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ABSTRACT Surface electromyography (sEMG) records muscle activities from the surface of muscles,
which offers a wealth of information concerning muscle activation patterns in both research and clinical
settings. A key principle underlying sEMG analyses is the decomposition of the signal into a number ofmotor
unit action potentials (MUAPs) that capture most of the relevant features embedded in a low-dimensional
space. Toward this, the principal component analysis (PCA) has extensively been sought after, whereby
the original sEMG data are translated into low-dimensional MUAP components with a reduced level of
redundancy. The objective of this paper is to disseminate the role of PCA in conjunction with the quantitative
sEMG analyses. Following the preliminaries on the sEMG methodology and a statement of PCA algorithm,
an exhaustive collection of PCA applications related to sEMG data is in order. Alongside the technical
challenges associated with the PCA-based sEMG processing, the envisaged research trend is also discussed.

INDEX TERMS Surface electromyography (sEMG), artificial neural network (ANN), principal component
analysis (PCA), motor unit action potential (MUAP), flexions, self-organizing feature map (SOFM), support
vector regression (SVR), myoelectric signal.

I. INTRODUCTION
Surface electromyography (sEMG) is the electrical recording
of muscle activity from the skin surface. It is the result of
superposition of a large number of transients having a semi-
random temporal and spatial separation [1]–[3]. These tran-
sients are the motor unit action potentials (MUAPs) closely
related to the strength of a muscle contraction, which carry
abundant information on the motor control. For instance,
the sEMG amplitude and frequency have been regarded as
indicators of the localized muscular fatigue [4], [5]. The
amplitude and spectral information of sEMG have also been
exploited to estimate the force of muscle contraction and
torque, respectively [6]–[8]. Despite the potential applica-
tions of sEMG, the presence of artifacts and noise, espe-
cially at a low level of muscle activity makes the recordings
unreliable. The removal of artifacts and noise is admittedly
challenging due to the spectral and temporal overlap as well
as the need for separating the relevant signals from other
bioelectric ones [8], [9].

The intricate human body anatomy accounts for a signifi-
cant overlap of a number of muscles, which in turn leads to
the crosstalk of activities from muscles in proximity to each
other. Moreover, the complex nature of MUAPs contributes
to the complexity of an sEMG signal. To this end, numerous
techniques are currently being employed that aim to elimi-
nate the noise, artifacts, as well as the crosstalk [10], [11].
Amongst them, a few noteworthy ones are the spectral filter-
ing, wavelet transform, and correlation technique [12]–[14].
The spectral overlap between the sEMG signal and artifacts
poses challenges to the effectiveness of spectral filtering.
On the upside, wavelets combine the temporal and spectral
properties, and hence are suitable for signals that may not
be separable using the spectral filtering. However, wavelet
approaches are limited to continuous signals with spectral
overlaps [10], [15]. The time-frequency analysis offers a map
of the temporal localization of a signal’s spectral character-
istics in the time-frequency domain [13], [16]. The draw-
back with this scheme is the high-dimensional feature vector,
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which would warrant an increase in the number of learning
parameters of a classifier. In most instances, the aforemen-
tioned techniques require the dimensionality of sEMG to
be reduced for their efficient performance. Therefore, it is
imperative to resort to the dimensionality reduction of the
feature vector without compromising on the classification
accuracy. Apparently, the dimensionality reduction speeds up
the classifier and relaxes its memory requirements [17]–[19].

In this regard, most of the signal processing tech-
niques, developed for sEMG waveform decomposition in
the temporal domain, fall under the umbrella of matrix
factorization, and are extensions of the factor analy-
sis [20]. These strategies include principal component
analysis (PCA), independent component analysis (ICA),
singular value decomposition (SVD), and non-negative
matrix factorization (NMF) [21]–[24]. Though widely
adopted for EMG signal processing, each of these methods
has inherent advantages and disadvantages. Conversely, there
remains no specific factorization method ideally suited for
sEMG applications, and consequently, one must cautiously
assess the pros and cons of a method on the basis of the
sEMG experiment and the type of features, as well as the
dataset to analyze. Nevertheless, when it comes to multi-
electrode recordings and a large number of sEMG exper-
iments (datasets), the PCA prevails as the favorite choice
owing to its conceptual simplicity, practicability, and the
ability to be easily computed by readily available statistical
programming packages. Indeed, the PCA has unanimously
been accepted as a potential tool to analyze large datasets
of EMG signals derived from multi-electrode recordings in
research and clinical settings [17], [25], [26].

