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1 Introduction

1.1 Embeddable Grassmannians and their hyperplanes

Let V be an n-dimensional vector space over a field K. For 1 ≤ k < n denote by Gk(V ) the k-
Grassmannian of V , namely the point-line geometry whose points are the k–dimensional vector
subspaces of V and whose lines are the sets `Y,Z := {X : Y ⊂ X ⊂ Z, dimX = k} where Y and
Z are subspaces of V with Y ⊂ Z, dimY = k − 1 and dimZ = k + 1. Incidence is containment.
In particular, G1(V ) = PG(V ) and Gn−1(V ) ∼= G1(V

∗), where V ∗ is the dual of V .
Using the Plücker embedding εk:Gk(V ) → PG(

∧k
V ), which maps every k-subspace 〈v1, . . . , vk〉

of V onto the point 〈v1∧· · ·∧vk〉 of PG(
∧k

V ), the point-set of Gk(V ) is mapped onto a projective
variety Gk(V ) ⊂ PG(

∧k
V ). It is well known that Gk(V ) spans PG(

∧k
V ).

According to the terminology commonly used for point-line geometries, a subspace of Gk(V ) is
a set S of points of Gk(V ) such that if a line ` of Gk(V ) meets S in at least two distinct points then
` ⊆ S. A hyperplane of Gk(V ) is a proper subspace of Gk(V ) which meets every line of Gk(V ) non-
trivially. In view of a theorem of Shult [20] (see also De Bruyn [6]) every hyperplane H of Gk(V )
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arises as a hyperplane section from εk, namely H = Hf where Hf = ε−1
k (ker(f) ∩Gk(V )) for a

non-null linear functional f on
∧k

V . Equivalently, if αf : V × . . .× V → K is the alternating k-
linear form associated to f , defined by the clause αf (v1, . . . , vk) := f(v1∧· · ·∧vk), the hyperplane
H is the set of k-subspaces of V where αf identically vanishes. So, the hyperplanes of Gk(V )

bijectively correspond to proportionality classes of non-zero linear functionals of
∧k

V as well as
proportionality classes of non-trivial k-linear alternating forms of V .

Clearly, when k = 1 or k = n − 1 the previous definition gives us back the hyperplanes
(respectively, dual hyperplanes) of PG(V ), defined as usual. Suppose k = 2 and take H as a
hyperplane of G2(V ). Let S(H) be the point-line geometry defined as follows: its points are just
the points of PG(V ) and the lines are the members of H, regarded as lines of PG(V ). The
following proposition is crucial for all we are going to say in this paper. It has to do with polar
spaces. We presume that the reader is fairly familiar with them; if not, we refer him/her to
Buekenhout and Cohen [2, Chapters 7-10] or Shult [21, Chapter 7].

Proposition 1 The geometry S(H) is a (possibly degenerate) polar space of symplectic type.

Proof This statement immediately follows from what we have said above on hyperplanes of Gk(V )
and alternating k-linear forms. However, it can also be proved by the following straightforward
argument, with no recourse to [20]. Actually, in this way we obtain anew the result of [20] for
the special case k = 2.

Given a line L ∈ H of S(H) and a point p 6∈ L, let X = 〈L, p〉; this is a plane of PG(V ).
The set `p,X of all lines of X through p is a line of G2(V ). As H is a hyperplane of G2(V ), either
`p,X ⊂ H or `p,X contains just one element M ∈ H. Thus, p is collinear in S(H) with either all
the points of L or just one of them; hence S(H) is a polar space. Moreover, by definition, S(H)
is embedded in PG(V ) in such a way that all points of PG(V ) are points of S(H). It follows that
S(H) is associated to an alternating bilinear form (see [2, Chapter 9]). ut

Note 1 Although in this paper we are only interested in embeddable Grassmannians, it is worth
mentioning that if G2(V ) were non-embeddable, namely K were a non-commutative division ring
rather than a field, then the above argument would imply that every hyperplane of G2(V ) is
trivial in the sense of Section 3.1 of this paper, namely that it contains precisely those lines of
PG(V ) that meet a given subspace of codimension 2 non-trivially. This fact can be used as the
initial step of an inductive proof that all hyperplanes of a non-embeddable Grassmannian are
trivial, thus proving anew the result of [14].

1.2 The problems studied in this paper

Still under the assumption k = 2 and taking H as above, let R(H) be the radical of the polar
space S(H). Namely, R(H) is the subspace of PG(V ) formed by the points p ∈ PG(V ) such that
all lines of PG(V ) through p belong to H. Clearly, nothing can be said on R(H) in general, except
that R(H) has even codimension in PG(V ), since S(H) is of symplectic type. In particular, when
n is even it can happen that R(H) = ∅ and, when n is odd, R(H) might consist of a single point.

It is natural to ask what are the structures that deserve to be taken as the analogues of R(H)
when k > 2 and investigate what can be said about them in general. So, let k ≥ 2 and let H be
a hyperplane of Gk(V ). Given a subspace X of V of dimension dim(X) < k, let (X)Gk be the
set of k-subspaces of V that contain X. For 1 ≤ i < k let Ri(H) be the set of i-subspaces X of
V such that (X)Gk ⊆ H. As we shall prove later (Proposition 9), the set Ri(H) is a subspace
of Gi(V ). It is natural to regard this subspace as the i-radical of H. However, the programme of
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investigating i-radicals for any i < k is perhaps to broad to be feasible at this stage. Thus, we
shall here consider only Rk−1(H) and R1(H). We put

R↑(H) := Rk−1(H), R↓(H) := R1(H)

and we respectively call them the upper and lower radical of H. When k = 2 the lower and the
upper radical coincide and are equal to the radical R(H) of the polar space S(H). In this case
there is nothing new to say. When k ≥ 3 things become more interesting.

Suppose now k ≥ 3. If we regard H as the set of k-subspaces of V where a given non-trivial
alternating k-linear form α identically vanishes, then R↓(H) is just (the subspace of PG(V )
corresponding to) the radical Rad (α) of α, that is

Rad (α) := {v ∈ V : α(x1, . . . , xk−1, v) = 0, ∀x1, . . . , xk−1 ∈ V }.

Clearly, R↓(H) is a proper subspace of PG(V ) (otherwise α would be trivial). In fact, we shall
prove later (Proposition 10) that R↓(H) has codimension at least k in PG(V ).

The upper radical R↑(H) looks more intriguing than R↓(H). It contains all (k−1)-dimensional
subspaces of V that meet R↓(H) non-trivially, but, in general, it contains far more elements
than just these. Actually, R↑(H) can be quite large even when R↓(H) is small or even empty.
Henceforth we shall focus our attention on R↑(H).

We firstly state a few more definitions which will be useful in view of our investigation of
R↑(H). For a (k − 2)-subspace X of V , the set (X)Gk of k-subspaces of V containing X is a
subspace of Gk(V ). Let (X)Gk be the geometry induced by Gk(V ) on (X)Gk and put (X)H :=
(X)Gk ∩ H. Then (X)Gk

∼= G2(V/X) and either (X)H = (X)Gk or (X)H is a hyperplane of
(X)Gk. In either case, by Proposition 1, the point-line geometry SX(H) = ((X)Gk−1, (X)H) is
a polar space of symplectic type (possibly a trivial one, when (X)H = (X)Gk)). Let RX(H) :=
Rad (SX(H)) be the radical of SX(H). The following is straightforward.

Proposition 2 R↑(H) ∩ (X)Gk−1 = RX(H) for every (k − 2)-subspace X of V .

In other words,
R↑(H) =

⋃
X∈Gk−2(V )

RX(H)

where Gk−2(V ) stands for the set of the (k − 2)-subspaces of V , namely the points of Gk−2(V ).
Recalling that the radical of a polar space of symplectic type always has even codimension in
the underlying projective space, two cases must be distinguished.

1) n− k is even. In this case RX(H) can be empty for some X ∈ Gk−2(V ). If this happens for
all X ∈ Gk−2(V ), then R↑(H) = ∅.

2) n−k is odd. Then RH(X) contains at least one point (a (k−1)-space) for every X ∈ Gk−2(V ).
In this case RX(H) is far from being empty. However, it might happen that RX(H) is a
singleton for every X ∈ Gk−2(V ). If this is the case then we say that R↑(H) is spread-like.
This terminology is motivated by the fact that for k = 3, the set R↑(H) is spread-like if and
only if it is actually a spread of PG(V ), once it is regarded as a set of lines of PG(V ).

We are now ready to state the problems which we shall study in this paper. They are essen-
tially the same as those considered by Draisma and Shaw [10], [11].

Problem 1 Let k ≥ 3 and H a hyperplane of Gk(V ).
(1.1) Let n− k be even. Is it possible that R↑(H) = ∅ for a suitable choice of H?
(1.2) Let n− k be odd. Can it happen that R↑(H) is spread-like?
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Problems (1.1) and (1.2) are somehow mutually related. Indeed, let k < n − 1 be such that
n − k is even and let H be a hyperplane of Gk(V ). Given a hyperplane W of V , let Gk(W ) be
the set of k-subspaces of W . Then H(W ) := H ∩Gk(W ) is a hyperplane of the k-Grassmannian
Gk(W ) of W . (Note that Gk(W ) 6⊆ H, otherwise W ⊆ R↓(H), contradicting the fact that R↓(H)
has codimension at least k in V .) In Section 2.2 we will prove the following.

Proposition 3 With n and k as above, we have R↑(H) = ∅ if and only if R↑(H(W )) is spread-
like for every hyperplane W of V .

