ λ

κ
λ λ

κ
λ λ

κ
λ

=

= −

= − ± + −±

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪
⎡
⎣⎢

⎡
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⎡
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L
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L
q q q

2
,

2 2
,

1 3
,

n
n

n

n
n

n n

n
n

n n

n

n n

n

n n

from (32) and (33) we obtain the following expressions for the
amplitudes an and bn:

α α

β β κ
λ

ω ω κ
λ

ω ω κ
λ

( ) = ( ± ± ) >

( ) = ( ± ∓ ) >

( ) = ( ± ∓ ) >

( ) = ( ± ∓ ) >
( )

( ) ( )

( ) ( )

( ) ( ) + −

( ) ( ) − +

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

a b q

a b q

a b q

a b q

, , if 0,

, , if
2

,

, , if
3

,

, , if
3

,
34

n n n n n

n n n n n
n

n n n n n
n

n n n n n
n

1 1

2 2

3 3

4 4

which provide all real unimodal solutions involving the n-th
eigenfunction.

When n¼1 and δ λ κ λℓ < − − 3 /1 1 , these solutions are
represented in Figs. 7 and 8 (the subscript 1 is omitted). The
buckling modes here depicted resemble a study carried out in [28]
within the framework of the “buckling localization”.
A.2. Proof of Theorem 2

From (12) we achieve

λ λ ψ λ λ ψ

λ λ ψ λ λ ψ

[( + + ) − ] + [( + + ) − ] =

[( + + ) − [ + [( + + ) − ] =⎪
⎪⎧⎨
⎩

C k a kb C k c kd

C k b ka C k d kc

0,

0,

n n n n n m m m m m

n n n n n m m m m m

1 1

2 2

where

δ
γ
δ

λ λ

δ
γ
δ

λ λ

= ℓ + = + = ∥ ∥

= ℓ + = + = ∥ ∥

C
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X X a c
L

u

C
L

X X b d
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u

2
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2
,

2
,

2
.

n n m m

n n m m

1 1 1
2 2

1 1
2

2 2 2
2 2

2 1
2

Because of the orthogonality of distinct eigenfunctions, we obtain
the system

λ λ δ λ γ δ

λ λ δ λ γ δ

λ λ δ λ γ δ

λ λ δ λ γ δ

= [ + + ℓ + ]

= [ + + ℓ + ]

= [ + + ℓ + ]

= [ + + ℓ + ]

⎧

⎨
⎪⎪

⎩
⎪⎪
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/ /2 ,
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For the sake of simplicity, we let

σ
γ

δ λ κ
λ

ξ
γ λ

κ
= + + ℓ = =

⎛
⎝
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⎞
⎠
⎟⎟L

L
j m n

2
,

2
, ,j j

j
j

j

and we rewrite the previous system in the compact form

ξ σ
ξ σ
ξ σ
ξ σ

= ( + )
= ( + )
= ( + )
= ( + ) ( )

⎧

⎨
⎪⎪

⎩
⎪⎪

b a X

d c X

a b X

c d X

,
,

,
, 35

n n n n
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n n n n

m m m m
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from which it follows

ξ σ σ
ξ σ

ξ σ σ
ξ σ

= ( + )( + )
= ( + )
= ( + )( + )
= ( + ) ( )

⎧

⎨
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,
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. 36
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2
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1

2
1 2

1

From the first and third equations of (36) we obtain a system in-
volving X1 and X2, only,

ξ σ σ

ξ σ σ

= ( + )( + )

= ( + )( + ) ( )
⎪

⎪⎧⎨
⎩

X X

X X

1 ,

1 . 37

n n n

m m m

2
1 2

2
1 2

If it admits positive solutions ( )⁎ ⁎X X,1 2 , then the four amplitudes of
the bimodal solutions u1 and u2 follow by solving

ξ σ

ξ σ

λ λ

λ λ

= ( + )

= ( + )

+ =

+ = ( )

⁎

⁎

⁎

⁎

⎧

⎨
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⎩
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b d X

,

,

,

. 38
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n n m m

1

1
2 2

1
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2

When the beams have the same elastic energy, system (37) pro-
vides

ξ σ

ξ σ

= ± −

= ± − ( )

−

−⎪

⎪⎧⎨
⎩

X

X

,

. 39

n n

m m

1

1

These relations are satisfied provided that



Fig. 7. Symmetrical in-phase (a) and out-of-phase (b) static solutions (n¼1).