The PCA is a linear feature projection method intended
for reducing the dimensionality of data. It becomes per-
vasive in the field of human movement analysis to reveal
patterns in data of various kinds, e.g., kinematics, kinetics,
electroencephalography, and EMG, as well as to compress the
dimension of the multivariate dataset recorded. In principle,
the PCA computes a smaller set of basis vectors that defines a
low-dimensional space, wherein the multivariate data can be
represented such that the resulting patterns preserve most of
the relevant features. By virtue of dimensionality reduction,
the classifier design is simplified, and the pattern recognition
technique is relieved of significant computational burden.
Furthermore, the PCA is capable of preserving the underlying
pattern of a multivariate time series, and the PCA-reduced
features can reasonably approximate the distribution of orig-
inal features. Nevertheless, a drawback could be that the
data corresponding to different classes may not exactly be
separated into clusters in the reduced feature space. In other
words, the PCA learning merely produces a well-described
coordinate system for the distribution of all features, without
considering the class separation. On the contrary, the features
endowed with a high-class separability do improve the recog-
nition accuracy. Hence, there is an increasing trend to employ
the PCA in conjunction with other techniques in most of the
sEMG signal processing applications [17], [27], [28].

The intent of this article is to provide a comprehensive
overview of the PCA applied to sEMG signal processing,
first by outlining the main methodological aspects, and then
by summarizing the literature concerning the effective appli-
cation of PCA in sEMG processing both in research and
clinical settings. To this end, the paper has been organized
as follows. Section II sets a background on the sEMG and
PCA by briefly explaining the sEMG acquisition as well as
the PCA algorithm, and by highlighting the relevance along
with the limitations of PCA in sEMG analyses. In Section III,
the state-of-the-art PC selection procedures are concisely
presented, and exemplified using sEMG data pertaining to
three hand gesture movements. An exhaustive collection of
PCA-based sEMG applications including the assessment of
muscle strength, prosthetics, facial, and human movement is
tabulated in Section IV. The article is concluded in Section V
with future research directions.

II. PRELIMINARIES
Of due relevance here is to provide an overview of sEMG
and PCA, and to highlight the suitability of PCA for sEMG
processing, prior to delving into the PCA-based sEMG appli-
cations.

A. SURFACE ELECTROMYOGRAPHY
The sEMG, being the non-invasive electrical recording of
muscle activities, carries vital information concerning the
anatomy and physiology of muscles. In addition, the non-
invasive recording procedure obviates the need to penetrate
the skin, thereby providing a safe and easy means for signal
acquisition [29], [30]. Apropos of a better understanding of
the mechanism behind the sEMG recording, a brief descrip-
tion of the anatomy, physiology, and the electrical properties
of muscles is in order.

1) MUSCLE STRUCTURE
A muscle consists of a large number of muscle fibers, which
are grouped into several motor units (MUs). An MU is
regarded as the basic level of the neuro motor system of
a muscle. All the muscle fibers that belong to an MU are
controlled by a single motor neuron as shown in Fig. 1.
The number of muscle fibers housed in an MU is termed as
innervation ratio, which in turn differs depending on the type
and the function of muscle fibers. For instance, the innerva-
tion ratio of muscles that require a fine control, e.g., hand,
ocular, and facial muscles, is low (close to 1:5), whereas the
muscles requiring only a gross movement, e.g., back or leg
antigravity muscles, are endowed with a high innervation
ratio (1:2000) [32], [33].
The neuromuscular junction (NMJ) is the synapse that

develops between a muscle fiber in an MU and the associated
motor neuron as illustrated in Fig. 1. The NMJ is located
near the middle of a muscle cell, and the region is called the
innervation region. The muscle fibers that constitute an MU
are distributed pseudo-randomly across the cross-section of a
muscle to ensure equal distribution of the force generated by
each MU [6], [34].
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FIGURE 1. The motor neuron (red and blue ovoid-shaped minuscule
structures embedded in the spinal cord) stimulates muscle fibers (shaded
in pink) ranging from 2 to 2000, and they are collectively known as a
motor unit. The action potential transmitted by the motor neuron
propagates along its axon to the neuromuscular junction, wherein the
axon terminal (branches with dots in red and blue) and the motor end
plate of the muscle fiber meet to form a synapse [31].