We have stated problems (1.1) and (1.2) in the most general form, for any k ≥ 3. However,
it is clear from the definition of R↑(H) that, if we have proved that R↑(H) 6= ∅ for k = 3 and n
odd for any hyperplane H whenever K belongs to a certain class C of fields, then the same holds
for any choice of k and n with k ≥ 3 and n− k even, provided that K ∈ C. Similarly, if we know
that for K ∈ C, k = 3 and n even, the set R↑(H) is never a spread of PG(V ) then, as long as K
is chosen in C, the radical R↑(H) is never spread-like, for any k ≥ 3 with n− k odd. So, we can
replace problems (1.1) and (1.2) with their following special cases.

Problem 2 Let k = 3 and H a hyperplane of G3(V ).
(2.1) Let n be odd. Can it happen that R↑(H) = ∅?
(2.2) Let n be even. Is it possible that R↑(H) is a line-spread of PG(V )?

In the next subsection we shall briefly survey the answers known from the literature to
problems (2.1) and (2.2) and state a few new results of our own, to be proved later in this paper.

1.3 Answers

We keep the notation of the previous subsection. In particular n = dim(V ) and K is the under-
lying field of V . However, throughout this section we assume k = 3 (whence n ≥ 5).

In some of the results to be stated in this subsection the field K will be assumed to have
cohomological dimension at most 1. We recall that, for a prime p, the p-cohomological dimension
of a field K is the p-cohomological dimension of the Galois group of the separable closure of
K. The cohomological dimension of K is the supremum of its p-cohomological dimensions for p
ranging in the set of all primes (Serre [19], Gille and Szamuely [12]). For instance, algebraically
closed fields have cohomological dimension 0 and finite fields have cohomological dimension 1,
while the field R of real numbers has infinite cohomological dimension.

Henceforth we denote the class of fields of cohomological dimension 0 or 1 by the symbol
Cd{0, 1}. In some of the following theorems we assume that K ∈ Cd{0, 1} is perfect. We warn
that non-perfect fields exist that belong to Cd{0, 1} (see Serre [19, II, §3.1], also the example
mentioned at the end of the next paragraph).

We shall also consider quasi-algebraically closed fields. Recall that a field K is said to be
quasi-algebraically closed if every homogeneous equation with coefficients in K, in t unknowns
and of degree d < t always admits non-trivial solutions in Kt. For instance, all finite fields
are quasi-algebraically closed (see [19, II, §3.3]). Quasi-algebraically closed fields form a proper
subclass of Cd{0, 1} (see [19, II, 3.2]). Note also that non-perfect quasi-algebraically closed fields
exist. For instance, a transcendental extension of degree 1 of an algebraically closed field is
quasi-algebraically closed [19, II, §3.3], but in positive characteristic it is non-perfect.

We now turn to problems 2, (2.1) and (2.2). It is not difficult to prove that when n = 5, up
to isomorphism, only two hyperplanes exist in G3(V ) (see Section 3.3, Theorem 18). We have
R↑(H) 6= ∅ in both of these cases. Turning to n = 6, Revoy [18] gives a complete classification of
alternating 3-linear forms. We shall report on it in § 3.3.3. It turns out that a form giving rise
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to a hyperplane H of G3(V ) where R↑(H) is a spread of PG(V ) exists precisely when K is not
quadratically closed (Section 3.3, Theorem 20). To sum up,

Theorem 4 Let n = 5. Then R↑(H) 6= ∅ for any hyperplane H of G3(V ) and any choice of the
underlying field K of V .
Let n = 6. Then a hyperplane H of G3(V ) such that R↑(H) is a spread exists if and only if K is
not quadratically closed.

Note 2 When n = 6 and K is finite, examples where R↑(H) is a spread are also constructed by
Draisma and Shaw [11]. The existence of hyperplanes yielding spreads for n = 6 is also implicit
in the results of De Bruyn [7], §6.6 and §7.4.

Assuming that K is perfect and belongs to Cd{0, 1}, Cohen and Helminck [4] give a complete
classification of alternating 3-linear forms for n = 7. Referring the reader to § 3.3.4 for details,
we only mention here the following byproduct of that classification.

Theorem 5 Let n = 7 and let K be a perfect field in the class Cd{0, 1}. Then R↑(H) 6= ∅ for
every hyperplane H of G3(V ).

Note 3 The hypothesis K ∈ Cd{0, 1} cannot in general be removed from Theorem 5. For in-
stance, as Draisma and Shaw show in [10], [11], when n = 7 and K = R (but any subfield of R
would do the job as well) the Grassmannian G3(V ) admits a hyperplane H with R↑(H) = ∅. This
is related to the exceptional cross product × : V (7,R)×V (7,R) → V (7,R) (see Brown and Gray
[1] or Lounesto [17] for the definition and properties of this product). However, there are also
fields not in the class Cd{0, 1} for which R↑(H) 6= ∅ for any choice of the hyperplane H. Indeed,
it can be seen as a direct consequence of the second claim of Theorem 4 and Proposition 3 that
if K is quadratically closed and n = 7, then R↑(H) 6= ∅.

In Section 4 of this paper, exploiting the classification of Cohen and Helminck [4] we shall
prove the following:

Theorem 6 Let n = 8 and take K to be a perfect field in the class Cd{0, 1}. Assume moreover
that

(∗) every homogeneous equation of degree 3 in 8 unknowns with coefficients in K admits non-trivial
solutions in K8.

Then R↑(H) is never a spread, for any hyperplane H of G3(V ).

Hypothesis (∗) of Theorem 6 holds if either K is quasi-algebraically closed or every polynomial
p(t) ∈ K[t] of degree 3 admits at least one zero in K. Therefore, if n = 8 and K is algebraically
closed then R↑(H) is never a spread. This answers a question raised by Draisma and Shaw in
[11, Remark 9].

The next statement (to be proved in Section 4) is all we can say at the moment about R↑(H)
when n > 9 is even.

Theorem 7 Let K be a finite field and suppose n ≡ 4 (mod 6). Then R↑(H) is never a spread,
for any hyperplane H of G3(V ).

By combining Theorem 6 with Proposition 3 we immediately obtain the following.

Corollary 1 With K as in Theorem 6, let n = 9. Then R↑(H) 6= ∅ for every hyperplane H of
G3(V ).
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By Theorem 7 and Proposition 3 we obtain that, if K is a finite field and n ≡ 5 (mod 6) then
R↑(H) 6= ∅ for every hyperplane H of G3(V ). However this conclusion as well as the conclusion
of Corollary 1 when K is quasi-algebraically closed, are contained in the following theorem of
Draisma and Shaw [10]:

Theorem 8 Let n be odd and assume that K is quasi-algebraically closed. Then R↑(H) 6= ∅ for
every hyperplane H of G3(V ).

Note 4 In their proof of Theorem 8 Draisma and Shaw consider the image R↑(H) := ε2(R
↑(H))

of R↑(H) via the Plücker embedding ε2. The crucial step in their proof is to show that R↑(H)
is an algebraic variety of degree (n− 1)/2− 1 but different proofs can be given in special cases.
For instance, when K is algebraically closed the conclusion R↑(H) 6= ∅ follows from a celebrated
result on linear subspaces disjoint from projective varieties (see Subsection 2.3, Note 7).

Note 5 Relying on Gurevich’s classification of trivectors of an 8-dimensional complex vector space
[13, §35], Djoković [9] has classified trivectors of an 8-dimensional real vector space. Following
Djoković’s classification, if n = 8 and K = R, then R↑(H) cannot be a spread for any hyperplane
H of G3(V ). Consequently, in view of Proposition 3, if n = 9 and K = R then R↑(H) 6= ∅ for every
hyperplane H of G3(V ). However, this conclusion is contained in a stronger result of Draisma
and Shaw [11, Theorem 2], where it is proved that, in contrast with the exceptional behavior of
R when n = 7 (see Note 3), if n is odd, n ≥ 9 and K = R then R↑(H) 6= ∅ for every hyperplane
H of G3(V ).

1.4 More definitions

We shall now state a few more definitions, to be used later in this paper. Still assuming k = 3,
let H be a hyperplane of G3(V ).

1.4.1 The geometry of poles

Recall that the rank rk(X) of a (possibly empty) projective space X is the projective dimension
of X augmented by 1. In particular, rk(∅) = 0. Given a point p of PG(V ), let r(p) be the rank
of the radical Rp(H) of the polar space Sp(H) = ((p)G2, (p)H) (notation as in Section 1.2). We
call r(p) the degree of p (relative to H). If r(p) = 0 then we say that p is smooth, otherwise we
call p a pole of H, also H-pole for short. Clearly, a point is a pole if and only if it belongs to a
line ` ∈ R↑(H) (compare Proposition 2). So, R↑(H) = ∅ if and only if all points are smooth.

As the polar space Sp(H) is symplectic, r(p) is even if n is odd and it is odd if n is even. In
particular, when n is even all the points are poles. In both cases, the poles of degree r(p) = n−1
are just the points of R↓(H).

Let P (H) be the set of H-poles. Then P (H) is the union of the lines of PG(V ) that belong
to R↑(H). We can form a subgeometry P(H) := (P (H), R↑(H)) of PG(V ), by taking P (H) as
the set of points and R↑(H) as the set of lines, a point p ∈ P (H) and a line ` ∈ R↑(H) being
incident in P(H) precisely when p ∈ ` in PG(V ). We call P(H) the geometry of poles of H. We
shall often refer to it in Section 3.