Fig. 8. Asymmetrical out-of-phase static solutions (n¼1).
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ξ σ ξ σ± − = ± −− − ,n n m m
1 1

which leads to the following four occurrences:
(a) ξ σ ξ σ− = −− −

n n m m
1 1 , so that λ λ=n m which contradicts the as-

sumption >m n and then no bimodal solution exists;
(b) ξ σ ξ σ+ = +− −

n n m m
1 1 , from which it follows κ κ= †

mn and then
ν κ ν κ( ) = ( )n m . If this is the case, (38) takes the form

( )
( )

ζ μ μ γ λ

ζ μ μ γ λ

= −
= −

+ = − ℓ + + )

+ = − ℓ + + )

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

b a

d c

a c L

b d L

,
,

2 / ,

2 / ,

n n

m m

n mn m m n n

n mn m m n n

2 2

2 2

where ζ λ λ= >/ 1mn m n , and admits real solutions provided
that

μ μ ν κℓ < − ( + ) = − ( )† .m n n mn

Letting = − = = − =a b U c d V,n n m m and

ρ δ
γ λ

μ μ(ℓ) = − ℓ + +†

⎛
⎝⎜

⎞
⎠⎟L

2
,

n
m n

2

we obtain the following (elliptic) relation between the ampli-
tudes

ζ ρ+ = (ℓ)†U V .mn
2 2 2

Accordingly, in this case there exist infinitely many out-of-
phase solutions;

(c) ξ σ ξ σ− = − −− −
n n m m

1 1 , from which it follows
κ δ λ λ λ= ( − )/2n m m : since κ must be positive, its expression
contradicts the assumption >m n and then no bimodal solu-
tion exists;

(d) ξ σ ξ σ+ = − +− −
n n m m

1 1 , from which it follows κ κ= ⋆
mn and then

ν κ μ( ) =n m. If this is the case, (38) takes the form

( )
( )

ζ μ γ λ

ζ μ γ λ
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=
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+ = − ℓ +

⎧
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,
,
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2 /

n n

m m

n mn m m n

n mn m m n

2 2
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and admits real solutions provided that

μ ν κℓ < − = − ( )⋆ .m n mn
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Letting = − = = =a b U c d V,n n m m and

ρ δ
γ λ

μ(ℓ) = − ℓ +⋆

⎛
⎝⎜

⎞
⎠⎟L

2
,

n
m

2

we obtain the following (elliptic) relation between the ampli-
tudes

ζ ρ+ = (ℓ)⋆U V .mn
2 2 2

Accordingly, in this case there exist infinitely many asym-
metric solutions.
A.3. Proof of Theorem 3

To prove this theorem, first we establish a preliminary result.
Letting

ξ σ ξ σ= ( + ) = ( + ) ( )x X y X, , 40n n n n1 2

ξ σ ξ σ= ( + ) = ( + )w X z X, ,m m m m1 2

we obtain

ζ ζ ξ σ σ ζ κ κ− = − = ( − ) = ( − )( − )†x w y z 1 1 2 / .mn mn m n m mn mn

From these relations and (37) we obtain the system

ζ ζ κ κ

ζ ζ κ κ

=
=

− = ( − )( − )
− = ( − )( − ) ( )

†

†

⎧

⎨
⎪⎪

⎩
⎪⎪

xy

wz

x w

y z

1,
1,

1 1 2 / ,

1 1 2 / . 41

mn mn mn

mn mn mn

We stress that the coefficients involved in this representation are
independent of L, γ and, especially, on ℓ.

