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Coherent perfect absorption in one-
sided reflectionless media
Jin-Hui Wu1, M. Artoni2 & G. C. La Rocca3

In optical experiments one-sided reflectionless (ORL) and coherent perfect absorption (CPA) are unusual 
scattering properties yet fascinating for their fundamental aspects and for their practical interest. 
Although these two concepts have so far remained separated from each other, we prove that the two 
phenomena are indeed strictly connected. We show that a CPA–ORL connection exists between pairs 
of points lying along lines close to each other in the 3D space-parameters of a realistic lossy atomic 
photonic crystal. The connection is expected to be a generic feature of wave scattering in non-Hermitian 
optical media encompassing, as a particular case, wave scattering in parity-time (PT) symmetric media.

Scattering from complex potentials and the associated non-Hermitian Hamiltonians1 are usually introduced to 
describe dissipation or decay processes in open systems. Likewise light wave propagation phenomena through 
media with complex susceptibilities are genuine realizations of scattering from localized non-Hermitian potentials 
and provide a clear illustration of how Hermitian and non-Hermitian processes differ from one another. The 
optical scattering matrix S fully governs the propagation of light and, in particular, one-sided reflectionless (ORL) 
scattering of light waves impinging from “one” direction2–6 can be associated with a non-Hermitian degeneracy7 
of the scattering matrix (also known as an exceptional point8). More intriguing phenomena appear, however, 
when coherent waves impinge on “both” sides of a complex potential9. Among them, coherent perfect absorption 
(CPA)10, which refers to complete absorption of both incident waves, is being extensively investigated11–18. The 
interest in CPA stems not only for fundamental reasons10,11,13, since it can be interpreted as the time-reversed 
counterpart of lasing and related to parity-time (PT) symmetry19, but also in view of its potential applications. 
Such efforts have spurred investigations and experiments in various areas that span, among others, absorption 
enhancement20, perfect energy feeding into nanoscale systems21, intersubband polaritons22, slow light wave-
guides23, graphene-based perfect absorbers24–27, and Fano resonant plasmonic metasurfaces28.

The concepts of one-sided reflectionless and coherent perfect absorption have remained so far separated from 
each other, probably because of the lack of suitable physical systems in which both features would be accessible. 
Here, we show how a lossy medium that exhibits ORL can in general also exhibit CPA. The connection is gen-
eral, not restricted to PT symmetric media and could be easily observed in a realistic 1D lossy medium through 
smooth deformations of the system’s externally tunable parameters. We further argue how this connection, intrin-
sic to the structure of non-Hermitian degeneracies of scattering matrix S, can actually be extended to all points of 
a CPA-line. Such a line is a novel topological structure of non-Hermitian optical media predicted to occur next to 
a ORL-line. Although there has been a number of recent advances in each of these areas of research, particularly 
restricted to the case of PT symmetric media requiring a balance of loss and gain29–34, one-sided reflectionless 
and coherent perfect absorption – taken together – may lead to a more complete understanding of non-Hermitian 
optics in a large class of materials where absorption plays a key role for applications. Photodetectors, photovol-
taics and non-reciprocal optical devices just to mention a few instances. The connection we present here is fairly 
general, hinges on non-Hermitian scattering degeneracies with common notions from quantum mechanics and, 
though clearly relevant to optics in view of one-way mirrors, cloaks of invisibility and coherent laser absorbers, 
may well be relevant to unusual phenomena recently observed for acoustic waves35–41.

ORL and CPA
The scattering properties of a 1D-medium are fully determined by the complex amplitudes t =  tL =  tR, rL and rR 
respectively for (reciprocal) transmission and reflection upon incidence from the left (L) or from the right (R). 
ORL means that rL =  0 with rR ≠  0 (or vice versa). The CPA condition corresponds, instead, to a specific config-
uration of input beams, incident at the same time one from the left and one from the right with a definite phase 
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relationship, which are completely absorbed by the sample. Thus, for this configuration of input beams, the output 
beams to the right and to the left are both vanishing. This means that the CPA input beams represent an eigenvec-
tor of the scattering matrix S with eigenvalue zero. As discussed below, the CPA condition can finally be stated as 
t2 =  rRrL, i.e. det S =  010 (see Eq. (3)).