Note 6 We have assumed k = 3 but all the above can be easily rephrased for any k ≥ 3, modulo
a few obvious changes: we should consider (k − 2)-subspaces of V instead of points of PG(V )
when defining poles and take lines `X,Y of Gk−2(H) with Y ∈ R↑(H) as lines of the geometry of
poles. However, we shall not insist on this generalization here.
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1.4.2 The depth of H and the rank of R↑(H)

We define the depth δ(H) of H as the maximum degree r(p), for p ranging in the set of points of
PG(V ). Clearly, δ(H) = 0 if and only if R↑(H) = ∅ and δ(H) = n− 1 if and only if R↓(H) 6= ∅.

We have noted in Section 1.2 that R↑(H) is a subspace of G2(H). So, we can also regard it
as an induced subgeometry of G2(V ), the lines of R↑(H) being the lines of G2(V ) contained in
it. In this way, we can also give R↑(H) a rank, as follows. Recall that a subspace of a point-line
geometry is called singular if all of its points are mutually collinear (Shult [21]). A point-line
geometry is said to be paraprojective if all of its singular subspaces are projective spaces (Shult
[21, chapter 12]). The rank of a paraprojective geometry is the maximal rank of its singular
subspaces.

Grassmannians are paraprojective and subspaces of paraprojective geometries are still para-
projective. Hence R↑(H) is paraprojective. Accordingly, it admits a rank, henceforth denoted by
the symbol rk(R↑(H)). For the sake of completeness, when R↑(H) = ∅ we put rk(R↑(H)) = 0.
It is not difficult to see that δ(H) = rk(R↑(H)), except possibly in the case δ(H) = 1 and
rk(R↑(H)) = 2.

2 Preliminary results

2.1 Notation

For the convenience of the reader, we recall some notation introduced in the previous section.
Let X be a subspace of V of dimension dim(X) = i 6= k. When i > k (possibly i = n) we
denote by Gk(X) and Gk(X) the set of k-spaces contained in X and the k-Grassmannian of X,
respectively. Given a hyperplane H of Gk(V ), we set H(X) := Gk(X) ∩H.

Suppose i < k. Then (X)Gk is the set of k-spaces containing X and (X)Gk (∼= Gk−i(V/X))
is the subgeometry induced by Gk(V ) on (X)Gk. Also, (X)H := H ∩ (X)Gk. When i = k − 2
(as defined in Section 1.2) the symbol SX(H) stands for the polar space with (X)Gk−1 as the
set of points and (X)H as the set of lines. RX(H) is the radical of SX(H).

We shall use square brackets in order to distinguish between a subspace of a vector space
and the corresponding projective subspace in the projective geometry of that vector space. Thus,
if X is a subspace of some vector space then [X] := {〈x〉:x ∈ 〈X〉 \ {0}}. In particular, if v
is a non-zero vector then [v] = 〈v〉 is the projective point represented by v. As usual, we write
[v1, . . . , vk] instead of [〈v1, . . . , vk〉], for short.

2.2 Properties of radicals

In Section 1.2 we have stated several results on radicals, referring the reader to the present section
for the proofs of the less obvious among them. We shall now give those proofs.

Let H be a hyperplane of Gk(V ) and i < k. The i-radical Ri(H) of H, as defined in Section 1.2,
is the set of i-subspaces X ⊂ V such that (X)H = (X)Gk. The following is one of the claims
made in Section 1.2.

Proposition 9 The set Ri(H) is a subspace of Gi(V ).

Proof Let X1 and X2 be distinct elements of Ri(H) belonging to the same line `Y,Z of Gi(H).
For X ∈ lY,Z , let U ∈ (X)Gk. We need only to prove that U ∈ H. If U ⊇ Z then U ∈
(X1)Gk ∩ (X2)Gk. Hence U ∈ H, as X1, X2 ∈ Ri(H).
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Suppose that U 6⊇ Z. Then U ∩Z = X. Let W be a complement of X in U . Then W ∩Z = 0.
Hence N := W + Y and M := W + Z have dimension k − 1 and k + 1 respectively. As clearly
N ⊂M , we can consider the line `N,M of Gk(V ). The spaces U1 := X1 +W and U2 := X2 +W
are points of `N,M . As X1, X2 ∈ Ri(H), both U1 and U2 belong to H. We shall now prove that
U1 6= U2. By way of contradiction, let U1 = U2 =: U ′, say. As both U ′ and Z contain X1 and X2,
we have Z ⊂ U ′. However U ′ also contains W , by construction. As dim(U ′) = k, dim(W ) = k− i
and dim(Z) = i+1, we obtain that Z∩W 6= 0, while we have previously proved that Z∩W = 0.
This contradiction forces U1 6= U2. Thus `N,M contains two distinct members of H, namely U1

and U2. Hence `N,M ⊆ H, as H is a hyperplane. In particular, U ∈ H. ut

The following has also been mentioned in Section 1.2.
Proposition 10 The lower radical R↓(H) of H has codimension at least k in PG(V ).

Proof If the codimension of R↓(H) is smaller than k, then every k-subspace of V meets R↓(H)
non-trivially, thus forcing H to be the full point-set of Gk(V ), while H is, by definition, a proper
subspace of Gk(V ). ut

Proposition 3 of Section 1.2 remains to be proved. We recall its statement here, for the
convenience of the reader.
Proposition 11 Let H be a hyperplane of Gk(V ) with 3 ≤ k < n−1. Assume that n−k is even.
Then R↑(H) = ∅ if and only if R↑(H(W )) is spread-like for every hyperplane W of V .

Proof Let X ∈ Gk−2(W ) be such that RX(H(W )) contains a line ` of SX(H(W )). (Actually, if
it contains a line then it must contain also a plane, but we shall not make use of this fact here.)
The polar space SX(H(W )) is the subgeometry of SX(H) induced on the hyperplane W/X of
V/X. Therefore the line ` ⊂ SX(H(W )) contains at least one point collinear in SX(H) with all
points of SX(H), namely a point of RX(H). Hence RX(H) 6= ∅. By Proposition 2, R↑(H) 6= ∅.
The ‘only if’ part of the statement is proved.

Turning to the ‘if’ part, assume R↑(H) 6= ∅. Then RX(H) 6= ∅ for some X ∈ Gk−2(V ).
However, the projective space RX(H) has even rank, since n − k is even. Therefore RX(H)
contains a line ` of PG(V/X). LetW be a hyperplane of V containingX and such that [W/X] ⊇ `.
Clearly, RX(H(W )) ⊇ `. Hence R↑(H(W )) is not spread-like. ut

2.3 An algebraic description of the upper radical R↑(H)

As above, let 3 ≤ k < n = dim(V ). Given a linear functional f :
∧k

V → K, let f̃ be the linear
mapping from

∧k−1
V to the dual V ∗ of V defined as follows:

f̃ : v1 ∧ · · · ∧ vk−1 ∈ ∧k−1V 7→ f̃(v1 ∧ · · · ∧ vk−1) ∈ V ∗

f̃(v1 ∧ · · · ∧ vk−1) : x ∈ V 7→ f(v1 ∧ · · · ∧ vk−1 ∧ x).
(1)

Clearly,

dim(ker(f̃)) ≥ dim

k−1∧
V − dimV ∗ =

(
n

k − 1

)
− n. (2)

Note that above f is not assumed to be non-null. Clearly, if f is the null functional then f̃ is
null as well.

As recalled in Section 1.1, for every hyperplane H of Gk(V ) there exists a non-null linear
functional fH :

∧k
V → K such that H = ε−1

k (ker(fH) ∩ Gk(V )). With f̃H :
∧k−1

V → V ∗

defined as in (1), put K(H) := ker(f̃H). We call K(H) the kernel of H.
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The kernel K(H) is strictly related to the upper radical R↑(H) of H, as we shall presently
see. Indeed, a point [v1 ∧ v2 ∧ · · · ∧ vk−1] ∈ Gk−1(V ) belongs to [K(H)] if and only if f̃H(v1 ∧
v2 ∧ · · · ∧ vk−1) is the null linear functional. This is equivalent to say that 〈v1, . . . , vk−1, x〉 ∈ H
for any x ∈ V \ 〈v1, . . . , vk−1〉. Thus,

[K(H)] ∩Gk−1(V ) = R↑(H) (= εk(R
↑(H))). (3)

This equation also proves that R↑(H) is always an algebraic variety.
Take X ∈ Gk−2(V ) and let ξ be a vector representative of the point εk−2(X) ∈ PG(

∧k−2
V ).

Up to nonzero scalar multiples, the following alternating bilinear form fH,X defines SX(H) as a
polar space embedded in PG(V/X):

fH,X :

{
V/X × V/X → K,
(X + u,X + v) → fH(ξ ∧ u ∧ v).

(4)

Henceforth, when writing fH,X(〈X,u〉, 〈X, v〉) = 0 we shall mean that fH,X(X + u,X + v) = 0.
Given a subspace W of V of dimension dim(W ) > k, let fH|W be the restriction of fH to∧k
W . Recall that H(W ) = H∩Gk(W ) is either a hyperplane of Gk(W ) or the whole set Gk(W ).

In the first case the hyperplane H(W ) is defined by fH|W and, with f̃H|W defined as in (1), the
kernel of f̃H|W is the kernel K(H(W )) of H(W ). In the second case, H(W ) = Gk(W ) and fH|W ,
as well as f̃H|W , are null; consequently, K(H(W )) =

∧k−1
W .

In any case, K(H) ∩
∧k−1

W ⊆ K(H(W )). Note that in general this inclusion is proper.