2) MUSCLE CONTRACTION
The stimulations from motor neurons cause muscle
contractions that fall under three categories: isometric,
concentric, and accentric. The muscle contraction that pre-
serves the muscle length is known as the isometric con-
traction, e.g., contractions related to postural control. The
concentric contraction results in the shortening of a muscle;
owing to the expenditure of energy toward the reduction
of muscle length, the concentric contraction is vested with
less muscular energy than the isometric one. By contrast,
the muscle lengthens during the accentric contraction. The
concentric and accentric contractions are collectively known
as un-isometric contractions [35], [36].

3) MUSCLE RECRUITMENT PATTERN
The manner in which the MUs are selected to participate in
a muscle contraction is called the recruitment process, and
it relies on the ‘‘size principle’’. This means that for a small
degree of contraction, the MUs composed of a small number
of muscle fibers are engaged; alternatively, larger levels of
contraction necessitates the involvement of MUs compris-
ing ample number of muscle fibers. In a contraction that
generates a constant force, namely, the isotonic contraction,
the activation pattern switches from one MU to another so
that the MU can evade from growing fatigue [37], [38].

4) sEMG SIGNAL GENERATION
A motor neuron stimulates the muscle fibers by sending
out the nerve action potential, which travels along the axon
towards the muscle fibers. Notwithstanding the fact that the
same action potential triggers a set of muscle fibers, their
stimulation varies in time, since the axon branch to individual

FIGURE 2. The sEMG signal is the superposition of all MUAPs in the
immediate vicinity of the electrode. Notice that the MUAPs are affected
by the electrical characteristics of body tissues interposed between the
muscle fibers and the electrode, prior to being summed up.

muscle fibers differs in length. This time difference between
the activation of muscle fibers is known as jitter. The result of
depolarization of muscle fibers in an MU due to the stimulus
caused by a motor neuron can be considered as a single
MUAP. Thus the sEMG signal emerges as the summation of
electrical activities from all the activeMUs in close proximity
to the electrode as illustrated in Fig. 2. The shape and the
amplitude of the surface action potential are hence influenced
by the properties of body tissues sandwiched between the
muscle fibers and the recording electrodes. In particular,
the body tissues jointly act as an imperfect insulator with low-
pass filter characteristics, and therefore tend to attenuate the
high frequency components of the acquired signal [6], [33].
We recall that in sEMG, the non-invasive recording of the

muscle activity entails the superposition of a large number
of muscle action potentials with a pseudo-random temporal
and spatial separation. The origin of eachMUAP is inherently
random, and the electrical characteristics of the surrounding
tissues are non-linear. The ensuing result is that the amplitude
of the sEMG signal turns out to be pseudo-random, and
its probability distribution function resembles a Gaussian
function [15], [39], [40].
While one could possibly think of numerous applications

involving the sEMG, it must be borne in mind that the sEMG
per se may lead to less reliable results. In order to make the
best use of the acquired sEMG, the influences due to the
following have to be counteracted: anatomy (number, size,
and spatial distribution of MUs); physiology (training,
disorder, and fatigue); nerve-related aspects (disorder
and NMJ); contraction (level and speed of contraction,
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isometric/dynamic, and force generated); artifacts (crosstalk
between amuscle and electrocardiographic interference); and
recording (procedure, noise, electrode properties—spacing,
type, and size of electrodes—as well as recorded sites) [15],
[39], [41]. It is viable to alleviate their undesirable impact
on the signal to some extent by careful skin preparation and
the choice of proper anatomical landmarks for the electrode
placement. Note that this adverse effect is more pronounced
when the sEMG signal strength remains very small, for
instance during a static posture. The sEMG signal can also
be categorized with regard to each of these influencing
criteria [4], [7], [41].