Thus, the main focus of the work is how to connect in general the two conditions rL =  0 (ORL) and t2 =  rRrL 
(CPA) upon smooth deformations of medium’s external driving parameters. More specifically, for a lossy 
1D-photonic crystal, the scattering properties near Bragg reflection can be described5,4 by the following model 
susceptibility
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with χ0, χ, and w being non negative real parameters, a the crystal period and the phases {α, β} defined within the 
interval [0, π]. The real part of the spatially independent background susceptibility is ignored for simplicity as it 
plays no significant role, while its imaginary part χ0 should be large enough with respect to χ to have everywhere 
a lossy medium, i.e., χ χ≥ + w(1 )0 . In this rather generic model, the ORL condition (rL =  0 ) is simply attained 
when w =  05,4, in which case the real and imaginary parts of the susceptibility modulation χ(z) −  iχ0 are spatially 
shifted by π/2 and satisfy the spatial Kramers-Kronig relations6. The reflection and transmission of a light beam 
with a wave-vector πk a/  can be described on the basis of a minimal coupled-mode model accounting for 
Bragg scattering in a sample of length L ≫  a, as usual. Then, the CPA condition is attained when
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where η χ χ= − βk w e( /2) i
0
2 2 2  (with Re[η] >  0 due to losses). The last term in Eq. (2) holds when |eηL| ≫  1 

(|t| ≪  1) and w ≪  1, and this is precisely the regime we are interested in as it can occur near a ORL point in a lossy 
medium. It thus appears that, while the parameter α is immaterial, the CPA condition can in general be satisfied 
only if β can be tuned at will within the whole interval [0, π], regardless of the value of w. In fact, although 
χ χ− β

w earg( ) 1i
0
2 2 2 , β π−η

earg( ) (mod )L  need not be small at the CPA point as kL ≫  1.
Though solid-state photonic structures may be considered4, coherently-prepared multi-level atoms5,42 are 

attractive for exploring non-Hermitian optics, because of the easy reconfiguration of the scattering process 
through well established control techniques enabled by electromagnetically induced transparency (EIT)43. In fact, 
the realization of atomic platforms to investigate non-Hermitian models is currently a very active experimental 
endeavor44,45. We consider the realistic atomic system of Fig. 1, which provides an implementation of the model of 
Eq.(1). The photonic crystal consists of cold atoms coherently driven by a near-resonant probe beam (Ωp, Δ p ≈  0),  
a resonant coupling beam (Ωc, Δ c =  0) and an far-detuned dressing field (Ωd,|Δ d| ≫  0). The latter has both a 
traveling-wave (TW) and a standing-wave (SW) components with opposite detunings and induces on level |2〉  a 
dynamic shift δ δ φ= −π( )z z( ) cos 2ds d a d0

2 , where δ = Ω ∆/d d d0
2  and the phase shift 2φd is relative to the optical 

lattice modulating the atomic density. As a matter of fact, by adjusting only three of the above independent con-
trol parameters, namely {Δ p, δd0, φd}, it is possible to identify scattering processes for which the existence of the 
CPA–ORL connection can be proven. More specifically, this is done by solving the density matrix equations for 
the atomic level configuration of Fig. 1 whose matrix elements will depend, among other parameters kept fixed 
here as in Fig. 6 of ref. 45, on the three parameters (Δ p, δd0, φd) (See sect. II of ref. 45). For each choice of these 
three experimentally tunable parameters, we numerically compute the full susceptibility χ(z), which can be cast 
in the form of Eq. (1) when its higher order Fourier components are disregarded. From χ(z) we then directly 
obtain through transfer matrix calculations46,47 the scattering amplitudes t, rL and rR that identify a specific scat-
tering process.