Note 7 When K is algebraically closed, every subspace of PG(
∧k−1

V ) of codimension at most
(k − 1)(n− k + 1) meets Gk−1(V ) non-trivially, see [15, Proposition 11.4]. As cod([K(H)]) ≤ n
by (2), we have [K(H)] ∩Gk−1 6= ∅. Hence R↑(H) 6= ∅, as claimed in Theorem 8.

We warn that the above argument does not work for arbitrary fields. For instance, if K is
finite, then PG(

∧k−1
V ) admits subspaces of codimension n disjoint from Gk−1(V ), see [5].

2.4 A result for k = 3

This subsection is devoted to the proof of a statement (see below, Proposition 12) which will be
exploited several times in Section 3.

Assuming k = 3, let H be a hyperplane of G3(V ). As in the previous subsection, fH ∈ (
∧3

V )∗

defines H, the linear mapping f̃H :
∧2

V → V ∗ is given as in (1) and K(H) = ker(f̃H) is the
kernel of H. For every subspace W of V of dimension dim(W ) > 3, if H(W ) 6= G3(W ) then
K(H(W )) is the kernel of H(W ), otherwise K(H(W )) =

∧2
W . According to (4), given a point

〈v〉 ∈ G1(V ), we can regard S〈v〉(H) as the polar space associated to the following bilinear
alternating form fH,〈v〉 : V/〈v〉 × V/〈v〉 → K:

fH,〈v〉(〈v〉+ x, 〈v〉+ y) = fH(v ∧ x ∧ y) (= f̃H(x ∧ y)(v)). (5)

As in Subsection 1.4.2, we denote by δ(H) the depth of H. Recall that n = dim(V ).

Lemma 1 Let t be a non-negative integer, t ≤ (n − 2)/2. Then either δ(H) ≥ n − 1 − 2t or
dim(

∧2
W/K(H(W ))) = n− t for every subspace W of V with dim(W ) = n− t.
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Proof Suppose that for someW < V with dim(W ) = n−t we have dim(
∧2

W/K(H(W ))) < n−t,
namely the mapping f̃H|W :

∧2
W →W ∗ is not surjective. Then the image T := imf̃H|W of f̃H|W

is contained in a hyperplane U of W ∗. In particular, there exists w ∈ W \ {0} such that for all
u∗ ∈ U , and thus for all u∗ ∈ T , we have u∗(w) = 0. Hence fH|W (x∧y∧w) = f̃H|W (x∧y)(w) = 0

for all x, y ∈W , since f̃H|W (x∧ y) ∈ T. Therefore fH(x∧ y∧w) = 0 for all x, y ∈W , since fH|W

is just the restriction of fH to
∧3

W . Equivalently (compare (5)),

fH,〈w〉(〈w〉+ x, 〈w〉+ y) = 0, ∀x, y ∈W. (6)

Put p := 〈w〉. In view of (6), the projective space [W/p] is a totally isotropic subspace of the
polar space Sp(H) (i.e. a singular subspace in the sense of [21]). As dim(W/p) = n − t − 1, the
projective space [W/p] has rank rk[W/p] = n− t− 1.

Recall that the degree r(p) of p is the rank of the radical Rp(H) of Sp(H). Since Sp(H) is
a polar space of symplectic type embedded in V/p and dim(V/p) = n − 1, a maximal singular
subspace of Sp(H) has rank equal to (n − 1 + r(p))/2. However, [W/p] is totally isotropic and
rk[W/p] = n − t − 1. Therefore (n − 1 + r(p))/2 ≥ n − t − 1. It follows that r(p) ≥ n − 2t − 1.
Consequently, δ(H) ≥ n− 2t− 1. ut

Proposition 12 Let t be a non-negative integer, t ≤ (n− 2)/2. Then either δ(H) ≥ n− 1− 2t
or dim(K(H(W ))/(K(H) ∩K(H(W )))) ≤ t for any (n− t)-dimensional subspace W of V .

Proof Suppose δ(H) < n − 1 − 2t. By Lemma 1, for any W ≤ V with dimW = n − t we have
dimK(H(W ))) =

(
n−t
2

)
− n+ t. By Grassmann’s formula and (2),

dim(K(H) ∩
∧2

W ) ≥ dimK(H) + dim
∧2

W − dim
∧2

V ≥(
n

2

)
− n+

(
n− t

2

)
−
(
n

2

)
=

(
n− t

2

)
− n.

Since K(H) ∩
∧2

W ⊆ K(H(W )) ⊆
∧2

W , we have K(H) ∩K(H(W )) = K(H) ∩
∧2

W . Hence
dim(K(H) ∩ K(H(W ))) = dim(K(H) ∩

∧2
W ) ≥

(
n−t
2

)
− n. The result now follows from the

equality dimK(H(W )) =
(
n−t
2

)
− n+ t. ut

3 Constructions and classifications

In the first part of this section (Subsections 3.1 and 3.2) we shall describe two ways to construct
hyperplanes of Gk(V ) that work for any choice of n = dim(V ) and k < n. In the second part,
we turn our attention to the cases k = 3 and 5 ≤ n ≤ 7, giving a survey of what is presently
known on hyperplanes of G3(V ) for these values of n. In particular, when n = 5 only two types
of hyperplanes exist. A complete classification is also available for n = 6 while for n = 7 a
classification is known only under the assumption that the underlying field K of V is perfect and
belongs to the class Cd{0, 1} of fields of cohomological dimension at most 1.

3.1 Trivial extensions, trivial hyperplanes and lower radicals

Let V = V0 ⊕ V1 be a decomposition of V as the direct sum of two non-trivial subspaces V0 and
V1. Put n0 := dim(V0) and assume that n0 ≥ k (≥ 3). Let ϕ0 : V0×· · ·×V0 → K be a non-trivial
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k-linear alternating form on V0. The form ϕ0 can naturally be extended to a k-linear alternating
form ϕ of V by setting

ϕ(x1, . . . , xk) = 0 if xi ∈ V1 for some 1 ≤ i ≤ k,
ϕ(x1, . . . , xk) = ϕ0(x1, . . . , xk) if xi ∈ V0 for all 1 ≤ i ≤ k,

}
(7)

and then extending by linearity. Let Hϕ be the hyperplane of Gk(V ) defined by ϕ. The following
is straightforward.

Theorem 13 Assuming that k < n0, let H0 be the hyperplane of Gk(V0) defined by ϕ0. Let also
π : V → V0 be the projection of V onto V0 along V1. Then

Hϕ = {X ∈ Gk(V ) : either X ∩ V1 6= 0 or π(X) ∈ H0}.

The properties gathered in the next corollary immediately follow from Theorem 13.

Corollary 2 Let k < n0. Then all the following properties hold:

(1) R↓(Hϕ) = 〈R↓(H0) ∪ [V1]〉 where the span in taken in PG(V ).
(2) R↑(Hϕ) = {X ∈ Gk−1(V ) : either X ∩ V1 6= 0 or π(X) ∈ R↑(H0)}.
(3) For X ∈ Gk−2(V ), if X ∩ V1 6= 0 then RX(Hϕ) = [V/X] (namely SX(Hϕ) is trivial),

otherwise RX(Hϕ) has the same rank as the span of Rπ(X)(H0) ∪ [(V1 + π(X))/π(X)] in
PG(V/π(X)).

Note 8 When k = 3, claim (3) of Corollary 2 can be rephrased as follows: the points p 6∈ [V1]
have degree r(p) = r0(π(p)) + n − n0, where r0(π(p)) is the degree of π(p) with respect to H0.
The points p ∈ [V1] have degree n− 1.

We call Hϕ the trivial extension of H0 centered at V1 (also extension of H0 by V1, for short)
and we denote it by the symbol H0 � V1. When convenient, we shall take the liberty of writing
H0 � [V1] instead of H0 � V1, referring to the projective space [V1] instead of V1.

In Theorem 13 and Corollary 2 we have assumed k < n0 in order to introduce the hyperplane
H0 associated to ϕ0, but the case k = n0 can also be dealt with, modulo some conventions. Let
k = n0; then ϕ0(x1, . . . , xk) = 0 if and only if the vectors x1, . . . , xk are linearly dependent. We
can still give H0 a meaning, stating that in this case H0 = ∅. We can also stress the terminology
stated in the introduction of this paper, putting Gk(V0) = {V0} and regarding ∅ as the unique
hyperplane of {V0}. Accordingly, R↓(H0) = R↑(H0) = ∅. Also SX(H0) = Gk−1(X) (just a set
of points, with no lines) and RX(H0) = ∅ for every X ∈ Gk−2(V0). With these conventions,
Theorem 13 and Corollary 2 remain valid, word by word. Thus, we feel we are allowed to denote
Hϕ by the symbol H0 � V1 and call it the trivial extension of H0 by V1 even in the case k = n0.
However, it will be convenient to have also a different name and a different symbol for this
situation: when k = n0 (namely H0 = ∅) we shall call H0 � V1 the trivial hyperplane centered at
V1 (or at [V1], if we prefer so).

When H0�V1 is trivial in the above sense, Theorem 13 and Corollary 2 can also be rephrased
as follows, with no mentioning of H0.

Proposition 14 Let H be the trivial hyperplane of Gk(V ) centered at V1. Then

H = {X ∈ Gk(V ) : X ∩ V1 6= 0}.

Moreover, R↓(H) = [V1], R↑(H) = {X ∈ Gk−1(V ) : X ∩ V1 6= 0} and, for X ∈ Gk−2(V ), if
X ∩ V1 6= 0 then RX(H) = [V/X], otherwise RX(H) = [(V1 +X)/X].
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By the previous results, the lower radical of a trivial extension is never empty. The converse
is also true: if R↓(H) 6= ∅ then H is a trivial extension, possibly a trivial hyperplane.