The sEMG is proven effective in several fields including
sports training, rehabilitation, machine and computer control,
occupational health and safety, and for identifying posture
disorders. Recall from Section I that the sEMG amplitude and
frequency have been regarded as indicators of the localized
muscular fatigue. As exemplified in [15] and [40], the ampli-
tude and spectral information of sEMG provide cues to esti-
mate the muscle force and muscle voluntary contractions.
On the other hand, the PCA plays a vital role in retrieving
MUAPs from sEMG amidst noise, crosstalk, and artifacts.
For completeness sake, a concise description of the PCA
technique is provided in the sequel.

B. PCA FUNDAMENTALS
The PCA is a simple yet efficient non-parametric approach
devoted to render a statistical description of a complex
data by revealing the hidden structures and suppressing the
noise. This technique, prevalent in many fields, character-
izes the data by relying on the second-order statistics, and
is acclaimed to yield quite reliable results. More formally,
the PCA is an orthogonal linear transformation that decorre-
lates amultivariate data by projecting it onto a new coordinate
system termed as the principal components (PCs). These
components can be regarded as a set of spatial directions, onto
which the projected data guarantees the maximum variance.
Note that there is a natural way of ordering the PCs based
on the variance of the projected data. This means that the
variances of the data projected onto the first up to the last
component are in the decreasing order. In general, the original
data can be well represented with merely a few first
PCs [21], [42]–[44].

There are two widely followed approaches to perform the
PCA: (i) the eigenvalue decomposition of the data covariance
matrix; and (ii) the SVD of the centered data matrix.

Let the m ⇥ n data matrix be denoted as X with m and n
being the number of samples and the number of variables,
respectively. As a preprocessing step, X is centered, mean-
ing that the column-wise mean of X is subtracted from the
elements of the corresponding columns ofX. The covariance
matrix of X is given by an n⇥ n symmetrical matrix, defined
as C = X>X/(m � 1), where (·)> denotes the transpose of
the matrix in the argument. The eigenvalue decomposition
diagonalizes C to yield V3V>, where the columns of V and
the diagonal elements �i, i = 1, . . . , n, of 3 turn out to be

the eigenvectors and eigenvalues ofC, respectively. Note that
the eigenvalues of C are arranged in the decreasing order
along the main diagonal of 3, and are associated with the
columns of V. This induces a natural ordering of the PCs that
are expressed as the columns of XV, whose variances are in
the decreasing order as well (refer to the illustration in Fig. 3).

FIGURE 3. Each data point shown in pink is a three-dimensional vector,
and 400 such points are displayed in the plot that are randomly drawn
from a normal distribution. The three PCs are computed for the dataset
using the eigenvalue decomposition as discussed in Section II-B, and they
are portrayed with line segments in orange, green, and blue color in
descending order of their corresponding eigenvalues.

Alternatively, one can perform the SVD of X to obtain
USV>, wherein the diagonal elements si, i = 1, . . . , n, of S
are known as the singular values. It is straightforward to
observe the link between the singular values and the eigen-
values as follows: �i = s2i /(n� 1). Furthermore, the PCs can
be denoted as the columns of USV>V = US.
What follows is a brief stepwise procedure on the esti-

mation of PCs for a given multivariate data via eigenvalue
decomposition.

• Compute the covariance matrix of the mean-adjusted
(centered) data.

• Obtain the eigenvalues and eigenvectors of the data
covariance matrix.

• Sort the eigenvalues in the descending order to select the
first few ‘‘significant’’ values.

• Form a transformation matrix that comprises the eigen-
vectors associated with the chosen eigenvalues.

• Project the data onto the transformation matrix.
For a more elaborate treatment on the computation of PCA,

one may refer to [21], [44], and [45].

C. RELEVANCE OF PCA IN sEMG PROCESSING
PCA has gained effervescent popularity in dimensionality
reduction tasks involving sEMG and prosthetic applications.
It plays a crucial role in reducing the dimensionality of a
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feature space in order to extract the subspace that ‘‘best’’
describes the given data, thereby aiding to recognize patterns.
In sEMG-based studies, e.g., studies of human movement,
owing to the data redundancy, the PCA has been employed
to determine the most important factors that contribute to
the sources of variation in movement patterns [5], [25]. As a
consequence, the following set of new variables that correlate
with the original variables is observed: (i) The PCs account-
ing for a large amount of total variance are presumably related
to the control signal outputs of spinal pattern generators,
which trigger the corresponding muscles to generate move-
ment under the influence of commands that are sent to the
MUs through the descending pathway [46]. (ii) On the other
hand, the components that explain only a small amount of the
total variance are generally deemed as random noise within
the system [42]. The criterion that governs the choice of PCs
deduces the number of components in each category. Many
studies have successfully demonstrated that the application
of PCA to kinematic, kinetic or sEMG data can unveil the
underlying coordinative structures in the correlated patterns
of variation among joints or body segments [47], [48].