A relevant sets of ORL points (rL =  0) and the associated CPA-points (t2 =  rRrL) are reported in the 3D param-
eter space {Δ p, δd0, φd} of Fig. 2. A CPA-line lying roughly parallel to an ORL-line is shown there. Hence, we can 
access a CPA-point starting from a ORL-point essentially by adjusting the parameter δd0. The reason is simply that 
(i) the transmission amplitude t is always small in our lossy atomic medium and (ii) the reflection amplitudes rL 
and rR are more sensitive to δd0 than Δ p at a fixed value of φd. A range of φd values centered at φd =  π/4 is shown, 
being our system periodic in φd with period π, while varying φd from φd =  π/4 to 3π/4 (or to − π/4) simply changes 
the reflectionless behavior from the “left” into reflectionless from the “right”. Notice also that the CPA-lines and 
ORL-lines are symmetric under the simultaneous changes φd →  π/2− φd and Δ p →  − Δ p. We can always find an 
isolated CPA-point associated to a nearby isolated ORL-point through cuts along {Δ p, δd0}-planes as shown in 
Fig. 3. Figure 4 illustrates further examples of how ORL-points and the associated CPA-points are computed. 
ORL-points are characterized by rL =  0 and are here obtained by solving the two real equations Re[rL] =  0 and 
Im[rL] =  0. In the neighborhood of a solution both Re[rL] and Im[rL] change sign and their product changes sign 
in four alternating sections (i.e., deformed quadrants) of the {Δ p, δd0}-plane as shown in Fig. 4(a–c,e–g). This cor-
responds to the fact that the phase of rL varies by 2π when a ORL-point is encircled in the {Δ p, δd0}-plane, which 
embodies the freedom of choice of β in Eq. (2), and is a key point as discussed below. CPA-points, characterized 
by t2 =  rLrR, are illustrated instead in Fig. 4(b–d,f–h) as minima of the function |t2 −  rLrR|.

Discussion
The CPA – ORL connection can also be assessed in more general terms starting from the two-ports scattering 
process,
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Figure 1. The CPA – ORL connection scattering scheme. (a) Cold 87Rb atoms are loaded in a 1D optical lattice 
(black-solid) of period a. These atoms suffer a dynamic level shift (red-dashed) with the same periodicity, but 
phase shifted with respect to the optical lattice. The incident probe electric field amplitudes ( − +E E,R L ) are 
scattered by the atomic lattice into the outgoing electric field amplitudes ( − +E E,L R ). For fields ( −ER ) incident from 
the right, e.g., outgoing amplitudes consist of waves ( −EL ) transmitted with amplitude tR in the − z direction as 
well as waves ( +ER ) reflected with amplitude rR in the + z direction; likewise for fields ( +EL ) incident from the left 
and reflected (transmitted) with amplitude rL (tL); while in general rL ≠  rR, tL =  tR =  t. (b) A four-level N-
configuration through which 87Rb atoms are driven by a weak near-resonant probe field (green) on the ↔1 3  
transition, a moderate resonant coupling field (blue) on the ↔2 3  transition and a strong far-detuned 
dressing field (red) on the ↔2 4  transition. (c) The probe, with Rabi frequency Ωp and detuning Δ p, and the 
resonant coupling (Δ c =  0), with Rabi frequency Ωc, propagate in the z direction. The dressing field has instead a 
TW component propagating in the x direction, with Rabi frequency Ωd and detuning − Δ d, and a SW component 
modulated in the z direction, with detuning + Δ d.

Figure 2. A CPA-line and the nearby ORL-line for a typical photonic crystal structure are shown in the 
parameter space {Δp, δd0, φd}. The two lines which are nearly “parallel” are also shown projected onto the  
{δd0, φd} plane (blue lines), the {Δ p, φd} plane (green lines) and the {Δ p, δd0} plane (red lines). The points labeled 
( ), ( ), ( ) and ( ) correspond to those marked in Fig. 3.
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where the S matrix relates the outgoing (electric) field amplitudes −EL  and +ER  to the incoming (electric) field 
amplitudes −ER  and +EL  (see Fig. 1a). The eigenvalues and eigenvectors of S are obtained through the last term in 
Eq. (3). It is here worth noting that we have chosen one of the most common representations of the S matrix, the 
other one having instead rL and rR on the diagonal. While the scattering is solely determined by the measurable 
complex amplitudes t, rL and rR and all physical results are independent of which S matrix representation is used, 
the specific choice of S in Eq. (3) is appropriate to prove the CPA – ORL connection, where the ORL condition is 
in this case directly related to a non-Hermitian degeneracy (or exceptional point) of S, as we illustrate in the 
following.