Lemma 9. Let >m n be given, if and only if either κ κ> †2 mn or
κ κ< < ⋆0 mn or κ κ κ< <† †2 mn system (41) has exactly four distinct and

partially symmetric solutions

( ) ( ) ( ) ( )⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎x y w z x y z w y x w z y x z w, , , , , , , , , , , , , , , ,

where ⁎ ⁎ ⁎ ⁎x y z w, , , are defined as follows:

κ ϕ κ ϕ κ

κ ϕ κ ϕ κ

κ ψ κ ψ κ

κ ψ κ ψ κ

( ) = ( ( ) + ( ) − )

( ) = ( ( ) − ( ) − )

( ) = ( ( ) + ( ) − )

( ) = ( ( ) − ( ) − )

⁎

⁎

⁎
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4 ,
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mn mn

mn mn

mn mn

mn mn

1
2

2

1
2

2

1
2

2

1
2

2

where ϕ and ψ are given in (15) and (16), respectively.
When κ κ= †

mn and κ κ= ⋆
mn all four solutions coincide and the

system reduces to that of the equal-energy case. In particular:
� if κ κ= †

mn then = = = = −⁎ ⁎ ⁎ ⁎x y w z 1;
� if κ κ= ⋆

mn then = = −⁎ ⁎x y 1 and = =⁎ ⁎w z 1.

Proof. After simple manipulations, from (41) we obtain two un-
coupled subsystems

ϕ κ ψ κ
=

+ = ( )
=

+ = ( ) ( )

⎧⎨⎩
⎧⎨⎩

xy
x y

wz
w z

1,
,

1,
. 42mn mn

If there exist, solutions to (42) have the form of symmetric pairs
parametrized by κ,

κ κ κ κ

κ κ κ κ

( ) = ( ( ) ( )) ( ) = ( ( ) ( ))

( ) = ( ( ) ( )) ( ) = ( ( ) ( ))

⁎ ⁎ ⁎ ⁎
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Q w z w z Q w z z w
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1 2

1 2

where
κ ϕ κ ϕ κ κ

ϕ κ ϕ κ

κ ψ κ ψ κ κ

ψ κ ψ κ

( ) = ( ( ) + ( ) − ) ( )

= ( ( ) − ( ) − )
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1
2
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1
2

2

1
2
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2

and then they are ordered so that

κ κ κ κ( ) ≥ ( ) ( ) ≥ ( )⁎ ⁎ ⁎ ⁎x y w z, .

These pairs give the four solutions of the problem and represent
the coordinate pairs of the intersection points between a rectan-
gular hyperbola (either xy¼1 or wz¼1) and a straight line (either

ϕ κ+ = ( )x y mn or ψ κ+ = ( )w z mn ). Accordingly, real values κ( )⁎x ,
κ( )⁎y and κ( )⁎w , κ( )⁎z do exist provided that either ϕ κ( ) ≥ 2mn or

ϕ κ( ) ≤ − 2mn , and ψ κ( ) ≥ 2mn or ψ κ( ) ≤ − 2mn , respectively.
� When κ κ> †2 mn, then ψ κ ϕ κ( ) > ( ) > 2mn mn . Solutions to (42) are

positive pairs. In addition, κ κ κ κ( ) > ( ) > > ( ) > ( ) >⁎ ⁎ ⁎ ⁎w x y z1 0
(see Fig. 9).