As explained in Section II-B, an EMG dataset X 2 Rp⇥q

comprising p samples with q variables is first centered, and
then its covariance matrix C 2 Rq⇥q is computed. Upon the
eigenvalue decomposition of C, only r < q columns of V
that correspond to the significant eigenvalues—as determined
from the scree-plot of eigenvalues—are selected to extract
r number of PCs expressed as the columns of XṼ, where
the columns associated with insignificant eigenvalues are
annihilated from V to form Ṽ 2 Rq⇥r .

In addition, if Ṽ has robustly been estimated with the help
of a large EMG dataset, the dimensionality of a subset of
EMG data, Y 2 Rt⇥q, e.g., the one related to a specific
hand gesture or neural disorder, can be reduced by right
multiplying Y by Ṽ.

The aforedescribed strategy is a befitting choice in var-
ious sEMG applications. For instance, since the dexterity
is attributed to only a few control signals in a myoelectric
prosthesis, useful sEMG information such as the degrees of
freedom (DoF) of a dexterous robotic hand can be reduced by
deploying this inverse PCA algorithm. Another noteworthy
application would be to reveal the hidden information that
underlies a neural disorder data.

D. ALTERNATIVE SCHEMES FOR sEMG
DIMENSIONALITY REDUCTION
The dimensionality of the sEMG data stems either from the
contribution of different muscles to the sEMG signal or from
the placement of multiple electrodes on the same muscle.
Thus the intrinsic nature of the sEMG necessitates the
reliance on dimensionality reduction schemes, and admit-
tedly it gave rise to dedicated techniques that would even out-
perform the PCA. A concise description of such alternatives
is presented below for the sake of completeness.

An important sEMG processing is the extraction of
multiple muscle activities called synergy features that would

FIGURE 4. Comparison of PC selection methodologies, which are based
on the eigenvalues (brown marker), visual detection of the elbow (green
marker), segmented-regression-based elbow estimation (orange marker),
and cumulative variance explained by the PCs (yellow marker), were
implemented with sEMG datasets related to three hand gesture
movements: (a) middle finger, (b) IMR fingers, and (c) HC position.

reveal coordination patterns in the myoelectric signals. These
features are proven useful when dealing with multiple DoF as
they could explain the coordination among various muscles.
It has been posited that a complex EMG pattern recorded
from a limb muscle is the result of simultaneous activation
of a few muscle synergies via descending pathways [49]. For
the retrieval of muscle synergy structures from the EMG,
the NMF has been shown to be effective as demonstrated
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TABLE 1. Eigenvalues and Explained Variances (in %) Associated With the Eight PCs Derived From Each of the Following sEMG Hand Gesture Movement
Datasets: Middle Finger, IMR Fingers, and HC Position.

in the seminal work of Lee and Seung [50]. Dimensionality
reduction bymeans of the synergy space transformation lends
itself to a robust representation of varying sEMG signal aside
from simplifying control inputs.

As illustrated in Fig. 2, unlike the EMG acquired via needle
electrodes, the sEMG signal happens to be more complex due
to the overlap of clinically irrelevant information with the
desirable signal originating fromMUAPs. In order tomitigate
this drawback, known asmuscle crosstalk, a few other sEMG
decomposition techniques have been deemed more suitable
than the PCA as argued in [51] and the references therein.
Owing to the unavailability of a priori information on the
number of active MUs and the mixing mechanism, the blind
source separation is regarded as an expedient, premised on the
supposition that the non-Gaussian sources are independently
and identically distributed. When the independence assump-
tion fails to hold, source correlations in time are exploited
to separate the normally distributed sources having disparate
spectra. By treating the sEMG signals as complex convolutive
mixtures, the deconvolution has been achieved with partial
success with wavelets, neural network classifiers, and the
time-frequency decomposition. In the worst scenario, if the
sources remain non-stationary, more sophisticated methods
are warranted, e.g., joint diagonalization of the spatial time-
frequency distribution matrices constructed from convolutive
mixtures of non-stationary signals.