In general, S is non-Hermitian, its eigenvalues

λ = ± =




±






± t r r t r r
t

1
(4)s L R

L R
2

are complex and the (unnormalized) eigenvectors ϕ = ±± r r( / , 1)
T

L R  are not orthogonal. Non-Hermitian 
degeneracies of S occur when the eigenvalues merge into one another [Fig. 5(a–d)] and the eigenvectors coalesce 
into a single state7, being the S matrix no longer diagonalizable. The two coalescing eigenvalues are analytically 
connected by a square-root branch-point, with associated Riemann sheets, and are physically associated with 
unidirectional reflectionless scattering states occurring when rL =  0 (or rR =  0)4,5. For a non-Hermitian matrix, 
degeneracies are of codimension two, that is points in a two-parameter space (NHD-point) and curves in a 
three-parameter space (NHD-line). Meanwhile, CPA occurs when either one of the two eigenvalues λ +s  or λ −s  
vanishes [Fig. 5(a–d)] along with the determinant of S (this condition is independent of the specific choice of S 
matrix representation). The corresponding eigenvector describes a perfect absorption state10 with amplitudes and 
phases of the incoming fields from the left and from the right precisely chosen so that no outgoing light intensity 
can be observed13,18.

We start providing an intuitive illustration of how CPA and ORL are connected with one another in the par-
ticular, but important, case for which (i) the reflection phases are such that φL +  φR =  {0, π} and (ii) the transmis-
sion amplitude t is real. The corresponding eigenvalues are either real or complex conjugate in pairs depending on 
whether the two phases add up to 0 or to π [Fig. 5(c,d)]. Thus (half) sum of the two eigenvalues represents t and 
can be depicted, as we move in the parameter space toward degeneracy, by a vector whose magnitude decreases 
along the real axis of Fig. 5(e) for decreasing transmission. So does (half) difference of the two eigenvalues repre-
senting the geometric mean of rL and rR, which can be depicted by a vector parallel to the imaginary axis. As we 
move through degeneracy, the eigenvalues sum will keep decreasing but their difference will increase after mov-
ing away from zero (degeneracy) [Fig. 5(f)] owing to the intrinsic bifurcation (topological) structure of the 
branch-point. Hence there will always be a point where sum and difference will be equal (to each other), i.e., 
λ =− 0s  [Fig. 5(g)]. It is worth noting that under the conditions (i.) and (ii.) an Hermitian invertible transforma-
tion η exists indeed for which the adjoint of the (non-Hermitian) scattering matrix S satisfies S† =  ηSη−1, i.e., S is 
pseudo-Hermitian48. The reverse is also true and hence the pseudo-Hermiticity of S is the basic mathematical 
structure responsible for the direct connection between the ORL and the CPA point, at least for the specific spec-
trum of S shown in Fig. 5(c,d). Note that this particular case – realized in the all-optically tunable atomic system 
of Fig. 1 simply setting Δ p =  0 – is essentially analogous to a PT symmetric one, even though our system is always 
lossy, both before and after the NHD point.

Yet, a CPA-point can be typically found in the vicinity of a ORL-point under more general conditions and, in 
particular, without restricting ourselves to pseudo-Hermiticity. For definiteness we take the NHD-point at 

r 0L  assuming, without loss of generality, that around this point |rR| and |t| are nonvanishing. For lossy media 
we may further take |t| ≪  1, with |rR| being in general on the order of unity5. The perfect absorption condition 
λ =− 0s  is satisfied when rLrR =  t2, i.e. when