Indeed, let H be a hyperplane of Gk(V ) and let ϕ be a k-linear alternating form on V defining
H. Let R := Rad (ϕ) be the radical of ϕ. Then R↓(H) = [R], as noticed in Section 1.2. Let S be a
complement of R in V and ϕS the form induced by ϕ on S. If ϕS is trivial, then ϕ will be trivial
as well, as R = Rad (ϕ). However ϕ is not trivial, since it defines a hyperplane. Hence, ϕS is
non-trivial. Put nS := dim(S). By Proposition 10, the subspace R↓(H) has codimension at least
k in PG(V ). Equivalently, cod(R) ≥ k. Hence, nS ≥ k. If nS > k, then H(S) = Gk(S)∩H is the
hyperplane of Gk(S) associated to the non-trivial form ϕS . If nS = k, then we put H(S) := ∅.

Theorem 15 Suppose R↓(H) 6= ∅ and let S be a complement in V of the subspace R < V such
that [R] = R↓(H). Then H = H(S)�R↓(H). Moreover, R↓(H(S)) = ∅.

Proof By assumption, R 6= 0. The form ϕ satisfies conditions (7) with ϕS and R in the roles of ϕ0

and V1 respectively. Hence ϕ is the extension of ϕS as defined by those conditions. Consequently,
H is the trivial extension of H(S) by R↓(H). When nS > k the equality R↓(H(S)) = ∅ follows
from (1) of Corollary 2 and the fact that H(S)�R↓(H) = H. When nS = k, then R↓(H(S)) = ∅
by definition. ut

Corollary 3 With R as in the hypotheses of Theorem 15, let S and S′ be two complements of
R in V . Then H(S) ∼= H(S′).

Proof H(S)�R↓(H) = H(S′)�R↓(H) = H by Theorem 15. The projection of V onto S′ along
R induces on S an isomorphism πS : S

∼=→ S′. By Theorem 13, πS maps H(S) onto H(S′). ut

Corollary 4 A hyperplane H of Gk(V ) is trivial if and only if cod(R↓(H)) = k.

Proof This immediately follows from Theorem 15. ut

3.2 Expansions and symplectic hyperplanes

Let V0 be a hyperplane of V and H0 a given hyperplane of Gk−1(V0). As usual, assume k ≥ 3;
hence V has dimension n ≥ 4. Put:

E(H0) := {X ∈ Gk(V ) : either X ⊂ V0 or X ∩ V0 ∈ H0}.

Theorem 16 The set E(H0) is a hyperplane of Gk(V ). Moreover:
(1) R↓(E(H0)) = R↓(H0).
(2) R↑(E(H0)) = H0 ∪ {X ∈ Gk−1(V ) \Gk−1(V0) : X ∩ V0 ∈ R↑(H0)}.
(3) For X ∈ Gk−2(V ), if X ⊆ V0 with X ∈ R↑(H0) then RX(E(H0)) = SX(E(H0)) = (X)Gk−1

(the latter being computed in V ). If X ⊆ V0 but X 6∈ R↑(H0) then RX(E(H0)) = (X)H0 (a
subspace of PG(V0/X)). Finally, if X 6⊆ V0, then RX(E(H0)) = {〈x, Y 〉 : Y ∈ RX∩V0(H0)}
for a given x ∈ X \ V0, no matter which.

Proof We only prove that E(H0) is a hyperplane of Gk(V ). The proofs of claims (1), (2) and (3)
are straightforward. We leave them to the reader.

Let `Y,Z be a line of Gk(V ). If Z ⊆ V0 then `Y,Z ⊆ E(H0), by definition of E(H0). Let Z 6⊆ V0
but Y ⊆ V0. Then Z∩V0 ⊃ Y . In this case either `Y,Z ⊆ E(H0) or `Y,Z∩E(H0) = {Y } according
to whether Y ∈ H0 or not. Finally, let Y 6⊆ V0. Then `Y ∩V0,Z∩V0 is a line of Gk−1(V0) and, given
y ∈ Y \ V0, we have `Y,Z = {〈y,X〉 : X ∈ `Y ∩V0,Z∩V0}. Consequently, either `Y,Z ⊆ E(H0)
or `Y,Z ∩ E(H0) is a singleton, according to whether `Y ∩V0,Z∩V0

⊆ H0 or `Y ∩V0,Z∩V0
∩H0 is a

singleton. In any case, either `Y,Z is fully contained in E(H0) or it meets E(H0) in one single
point. Thus, E(H0) is a hyperplane of Gk(V ). ut
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We call E(H0) the expansion of H0. A form f :
∧k

V → K associated to E(H0) can be
constructed as follows. Suppose f0 :

∧k−1
V0 → K defines H0. Given a basis {e1, . . . , en} of V in

such a way that 〈e1, . . . , en−1〉 = V0, consider the canonical basis {ei1 ∧ · · · ∧ eik : 1 ≤ i1 < . . . <

ik ≤ n} of
∧k

V . Put

f(ei1 ∧ · · · ∧ eik) =
{
0 if ik < n,
f0(ei1 ∧ · · · ∧ eik−1

) if ik = n.
(8)

and extend it by linearity. It is not difficult to check that f indeed defines E(H0).

3.2.1 Expansions and trivial extensions

The next corollary immediately follows from (1) of Theorem 16.
Corollary 5 We have R↓(E(H0)) = ∅ if and only if R↓(H0) = ∅.
Hence, according to Theorem 15, if R↓(H0) 6= ∅ then E(H0) is a trivial extension. Explicitly,
let R0 be the subspace of V0 corresponding to R↓(H0). Assume that R0 6= 0 and let S0 be a
complement of R0 in V0. Let S be a complement of R0 in V containing S0. In order to avoid
annoying complications, assume that dim(S0) > k − 1. It is easy to check that the hyperplane
induced by E(H0) on S is just the expansion E(H0(S)) (from S0 to S) of the hyperplane H0(S0)
induced by H0 on S0. Hence Theorem 15 and claim (1) of Theorem 16 yield the following:
Corollary 6 Under the previous assumptions, E(H0) = E(H0(S0))�R↓(H0).

In the above we have assumed that dim(S0) > k − 1, namely H0 is non-trivial. With some
additional conventions, we can interpret the statement of Corollary 6 so that it also holds when
H0 is trivial. However, there is no need to stress definitions this much. When H0 is trivial we
have the following simple statement.
Corollary 7 If H0 is trivial then E(H0) is also trivial, with R↓(H0) as its center.
Proof Let H0 be trivial. Then R↓(E(H0)) has codimension k in PG(V ), since R↓(E(H0)) =
R↓(H0) and the latter has codimension k− 1 in V0. The conclusion follows from Corollary 4 and
Proposition 14. ut

3.2.2 Symplectic hyperplanes

Assume now k = 3. According to Proposition 1, the point-line geometry S(H0) = (G1(V0),H0)
is a polar space of symplectic type. The upper and lower radical of H0 are mutually equal and
coincide with the radical R(H0) of S(H0).

Suppose firstly that R(H0) = ∅, namely S(H0) is non-degenerate. Then n−1 is even, whence
n ≥ 5. Claims (1) and (2) of Theorem 16 imply the following:
Proposition 17 R↓(E(H0)) = ∅ and R↑(E(H0)) = H0.

Let P(E(H0)) be the geometry of poles of E(H0) (see Section 1.4.1). The next corollary
immediately follows from Proposition 17:
Corollary 8 P(E(H0)) = S(H0).
In particular, the points of [V ] \ [V0] are smooth while those of [V0] are poles (of degree 1).
Motivated by Corollary 8, when R(H0) = ∅ we call E(H0) a symplectic hyperplane.

Assume now that R(H0) 6= ∅. Then R↓(E(H0)) 6= ∅, since R↓(E(H0)) = R(H0) (by case (1)
of Theorem 16). Corollaries 6 and 7 now imply that E(H0) is either a trivial extension of a
symplectic hyperplane by R(H0) (when rk(R(H0)) < n − 3) or a trivial hyperplane centered at
R(H0) (when rk(R(H0)) = n− 3).
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3.3 Low dimensional cases

In this subsection we survey what is known on hyperplanes of G3(V ) when V has dimension
n ≤ 7. When n = 4 the hyperplanes of G3(V ) are just the hyperplanes of PG(V ). The case
n = 5 is dealt with in § 3.3.1 while §§ 3.3.3 and 3.3.4 are respectively devoted to the cases n = 6
and n = 7. In § 3.3.2 we fix some notation for k-linear alternating forms, to be used in §§ 3.3.3
and 3.3.4.

In the sequel we shall refer to isomorphism classes of hyperplanes. Actually, we have already
used the notion of isomorphism before (in Corollary 3, for instance) without referring to an
explicit definition, but this becomes now necessary. We say that two hyperplanes H and H ′

of Gk(V ) are isomorphic, and we write H ∼= H ′, when H ′ = g(H) := {g(X)}X∈H for some
g ∈ GL(V ). Recall that two k-linear alternating forms ϕ and ϕ′ on V are said to be equivalent
when

ϕ′(x1, . . . , xk) = ϕ(g(x1), . . . , g(xk)), ∀x1, . . . , xk ∈ V

for some g ∈ GL(V ). Accordingly, if H and H ′ are the hyperplanes associated to ϕ and ϕ′, we
have H ∼= H ′ if and only if ϕ′ is proportional to a form equivalent to ϕ. Note that if ϕ′ = λ · ϕ
for a scalar λ 6= 0 then ϕ and ϕ′ are equivalent if and only if λ is a k-th power in K.