III. PC SELECTION WITH ILLUSTRATIONS
The ability of PCA to express the sEMG data with a few
selected PCs is demonstrated with the following example,
wherein the sEMG data pertains to three different hand
gestures of varied complexities, i.e., movement involv-
ing middle finger alone; index, middle, and ring fingers
together (IMR); and hand close (HC) position. For the sake
of brevity, we refrain from describing the data collection and
preprocessing details, which can be found in [52]. Instead we
focus on the optimal choice of the PCs by dint of eigenvalues
after decomposing the sEMG data under consideration, each
of size 12 000 ⇥ 8, with the PCA algorithm. A simple rule-
of-thumb has been adhered to in [53] that recommends to

retain the PCswith the eigenvalues greater than one; however,
as cautioned in [54], this naive strategy may lead to loss of
valuable information. Traditionally, one can plot the eigen-
values in decreasing order, and the resulting plot known as
the scree-plot may be visually inspected to track the elbow
point, where the slope of the scree-plot undergoes an abrupt
transition. Since it is based on visual heuristics, obviously this
procedure is highly subjective. In the pursuit of detecting the
elbow point by an automatic procedure, statistical approaches
have recently been advocated, e.g., the profile likelihood
approach in [55]. Nevertheless, given a small sample size,
an approach designed to estimate the elbow by maximizing
a profile likelihood function may lead to inaccurate results.
Another popular method is to retain the smallest number of
components that capture an appreciable percentage � of the
total variance; in practice, � is determined to be 80% or 90%.
Note, however, that the choice of � is not rigorous and
is contingent on the application at hand. Alternatively, one
can resort to sequential tests, wherein a series of hypothesis
tests are sequentially conducted to verify whether the small
eigenvalues are equal. The validity of the sequential tests is
hinged on the assumption that the underlying data follows a
multivariate normal distribution. Furthermore, it is also dif-
ficult to approximately predict the overall significance level
due to the random number of tests and the fact that the tests
do not guarantee to remain independent from each other [44].
Aside from these, the resampling method estimates the null
distribution of each PC by resampling the data repeatedly
via permutation or the bootstrap, and retains the respective
component only when the distribution exceeds 95 percentile.
The downside of resampling is the computational burden
especially when dealing with large datasets.
The number of PCs selected for the three categories of

sEMGdatasets by various schemes ismarked in Fig. 4. As can
be noticed, the criterion based on eigenvalues exceeding one
failed to produce reliable results for the sEMG data related
to the IMR and HC hand gestures. It is quite reasonable to
retain only the PCs that could explain more than 80% of
the data variation to reduce the dimensionality of the sEMG
data. An interesting inference from this outcome is that unlike
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TABLE 2. Muscle Strength and Fatigue Assessment.

the simple task involving the middle finger movement that
requires merely three PCs, more intricate movements with
IMR fingers and HC position necessitate four and five PCs,
respectively. Despite being subjective, the elbow estimated
by visual scrutiny supports the retention of the same num-
ber of PCs as endorsed by the principle insisting on more
than �% of cumulative variance explained by the reduced
set of components. Since automatic detection of elbow in

a scree-plot is on the rise, we intended to evaluate such a
procedure, namely, piecewise or segmented regression. This
algorithm traverses along the curve, and selects one bisection
point at a time for fitting two line segments in the following
manner: the first one is constructed such that it provides the
best fit for the series of points to the left of the bisection
point, while the second one takes into account the points
to the right. The bisection point which minimizes the sum
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TABLE 3. Gesture Recognition and Prosthetic Applications.
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TABLE 4. Gait and Human Movement Applications.

of errors for the two fits is construed as the elbow of the
scree-plot. For the tested sEMG data falling under the hand
gesture categories, i.e., the middle finger, IMR fingers, and
HC position, the automatic scheme favors the choice of two,
four, and two PCs, respectively, as indicated in Fig. 4.