Figure 3. Pairs of ORL  (+) and CPA (*) points in the {Δ  p, δd0} plane (yellow plane in Fig. 2) corresponding to 
values of φd ranging from 0.15 ×  π to 0.30 ×  π (top to bottom).
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are both satisfied, implying that |rL| and arg(rL) should be independently adjusted (just as the phase β in Eq. (2) 
should be tuned at will, regardless of the value of w). Note that the CPA conditions in Eq. (5) generalize those 
given above for the pseudo-Hermitian case, and are only restricted by the requirement that |rL| be small at the 
CPA-point, which occurs when this point is associated to a nearby ORL-point. In general, we do expect t2/rR to 
be smoothly varying in the vicinity of this point while arg(rL) can be varied at will when the parameters defining 
the system are smoothly changed so to encircle the ORL-point, i.e. the NHD of S5. A simple geometric illustration 
of this property similar to that provided in Fig. 5(e–h) is not so viable in the general, non pseudo-Hermitian case 

Figure 4. [a–c,e–g (left column)] Contour plots of Re[rL] ×  Im[rL]: ORL-points (white-dots) occur when both 
Re[rL] and Im[rL] change sign in the {Δ p, δd0}-plane. [b–d,f–h (right column)] Corresponding CPA-points 
(white-dots) occur when |t2 −  rLrR| vanishes. Each pair of ORL-CPA points is found for a given value of φd (from 
top to bottom: φd/π =  0.20, 0.25, 0.30, 0.35).
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(such as that of Fig. 5(a,b)); yet, a direct analytical argument shows that |rL| and arg(rL) can be independently 
adjusted when encircling the ORL-point.

In a typical scattering process, rL depends smoothly on several experimental parameters. We consider here 
how the real (u) and the imaginary (v) parts of rL vary near the ORL-point as a function of only two of these 
parameters, keeping all other ones fixed. In terms of these two parameters, say x and y, one has

Figure 5. Coherent Perfect Absorption (CPA) and Non-Hermitian Degeneracies (NHD). Typical topology of 
the S-matrix eigenvalues (4) around a NHD (circle) for non-Hermitian (a,b) and pseudo-Hermitian (c,d) 
scattering processes in the photonic crystal structure of Fig. 1. Vertical green line indicate CPA-points next to a 
NHD-point respectively at (a,b) δd0 =  3.02 MHz (with Δ p =  1.52 MHz, point ( ) in Fig. 3) and δd0 =  2.75 MHz 
(with Δ p =  1.36 MHz, point ( ) in Fig. 3) and at (c,d) δd0 =  2.89 MHz (with Δ p =  0, point ( ) in Fig. 3) and 
δd0 =  2.61 MHz (with Δ p =  0, point ( ) in Fig. 3). Polar representation of the two eigenvalues before (e) and at 
(f ) the NHD-point, and at (g) and after (h) the CPA-point for the case (c,d) (with Δ p =  0). Light green and violet 
arrows mark respectively the two eigenvalues half-sum (t) and half-difference ( r rL R).

Figure 6. Plots of ρ (a) and θ (b) along the directions marked by the two color-dashed arrows in Fig. 3(a) for 
{φd =  0.15 ×  π, Δ p =  0.576δd0 −  0.220 MHz} (blue-dashed line) and for {φd =  0.25 ×  π, Δ p =  0.0 MHz} (red-solid 
line). The two CPA-points ( ) and ( ) (circles) placed at δd0 =  3.025 MHz (φd =  0.15 ×  π) and at 
δd0 =  2.896 MHz (φd =  0.25 ×  π) correspond to those shown respectively in Fig. 5(a,b) (non-Hermitian) and 
Fig. 5(c,d) (pseudo-Hermitian). The two ORL-points ( ) and ( ) (squares) placed at δd0 =  2.748 MHz 
(φd =  0.15 ×  π) and at δd0 =  2.615 MHz (φd =  0.25 ×  π) correspond to those shown respectively in Fig. 5(a,b) 
(non-Hermitian) and Fig. 5(c,d) (pseudo-Hermitian). At the ORL-points the phase θ is not defined and changes 
by π, as shown by vertical dotted lines in panel (b). At the CPA-point ( ) the ratio of right to left incoming 
intensities is about 0.082 while at the CPA-point ( ) the ratio is 0.053.
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≡ + + + +r u x y iv x y u x u y iv x iv y( , ) ( , ) (6)L x y x y