We say that two forms ϕ and ϕ′ are nearly equivalent, and we write ϕ ∼ ϕ′, when each of
them is equivalent to a non-zero scalar multiple of the other. With this notation, we can concisely
rephrase the above definition as follows: H ∼= H ′ if and only if ϕ ∼ ϕ′.

We extend the above terminology to linear functionals of
∧k

V , saying that two linear func-
tionals f, f ′ ∈ (

∧k
V )∗ are nearly equivalent and writing f ∼ f ′ when their corresponding

k-alternating forms are nearly equivalent.

3.3.1 Case n = 5

Theorem 18 Let n = 5. Then up to isomorphism, only two hyperplanes exist in G3(V ), namely
the symplectic hyperplane and the trivial one.

Proof This result can be drawn out of the classification of [18], but it can also be proved by the
following elementary argument.

Trivial hyperplanes exist in any k-Grassmannian while symplectic hyperplanes exist in any
3-Grassmannian G3(V ) provided that n = dim(V ) is odd and at least 5. As n = 5 by assumption,
G3(V ) admits both trivial and symplectic hyperplanes. In order to see that these two families
form two isomorphism classes and no more hyperplanes exist in G3(V ), we consider G2(V

∗). Any
hyperplane H of G3(V ) appears also as a hyperplane H∗ of G2(V

∗). According to Proposition 1,
H∗ is the line-set of a polar space S(H∗) of symplectic type embedded in PG(V ∗). As dim(V ∗) =
5, up to isomorphism, only two possibilities exist for S(H∗), according as its radical has rank 1
or 3. Therefore, only two isomorphism classes of hyperplanes exist in G3(V ). ut

Corollary 9 Let n = 5. Then R↑(H) 6= ∅ for every hyperplane H of G3(V ).

Proof Indeed, R↑(H) 6= ∅ both when H is trivial and when H is of symplectic type. ut

Of course, far more of what we have put in Corollary 9 can be said. As remarked in the
proof of Theorem 18, the radical R(H∗) of the polar space S(H∗) has rank either 1 or 3. When
rk(R(H∗)) = 3 then H is trivial while if rk(R(H∗)) = 1 then H is symplectic. In the first case
R↓(H) is a line of PG(V ) and R↑(H) is the set of lines of PG(V ) that meet the line R↓(H)
non-trivially. R↓(H) corresponds to R(H∗).
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Suppose rk(R(H∗)) = 1; then H is of symplectic type. Accordingly, the geometry P(H) of
poles of H is isomorphic to the generalized quadrangle W(3,K) associated to a non-degenerate
alternating bilinear form of V (4,K). This can also be seen in a more direct way as follows. In the
case under consideration R(H∗), being a point of PG(V ∗), corresponds to a hyperplane V0 of V .
The corresponding hyperplane [V0] of PG(V ) is the set of poles of H, namely the point-set of the
generalized quadrangle P(H). The latter is naturally isomorphic to the quotient S(H∗)/R(H∗)
(∼= W(3,K)).

As P(H) ∼= W(3,K) and dim(V0) = 4, for every point p ∈ [V0] the lines of P(H) through p
(namely the members of R↑(H) containing p) span a plane Sp of [V0]. Hence they form a line
`p,Sp

of G3(V ). These are precisely the lines of the geometry R↑(H) induced by G2(V ) on R↑(H).
It is now clear that R↑(H) is isomorphic to the dual of P(H). In short, R↑(H) ∼= Q(4,K), the
generalized quadrangle associated to a non-singular quadratic form of V (5,K).

3.3.2 Notation for linear functionals of
∧3

V

Given a non-trivial linear functional h ∈ (
∧3

V )∗, let χ and Hh be respectively the alternating
3-linear form and the hyperplane of G3(V ) associated to it. Recall that R↓(Hh) = [Rad (χ)] (see
Section 1.1). We put rk(h) := codV (Rad (χ)) and we call this number the rank of h. Clearly,
functionals of different rank can never be nearly equivalent. By Proposition 10 we know that
rk(h) ≥ 3.

Proposition 19 rk(h) 6= 4.

Proof By way of contradiction, suppose rk(h) = 4. Then by Theorem 15, the hyperplane Hh

is a trivial extension H = H0 � Rad (χ) for a complement V0 of Rad (χ) in V and a suitable
hyperplane H0 ∈ G3(V0) with R↓(H0) = ∅. However, dim(V0) = rk(h) = 4. Hence H0 = (p)G3

for a point p ∈ PG(V0). Consequently, R↓(H0) = {p}, while we said above that R↓(H0) = ∅. ut

Fix a basis E := (ei)
n
i=1 of V . The dual basis of E in V ∗ is E∗ := (ei)ni=1, where ei ∈ V ∗ is the

linear functional such that ei(ej) = δi,j (Kronecker symbol). The set (ei ∧ ej ∧ ek)1≤i<j<k≤n is
the basis of (

∧3
V )∗ dual of the basis (ei∧ej∧ek)1≤i<j<k≤n of

∧3
V canonically associated to E.

We shall adopt the convention of writing ijk for ei ∧ ej ∧ ek, thus representing linear functionals
of

∧3
V as linear combinations of symbols as ijk.

In Table 1 we list a number of possible types of linear functionals of
∧3

V of rank at most 7,
called T1, . . . , T9 and T

(1)
10,λ, T (2)

10,λ, T (1)
11,λ and T

(2)
11,λ, where λ is a scalar subject to the conditions

specified in the table. Note that description of each of these types makes sense for any n, provided
that n is not smaller than the rank of (a linear functional admitting) that description. Also,
according to the clauses assumed on λ, types T (r)

s,λ (r = {1, 2}, s = {10, 11}) are considered only
when K is not quadratically closed. Moreover, when λ 6= λ′ the types T (r)

s,λ and T (r)
s,λ′ are regarded

as different in principle, even if it turned out that they describe nearly equivalent forms.
If T is one of the types of Table 1, we say that h ∈ (

∧3
V )∗ is of type T if h is nearly

equivalent to the linear functional described at row T of Table 1. The type of Hh is the type
of h. Clearly, functionals of the same type are nearly equivalent. It follows from Revoy [18] and
Cohen and Helminck [4] that two functionals of types Ti and Tj with 1 ≤ i < j ≤ 9 are never
nearly equivalent; a functional of type Ti with i ≤ 9 is never nearly equivalent to a functional of
type T (r)

s,λ ; two functionals of type T (r)
s,λ and T (r′)

s′,λ′ with (r, s) 6= (r′, s′) are never nearly equivalent
while two functionals of type T (r)

s,λ and T
(r)
s,λ′ are nearly equivalent if and only if, denoted by µ

and µ′ a root of pλ(t) and pλ′(t) respectively in the algebraic closure of K, we have K(µ) = K(µ′)
(see the fourth column of Table 1 for the definition of pλ(t)).
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Type Description Rank Special conditions, if any

T1 123 3
T2 123 + 145 5
T3 123 + 456 6
T4 162 + 243 + 135 6
T5 123 + 456 + 147 7
T6 152 + 174 + 163 + 243 7
T7 146 + 157 + 245 + 367 7
T8 123 + 145 + 167 7
T9 123 + 456 + 147 + 257 + 367 7

T
(1)
10,λ 123 + λ(156 + 345 + 426) 6 pλ(t) := t2 − λ irreducible in K[t].

T
(2)
10,λ 126 + 153 + 234+

(λ2 + 1)456 + λ(156 + 345 + 426)
6 char(K) = 2 and

pλ(t) := t2 + λt+ 1 irreducible in K[t].

T
(1)
11,λ [the same as at T

(1)
10,λ] + 147 7 same conditions as for T

(1)
10,λ

T
(2)
11,λ [the same as at T

(2)
10,λ] + 147 7 same conditions as for T

(2)
10,λ

Table 1 Types for linear functionals of
∧3 V

3.3.3 Case n = 6

Revoy [18] has classified equivalence classes of 6-dimensional trivectors. In view of his classifi-
cation, when dim(V ) = 6 every non-trivial linear functional h ∈ (

∧3
V )∗ belongs to one of the

types T1, T2, T3, T4, T (1)
10,λ or T (2)

10,λ of Table 1; we remark that the latter two types might comprise
several inequivalent cases. Furthermore, in these two cases, with pλ(t) as in Table 1, let µ be a
root of pλ(t) in the algebraic closure of K, let K′ := K(µ) be the quadratic extension of K by
µ and V ′ := K′ ⊗K V . If h has type T (1)

10,λ then, regarded as a linear functional of
∧3

V ′, it has
type T3 or T4 according to whether char(K) 6= 2 or char(K) = 2. If h has type T (2)

10,λ (whence
char(K) = 2) then it has type T3 when regarded as a linear functional of

∧3
V ′. In other words,

if we replace V with V ′ then T
(r)
10,λ disappears, absorbed by T3 or T4, although

∧3
V ′ can still

admit linear functionals of type T (r)
10,λ′ , but with λ′ ∈ K′ necessarily different from the scalar λ

previously chosen in K.
The next theorem is a recapitulation of the above, with some additional information on Hh. In

the first two cases, the hyperplane Hh is easy to describe: it is either trivial or a trivial extension
of a symplectic hyperplane. In each of the remaining three cases, being currently unable to offer
a nice geometric description of H, we only provide a description of the upper radical.

Theorem 20 With dim(V ) = 6, let h be a non-trivial linear functional of
∧3

V , let χ be the
alternating 3-linear form associated to h and H := Hh be the hyperplane of G3(V ) defined by h.
Then one of the following occurs.