The biplot in Fig. 5 shows the first two PC scores
and the loading vectors for the EMG data collected using
eight electrodes, e1, . . . , e8, during the middle finger move-
ment. The electrodes were placed on the muscles in
the following manner: e1 I extensor digitorum (ED);
e2, e3 I brachioradialis; e4 I flexor carpi radialis; e5, e6,
e7 I flexor carpi ulnaris (FCU); and e8 I extensor carpi
ulnaris. The PC scores are scaled with respect to the max-
imum score value and maximum coefficient length, so that
their relative locations can be determined from the plot.
What one may possibly infer from the biplot is that the first

loading vector places almost equal weight on the variables
(electrodes) designated as e1, e2, e7, and e8, moderate weight
on e3, and lessweight on the rest of the electrodes. On the con-
trary, the second loading vector assigns more weight on the
electrodes, namely, e3, . . . , e6, and less weight on the remain-
ing. Based on the orientation of vectors (green line segments)
that represent the variables, we speculate that the MUAPs
picked up by the set of electrodes e1, e2, e7, and e8 would
share some common information in the subspace spanned by
PC1 and PC2, and the recordings by the rest of the electrodes
might distinctly differ from those by the former ones.

IV. PCA-BASED sEMG ANALYSES
Several sEMG studies rely on the PCA to interpret muscle
activation patterns and better understand the complex coordi-
nation of muscle activities in the human body. These studies
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TABLE 5. PCA for Facial sEMG Applications.

FIGURE 5. Biplot of the sEMG data acquired during the middle finger
movement. The horizontal and vertical axis represent the first and
the second PC, respectively. The orange dots denote the scaled PC scores.
The variables of the sEMG data, i.e., surface electrodes, are marked with
green line segments that emanate from the origin. The plot provides
information on how each variable contributes to the two PCs.

have mainly focused on the following three aspects: (i) to
measure redundancies, (ii) to identify patterns of coordi-
nation, and (iii) to discriminate different activities. In this
respect, Tables 1–5 render an overview of PCA-based sEMG
applications, wherein an exhaustive collection of related
methods is meant to provide a comprehensive review on this
subject.

V. CONCLUSIONS AND PERSPECTIVES
The purpose of this article is to provide an overview of
the literature reported on the PCA application to process

the sEMG signals acquired from various muscles, espe-
cially those located in the face as well as the upper and
lower limbs. In this context, the PCA has been employed as
an unsupervised feature extraction scheme that reduces the
dimensionality of the sEMG data to befit various myoelectric
applications. Furthermore, we recounted several applications
of PCA involving myoelectric signals. The main objective
here is to review noteworthy references in this domain, and
to offer pointers to the literature on this research trend.
Recapitulated below are the rationale behind the strong

preference of PCA algorithm with relevance to the sEMG
data preprocessing. In principle, the PCA identifies a com-
mon temporal pattern across large datasets of sEMG signals,
and defines a low-dimensional space on which the original
signals could be represented as vectors and classified [20].
In this vein, the PCA could be adopted to process the
sEMG activity of individual muscles recorded during several
variants of one motor action (or even different motor behav-
iors), and to characterize the temporal patterns of activity
associated with different components of the motor action.
Recollect from Section II-C that the PCs explaining a sig-
nificant proportion of the data variation could be ascribed to
the control signal outputs of spinal pattern generators [46];
whereas, the rest of the PCs presumably account for the
system-related random noise [42]. Moreover, the PCA-based
sEMG data decomposition facilitates to unravel the inherent
coordinative structures in the correlated patterns of variation
among joints or body segments [47], [48]. These structures
corresponding to walking and gait could render valuable
information on the body control mechanism, and help
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correlate walking patterns with injuries [48]. Another poten-
tial application of the PCA is concerned with the analysis
of patterns of sEMG activity recorded via multi-electrode
systems from many muscles throughout the body during
one or more motor actions. In this case, the role of PCA is to
identify spatial temporal neuromuscular synergies underlying
the motor behavior [72].

To summarize, the PCA applications to sEMG data
outlined here highlight the efficacy of this method in captur-
ing features from sEMG signals that can provide insight not
only on the activation state of motoneurons, but also on the
nature of the premotor control signals, which would open new
avenues for clinical, neurophysiological, and rehabilitation
studies.
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