� When κ κ κ≤ <† †2mn mn then ψ κ ϕ κ( ) ≤ ( ) ≤ − 2mn mn , the equalities
occurring at κ κ= †

mn. In this case solutions to (42) are negative
pairs and κ κ κ κ( ) ≤ ( ) ≤ − ≤ ( ) ≤ ( ) <⁎ ⁎ ⁎ ⁎z y x w1 0, the equalities
occurring at κ κ= †

mn (see Fig. 10).
� When κ κ< ≤ ⋆0 mn then ϕ κ( ) ≤ − 2mn , but ψ κ( ) ≥ 2mn , the

equalities occurring at κ κ= ⋆
mn. In this case (42) 1 is solved by

negative pairs, whereas (42) 2 has positive solutions and
κ κ κ κ( ) ≤ − ≤ ( ) < < ( ) ≤ ≤ ( )⁎ ⁎ ⁎ ⁎y x z w1 0 1 , the equalities oc-

curring at κ κ= ⋆
mn (see Fig. 11). □

Remark 3. The case =⁎ ⁎X X1 2 is recovered if and only if =⁎ ⁎x y and
=⁎ ⁎w z . This occurs either when κ κ= ⋆

mn or κ†
mn. In the former case

ϕ κ( ) = −⋆ 2mn mn and ψ κ( ) =⋆ 2mn mn , so that κ κ( ) = ( ) = −⁎ ⋆ ⁎ ⋆x y 1mn mn

and κ κ( ) = ( ) =⁎ ⋆ ⁎ ⋆w z 1mn mn . In the latter, ϕ κ ψ κ( ) = ( ) = −† † 2mn mn mn mn ,
so that κ κ κ κ( ) = ( ) = ( ) = ( ) = −⁎ † ⁎ † ⁎ † ⁎ †x y w z 1mn mn mn mn , in agreement
with Theorem 2.

Remark 4. The positivity of the norms, that is >⁎X 01 and >⁎X 02 ,
can be established from (40) in dependence of the values of κ and
ℓ,

γ
μ κ κ

λ γ
μ κ κ
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= − + − ( ) + ℓ = − + − ( ) + ℓ

>

= − + − ( ) + ℓ = − + − ( ) + ℓ

>

⁎ ⁎ ⁎

⁎ ⁎ ⁎

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

X
L

x
L

w

X
L

y
L

z

2 1 2 1
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2 1 2 1
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n
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m

n
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1

2

Since κ κ( ) ≤ ( )⁎ ⁎y x and κ κ( ) ≤ ( )⁎ ⁎z w for all κ, these conditions are
both satisfied provided that κℓ < ℓ ( )⁎ , where

κ μ κ κ
λ

μ κ κ
λ

ℓ ( ) = − − − ( ) = − − − ( )⁎
⁎ ⁎y z1 1

n
n

m
m

or alternately

κ ν κ κ κ
λ

ν κ κ κ
λ

ℓ ( ) = − ( ) + + ( ) = − ( ) + + ( )⁎
⁎ ⁎y z1 1

.n
n

m
m

We note that κ ν κ μ μℓ ( ) = − ( ) = − −⁎ † †
n m n and

κ ν κ μℓ ( ) = − ( ) = −⁎ ⋆ ⋆
n m.

According to the previous analysis, from (38) the system in-
volving the unknown amplitudes takes the form



Fig. 9. The graphic solution of subsystems (42) when κ κ> †2 .

Fig. 10. The graphic solution of subsystems (42) when κ κ κ≤ <† †2 .

Fig. 11. The graphic solution of subsystems (42) when κ κ< ≤ ⋆0 .
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Assuming ℓ < ℓ⁎, from (43) we finally obtain

ζ ρ

ζ ρ

=
=
+ = +
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κ( ) = ( ( ) − ( )) ( ℓ) = (ℓ ( ) − ℓ)⁎ ⁎ ⁎r
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2
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2
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In particular, ρ κ ρ( ℓ) = (ℓ)†
†, , ρ κ ρ( ℓ) = (ℓ)⋆

⋆, and κ κ( ) = ( ) =† ⋆r r 0.
In order to find amplitudes of the bimodal solutions we are led to
solve the system