1. h has type T1 (rank 3). In this case H is the trivial hyperplane centered at Rad (χ). Its upper
radical is the set of 2-subspaces of V that meet Rad (χ) non-trivially.

2. h has type T2 (rank 5), namely Rad (χ) is 1-dimensional. In this case H is a trivial extension
H = E(H0)�Rad (χ) of a symplectic hyperplane E(H0), constructed in a complement V ′ of
Rad (χ) in V starting from the line-set H0 of a symplectic generalized quadrangle living in a
hyperplane of V ′. The elements of R↑(H) are the lines of PG(V ) that either belong to H0 or
pass through the point [Rad (χ)] = R↓(H).
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3. h has type T3 (rank 6). Then R↑(H) = {〈x, y〉:x ∈ V1 \ {0}, y ∈ V2 \ {0}} for a suitable
decomposition V = V1 ⊕ V2 with dim(V1) = dim(V2) = 3.

4. h has type T4 (rank 6). Then R↑(H) = {〈x+y, ω(x)〉:x ∈ V1\{0}, y ∈ V2} for a decomposition
V = V1 ⊕ V2 with dim(V1) = dim(V2) = 3 and ω an isomorphism from V1 to V2.

5. h has type T (1)
10,λ or T (2)

10,λ (rank 6). Then R↑(H) is a Desarguesian line spread of PG(V ).

Proof In view of [18], only the claims on H need to be proved. When h has rank 3 then H
is a trivial hyperplane by Corollary 4 (recall that R↓(H) = [Rad (χ)]). Proposition 14 yields a
description of its upper radical. Let h have rank 5. Then by Theorem 15 we haveH = H ′�Rad (χ)
for a hyperplane H ′ of G3(V

′) and a suitable complement V ′ of Rad (χ) in V . Moreover R↓(H
′) =

∅. Comparing with the results of Theorem 18 we see that H ′ is a symplectic hyperplane, namely
H ′ = E(H0) with H0 as claimed. The description of R↑(H) follows by claim (2) of Corollary 2
and what we know of H ′.

In the remaining cases h has full rank, namely R↓(H) = ∅. The information on R↑(H) can
be obtained by computing the kernel of h̃, where h̃ is defined as (1) of Subsection 2.3. Indeed
R↑(H) = ε−1

2 (ker(h̃)∩G2(V )) by (3) of Subsection 2.3. We refer the reader to [3] for the details
of those computations and more information on H. ut

3.3.4 Case n = 7 with K a perfect field of cohomological dimension at most 1

Cohen and Helminck [4] have classified linear functionals of
∧3

V for n = 7 under the hypothesis
that K belongs to Cd{0, 1} and is a perfect field, proving that any such linear functional, if
non-trivial, belongs to one of types listed in Table 1 or is a scalar multiple of T9. Of course, as K
is perfect by assumption, types T (1)

10,λ and T (1)
11,λ now exist independently only when char(K) 6= 2.

Throughout this subsection n = 7. As in the previous two subsections, h is a non-trivial
linear functional of

∧3
V and H := Hh is the hyperplane of G3(V ) defined by h. For the moment

we do not make any assumption on K, although the hypotheses of Theorem 21 are tailored
on the classification of Cohen and Helminck [4]. We will turn back to the hypotheses of [4] in
Corollary 10.

Suppose firstly that rk(h) < 7. Then by Corollary 4 and Theorem 15, either H is a trivial
hyperplane or it is a trivial extension of a hyperplane H0 of G3(V0) with R↓(H0) = ∅, for a
subspace V0 of V of either dimension 5 or 6 (see also Proposition 19). All we might wish to know
on R↑(H) can be obtained either from Proposition 14 (when H is trivial) or by Corollary 2 and
the information previously achieved on hyperplanes of G3(V0) (Theorems 18 and 20).

The case rk(h) = 7 is discussed in Theorem 21, where we collect some information on the
geometry P(H) of the poles of H (see § 1.4.1) under the additional assumption that h belongs
to one of the types of rank 7 of Table 1, but with char(K) 6= 2 in case T (1)

11,λ (in accordance with
[4]). We recall that the lines of P(H) are the elements of R↑(H) and the points of P(H), called
poles of H, are just the points of PG(V ) that belong to elements of R↑(H). Note that, as we
assumed that h has full rank, 2 and 4 are the only possible values for the degree of a pole of H.
As in § 1.4.1, we denote by P (H) the set of poles of H.

According to Theorem 21, when h has type T9 the geometry P(H) is a split Cayley hexagon.
We refer the reader to Van Maldeghem [22] for a definition and the properties of this family of
generalized hexagons.

We fix some terminology and conventions which will be exploited in the statement of Theo-
rem 21. We say that h is in canonical form if it admits a description given in Table 1 with respect
to the basis E = (ei)

7
i=1 chosen for V . Clearly, there is no loss of generality in assuming that

h is in canonical form, but we will make this assumption only when necessary. For two vectors
x =

∑7
i=1 eixi and y =

∑7
i=1 eiyi of V and 1 ≤ i < j ≤ 7 we put |x, y|i,j := xiyj −xjyi, namely
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|x, y|i,j is the (i, j)-Plücker coordinate of x ∧ y with respect to the basis (ei ∧ ej)1≤i<j≤7 of V
associated to E.

Theorem 21 With dim(V ) = 7, let h be a linear functional of
∧3

V belonging to one of the types
of rank 7 in Table 1, provided that char(K) 6= 2 for type T (1)

11,λ. Then the following propositions
hold on H := Hh, according to the type of h.
1) h has type T5. Two non-degenerate symplectic polar spaces S1 and S2 are given, with distinct

hyperplanes S1 and S2 of PG(V ) as their point-sets and such that they induce the same polar
space S0 on S0 := S1 ∩ S2. The radical of S0 is a point, say p0. Two totally isotropic planes
A1 and A2 of S0 are also given in such a way that A1 ∩ A2 = {p0}. The poles of H are the
points of S1 ∪S2, the poles of degree 4 being the points of A1 ∪A2. The lines of P(H) are the
totally isotropic lines of Si that meet Ai non-trivially, for i = 1, 2.

2) h has type T6. The point-set P (H) of P(H) is a hyperplane of PG(V ). A non-degenerate
polar space S of symplectic type is defined over P (H) and a totally isotropic plane A of S is
given. The lines of P(H) are the lines of S that meet A non-trivially. The points of A are the
poles of H of degree 4.

3) h has type T7. With h in canonical form, let C be the conic described by the equation x21 = x2x3
in the plane S := [e1, e2, e3] of PG(V ) and let Q be the hyperbolic quadric of [e4, e5, e6, e7]
with equation x4x6 + x5x7 = 0. Let Γ be the cone with S as the vertex and Q as the basis.
Then P (H) = Γ and C is the set of poles of degree 4. The lines of P(H) are the lines of S
and the lines [x, y] ⊂ Γ with |x, y|1,4= |x, y|3,7, |x, y|1,7= |x, y|2,4 and satisfying one of the
following:
a) [x, y] ∩ S is a point of C and |x, y|1,5+|x, y|3,6= |x, y|1,6+|x, y|2,5= 0;
b) [x, y] ∩ S = ∅ and |x, y|4,6+|x, y|5,7= |x, y|4,5= |x, y|6,7= 0.

4) h has type T8. In this case H is a symplectic hyperplane. In view of Corollary 8, the geometry
P(H) is a non-degenerate polar space of symplectic type and rank 3, naturally embedded in a
hyperplane of PG(V ). All poles of H have degree 4.

5) h has type T9. Then P(H) is a split Cayley hexagon naturally embedded in a non-singular
quadric of PG(V ). Its dual admits a natural embedding in G2(V ). All poles of H have degree
2. More explicitly, with h in canonical form, the set P (H) of the poles of H is the quadric of
PG(V ) described by the equation x1x4+x2x5+x3x6 = x27 and the lines of P(H) are the lines
[x, y] of PG(V ) contained in P (H) and satisfying the following equations:
|x, y|1,2+|x, y|6,7 = |x, y|2,3+|x, y|4,7 = |x, y|4,6+|x, y|2,7 = 0,
|x, y|1,3= |x, y|5,7, |x, y|4,5= |x, y|3,7, |x, y|5,6= |x, y|1,7.

7) h has type T (r)
11,λ, r = 1, 2. With h in canonical form, P (H) = [e2, e3, e5, e6, e7] and 〈e7〉 is the

unique pole of degree 4. The elements of R↑(H) are the lines [x, y] ⊂ P (H) such that:
|x, y|2,3+λ|x, y|5,6= 0 and |x, y|3,5= |x, y|2,6 when r = 1;
λ|x, y|2,3+|x, y|2,6+|x, y|3,5= 0 and |x, y|2,3= |x, y|5,6 for r = 2.