where the partial derivatives ux =  ∂ u/∂ x, uy =  ∂ u/∂ y, vx =  ∂ v/∂ x, and vy =  ∂ v/∂ y are evaluated at the ORL-point 
taken at (x, y) =  (0, 0). Note that it is not needed to combine x and y into a single complex parameter x +  iy as rL is 
not assumed to be holomorphic here. When uxvy −  vxuy ≠  0, it is always possible to select x and y to obtain any 
required values of arg(rL) and of |rL|, provided the latter is small enough that higher order terms in Eq. (6) are 
indeed negligible. Thus, under typical circumstances we expect a CPA and a ORL points to be close to each other 
in a scattering process from lossy media with |t| small. For example, in Fig. 3 the case φd =  0.25 ×  π (pink-arrow) 
represents changes in the scattering matrix as one moves from its NHD-point ( ) to its CPA-companion ( ), 
namely for a pseudo-Hermitian matrix (Δ p =  0). Similarly, the case φd =  0.15 ×  π (blue-arrow) represents changes 
as one moves from the NHD-point ( ) to its CPA-companion ( ), namely for the general non-Hermitian case. 
Actually, the case in which uxvy −  vxuy =  0 cannot be excluded. Assuming that (uy, vy) ≠  (0, 0) and writing (ux, 
vx) =  μ(uy, vy) with μ real, one then has

µ∆ = + ∆ + ∆r u iv x y( )( ) (7)L y y

which implies that, while |rL| =  |Δ rL| can be varied, arg(rL) =  arg(Δ rL) is fixed because ∆ ≡ +r u ivarg( ) arg( )L y y . 
In this case, we expect to find no CPA-point in the vicinity of a ORL-point when all other parameters are kept 
constant. Clearly, also when higher order terms in the above expansion of rL become important as for instance in 
the peculiar case where all partial derivatives in Eq. (6) are vanishingly small, the occurrence of the CPA point is 
not granted.

Defining ρeiθ ≡  − rL/t, the scattering matrix eigenvector at the CPA-point, where the corresponding eigenvalue 
λ −s  vanishes, can be eventually written as,
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The complex quantity ρeiθ is examined in Fig. 6 both for the pseudo-Hermitian and non-Hermitian cases. At 
the CPA-point, the eigenvector’s components scale as ρ= θ− +E E e/R L

i , with ρ ≪  1 according to Eq. (5). Both mod-
ulus (ρ) and phase (θ) of the (small) incoming field from the right, with respect to the incoming field from the left 
(i.e, the nearly reflectionless side), should be properly chosen to observe the typical perfect absorption behavior. 
Since the CPA-point considered here is associated to a ORL point, in general, perfect absorption requires very 
unbalanced incoming fields. As a matter of fact, the characteristic destructive interference conditions leading to 
perfect absorption for light scattering in both directions occur here for very unbalanced right and left reflectivities 
|rR| ≫  |rL|. In turn, a tiny input field from the right is sufficient to ensure that the outgoing field to the left vanishes, 
while a large input field from the left is necessary to destructively interfere with the reflected field from the right 
side. This CPA configuration provides, in particular, a high-contrast reflectivity control of a test beam incident 
from the right via a pump beam incident from the left.

Conclusions
A new insight into the non-Hermitian optics of a familiar class of lossy photonic crystals is here discussed. 
Through continuous deformations of the scattering matrix S around a one-sided reflectionless (ORL) point, a 
CPA point can be typically attained. Nearby pairs of ORL and CPA “points” or even “lines” appear, respectively, 
through controlling the crystal 2D or 3D parameter space. In such cases, the CPA scattering states associated to 
ORL points turn out to be significantly unbalanced, indicating a dynamically reversible high-contrast reflectivity 
control of the input beams. Finally, while the results here presented refer to realistic atomic structures44,45, our 
general discussion can be easily adapted to atomic-like multilevel centers49 in solids, such as NV diamond or 
rare-earth-doped crystals, also allowing for EIT control of light scattering50,51. Hence the optics of photonic crys-
tals is poised to have a privileged place in assessing that not only standard Hermitian models but also a broad set 
of non-Hermitian ones are bound to have physical interpretations.
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