ρ
ρ

+ = +
+ =⁎ ⁎⎪

⎪⎧⎨
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X Y r

x X w Y

,

,

2 2 2 2

2 2 2 2 2

where =X an, ζ=Y cmn m. Since it represents the intersection
between a circle and an ellipse, four real solutions exist if and only
if the radius of the circle has an intermediate value between major
and minor semi-axes of the ellipse. If this is the case, the inter-
section points are
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Accordingly, the amplitudes of the bimodal solutions are
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In order to establish necessary and sufficient conditions for the
existence of such solutions, we separately discuss three cases.
� When κ κ> †2 mn, then κ κ κ< ( ) < < ( ) < ( )⁎ ⁎ ⁎y x w0 1 and

ρ
≤ ≤ ≤ +

⁎ ⁎w x
r1 1

1 1 .
2 2

2

2

As a consequence,

ρ ρ ρ≤ ≤ +
⁎ ⁎w x

r
2

2

2

2
2 2

and then no solution exists.
� When κ κ κ≤ <† †2mn mn, then κ κ κ( ) ≤ − ≤ ( ) ≤ ( ) <⁎ ⁎ ⁎y x w1 0. As a

consequence, the condition to have intersections reads

ρ ρ ρ≤ + ≤
⁎ ⁎x

r
w

2

2
2 2

2

2

and implies the following conditions for ℓ:
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κ
λ

< ℓ − ℓ ≤ ℓ − ℓ + ( − ) ≤ ℓ − ℓ⁎

⁎
⁎ ⁎ ⁎

⁎

⁎x
x y

w
0 .

n
2 2

From the left inequality we obtain ℓ ≥ ℓ⁎
1, where ( =⁎ ⁎y x1/ )

κ
λ

κ
λ

κℓ = ℓ − ( − )
−

= ℓ + ( )⁎ ⁎
⁎ ⁎ ⁎

⁎
⁎ ⁎x x y

x
x

1
,

n n
1

2

2

and then

κ ν κ κ
ϕ κ
λ

ℓ ( ) = − ( ) +
+ ( )⁎ 1

.n
mn

n
1

From the right inequality and using (41)3 we have ℓ ≤ ℓ⁎
2, where

( =⁎ ⁎z w1/ )

κ
λ

κ
λ

κℓ = ℓ + ( − )
−

= ℓ + ( ) < ℓ⁎ ⁎
⁎ ⁎ ⁎

⁎
⁎ ⁎ ⁎w z w

w
w

1m m
2

2

2

and then

κ ν κ κ
ψ κ
λ

ℓ ( ) = − ( ) +
+ ( )⁎ 1

.m
mn

m
2

Summarizing, solutions exist if and only if ℓ ≤ ℓ ≤ ℓ⁎ ⁎
1 2.� When κ κ< ≤ ⋆0 mn, then κ κ κ( ) < − < ( ) < < < ( )⁎ ⁎ ⁎y x w1 0 1 ,

which implies

ρ ρ ρ≤ ≤ +
⁎w

r .
2

2
2 2 2

As a consequence, the condition to have intersections reduces to

ρ ρ+ ≤
⁎

r
x

2 2
2

2

and the following condition for ℓ follows:

κ
λ

ℓ − ℓ + ( − ) ≤ ℓ − ℓ⁎ ⁎ ⁎
⁎

⁎
x y

x
,

n
2

from which we obtain ℓ ≤ ℓ⁎
1.

We finally observe that

κ μ κ
ϕ κ

λ
ℓ ( ) = − +

( ) −⁎ 1
n

mn

n
1

and

κ μ μ κ
λ

μ μ

κ μ μ κ
λ

μ μ

κ μ κ
λ

μ μ

ℓ ( ) = − − − = − −

ℓ ( ) = − − − = − −

ℓ ( ) = − − = − ( + )

κ κ

κ κ

κ κ

→

⁎
†

→

⁎
†

→

⁎
⋆

†

†

⋆

lim
3
2

,

lim
3
2

,

lim
1
2

.

n m
mn

n
n m

m n
mn

m
m n

n
mn

n
n m

1

2

1

mn

mn

mn
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