Proof All of the above can be proved using the technique sketched in the proof of Theorem 20,
based on the investigation of ker(h̃), combined with the following remark, more suited to an
investigation of the poles ofH. Given a non-zero vector a ∈ V , consider the degenerate alternating
bilinear form ha(x, y) := h(a, x, y) : V × V → K. Then the lines of R↑(H) through 〈a〉 are the
2-spaces 〈a, x〉 contained in Rad (ha). We omit the details of these computations, referring the
reader to [3] for them. Descriptions of P (H) are also given by Cohen and Helminck [4] for all
cases of Theorem 21 except the last one. Observe that in all cases [P (H)] consists of the points
of some (possibly degenerate) quadric in PG(V ); this is consistent with [10, Theorem 3.2]. ut

Corollary 10 Let n = 7 and assume that K belongs to Cd{0, 1} and is perfect. Then R↑(H) 6= ∅
for every hyperplane H of G3(V ).
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Proof Let h ∈ (
∧3

V )∗ be such that Hh = H. As R↑(H) ⊇ G2(p) for every p ∈ R↓(H), if
R↓(H) 6= ∅ then R↑(H) 6= ∅. Assume that R↓(H) = ∅, namely rk(h) = 7. Then h satisfies the
hypotheses of Theorem 21, by [4]. Recall that R↑(H) = ∅ if and only if P (H) = ∅. However
P (H) 6= ∅ in each of the cases examined in Theorem 21. Hence R↑(H) 6= ∅. ut

Henceforth, in view of the description given for P(H) in Theorem 21, we call a hyperplane
H = Hh of G3(V ) with h of type T9, hexagonal.

Corollary 11 Let n = 7 and assume that K ∈ Cd{0, 1} is perfect. Let H be a hyperplane of
G3(V ). Then R↑(H) contains no singular plane of the point-line geometry G2(V ) if and only if
H is hexagonal.

Proof We know that R↑(H) is a subspace of G2(V ) (Proposition 9). This subspace contains at
least a singular plane of G2(V ) if and only if either H admits at least one pole of degree 4 or
6 or the geometry of poles P(H) contains at least one proper triangle, namely a non-collinear
triple of pairwise collinear points. Indeed, the set of lines of PG(V ) through a pole of degree 6 is
a maximal singular subspace of G2(V ) while the lines of P(H) through a pole of degree 4 form a
singular subspace of G2(V ) of rank 4. On the other hand, the three sides of a triangle of P(H),
regarded as points of G2(V ), span a singular plane of G2(V ).

Let h ∈ (
∧3

V )∗ be such that H = Hh. As R↓(H) is the set of poles of H of degree 6, if
rk(h) < 7 then P (H) contains at least one maximal singular subspace of G2(V ). Suppose now
rk(h) = 7; then h satisfies the hypotheses of Theorem 21. In each of the cases considered in
Theorem 21 except T9, the hyperplane H admits at least one pole of degree 4. In case T9 all
poles have degree 2 and P(H), being a generalized hexagon, contains no triangles. Thus, in this
case R↑(H) contains no singular plane of G2(V ). ut

4 Proof of Theorem 6

Throughout this section K is a perfect field in the class Cd{0, 1}, dim(V ) = 8 and H is a
given hyperplane of G3(V ). Moreover, h is a linear functional of

∧3
V associated to H, namely

H = ε−1
3 ([ker(h)]). (Recall that h is uniquely determined by H up to a scalar.) In the first part

of this section, without assuming that K satisfies (∗) of Theorem 6, we prove some properties
of h under the assumption that R↑(H) is a spread. In the second part of the section we shall
complete the proof of Theorem 6 by showing that hypothesis (∗) of Theorem 6 contradicts what
we have proved in the first part.

4.1 Preliminary results

Let V ′ ≤ V be a subspace. As stated in Subsection 2.1, if dim(V ′) > 3 then H(V ′) = G3(V
′)∩H

is the set of members of H contained in V ′. Clearly, either H(V ′) = G3(V
′) or H(V ′) is a

hyperplane of G3(V
′).

We recall that, according to a definition stated in § 3.3.4, given a 7-dimensional vector space
V ′, the hexagonal hyperplanes of G3(V

′) are those of type T9; accordingly, the set of poles of
a hexagonal hyperplane is a non-singular quadric while its geometry of poles is a split Cayley
hexagon (see case 5 of Theorem 21).

Lemma 2 The upper radical R↑(H) is a spread if and only if H(V ′) is a hexagonal hyperplane
of G3(V

′), for every hyperplane V ′ of V .
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Proof Suppose firstly that R↑(H) is not a spread. Then H admits a pole p of degree r(p) ≥ 3.
Let V ′ be a hyperplane of V containing p and such that [V ′/p]∩Rp(H) has rank at least 3. Such
a hyperplane certainly exists. Indeed if Rp(H) 6= [V/p] any hyperplane V ′ < V containing p and
such that [V ′/p] ⊇ Rp(H) has the required property; otherwise any hyperplane of V containing
p does the job. Clearly, Rp(H) ∩ [V ′/p] ⊆ Rp(H(V ′)). Hence, either H(V ′) = G3(V

′) or H(V ′)
is a hyperplane of G3(V

′) admitting p as a pole of degree greater than 2 (whence, at least 4).
However, all poles of a hexagonal hyperplane have degree 2 (see Theorem 21, case (5)). Therefore,
H(V ′) cannot be a hexagonal hyperplane.

Conversely, assume that R↑(H) is a spread and let V ′ be a hyperplane of V . If H(V ′) is
not a hyperplane of G3(V

′) then G3(V
′) ⊆ H. Given p ∈ [V ′], the quotient space [V ′/p] is a

singular subspace of the polar space Sp(H) of rank 6. However, the radical of Sp(H) has rank 1,
by assumption. Hence the singular subspaces of Sp(H) have rank at most 4 — a contradiction.
It follows that H(V ′) is a hyperplane of G3(V

′).
Let now p ∈ [V ′] and let r be its degree with respect to the hyperplane H(V ′). Then r is the

rank of the radical Rp(H(V ′)) of the polar space Sp(H(V ′)). On the other hand, Sp(H(V ′)) is
the polar space induced by Sp(H) on V ′/p. As, by assumption, the radical Rp(H) of Sp(H) is a
point of [V/p], the radical Rp(H(V ′)) of Sp(H(V ′)) is either empty or a line of PG(V ′/p), namely
either r = 0 or r = 2. Thus we have proved that all poles of H(V ′) have degree 2. It follows that
the hyperplane H(V ′) is hexagonal (compare with Theorem 21 or the proof of Corollary 11). ut

Henceforth we assume that R↑(H) is a line-spread of PG(V ). We put Σ := R↑(H) for short
and, for a point p ∈ PG(V ), we denote by `p the unique line of Σ containing p. For a subspace
V ′ ≤ V , we put Σ(V ′) := {` ∈ Σ : ` ⊆ [V ′]}.

Lemma 3 Assume that Σ = R↑(H) is a spread and let V ′ be a hyperplane of V . Then `p ∈ Σ(V ′)
for every pole p of H(V ′).

Proof Let p be a pole of H(V ′) and, by way of contradiction, suppose that `p 6⊆ [V ′]. As p is a
pole of H(V ′), we have p ∈ `′ for some line `′ ∈ R↑(H(V ′)). Necessarily, `′ 6= `p, since `p 6⊆ [V ′].
As `′ ∈ R↑(H(V ′)), every line m ⊆ [V ′] through p is collinear with `′ in Sp(H(V ′)). Hence m is
collinear with `′ also in Sp(H), since H(V ′) ⊆ H and the members of H(V ′) (respectively H)
through p are the lines of Sp(H(V ′)) (respectively Sp(H)). It follows that the orthogonal space
`′⊥ of `′ in Sp(H) contains [V ′/p]. However, `p and `′ are orthogonal in Sp(H), since `p is the
radical Rp(H) of Sp(H). Therefore `′⊥ = [V/p], namely `′ ∈ Rp(H). However Rp(H) = {`p}.
Hence `′ = `p. A contradiction has been reached. ut

Note 9 No use of the hypothesis that K ∈ Cd{0, 1} and K is perfect is made in the proof of
Lemma 3 while that hypothesis in exploited in the proof of Lemma 2 only to claim that if all
poles of H(V ′) have degree 2 then H(V ′) is hexagonal. If we renounce that hypothesis then we
can still prove the following weaker version of Lemma 2: R↑(H) is a spread if and only if all poles
of H(V ′), if any, have degree 2, for every hyperplane V ′ of V .

Note 10 In view of Lemmas 2 and 3, when Σ = R↑(H) is a spread, the set Σ(V ′) is a distance–2
spread of the generalized hexagon P(H(V ′)). These objects are expected to be very rare. The
only examples discovered so far are defined over the field F3, see [8].

We now turn to the linear functional h ∈ (
∧3

V )∗ associated to H.

Lemma 4 Let R↑(H) be a spread. Then for a suitable choice of the basis E = (ei)
8
i=1 of V and,

possibly, up to rescaling h, there exists a family {aij}1≤i<j≤6 ⊆ K of scalars such that

h = 123 + 456 + 147 + 257 + 367 +
∑

1≤i<j≤6

aij · ij8 (9)
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and A :=

a14 a15 a16a24 a25 a26
a34 a35 a36

 has no eigenvalue in K.

Proof Let V∞ be a hyperplane of V . In view of Lemma 2, the linear functional h∞ induced
by h on

∧3
V∞ is of type T9. Hence, modulo rescaling h, if necessary, we can choose a basis

E∞ = (ei)
7
i=1 of V∞ such that h∞ = 123 + 456 + 147 + 257 + 367 (see Table 1). We can extend

E∞ to a basis E = (ei)
8
i=1 of V . With respect to E, the linear functional h admits the following

representation:
h = 123 + 456 + 147 + 257 + 367 +

∑
1≤i<j≤7

aij · ij8. (10)

It remains to prove that we can choose e8 in such a way that ai7 = 0 for every i < 7 and the
matrix A = (ai,3+j)

3
i,j=1 admits no eigenvalue in K.

According to the information given in case 5) of Theorem 21, the point-set Q∞ := P (H(V∞))
of the geometry of poles of H(V∞) is the quadric of PG(V∞) described by the following equation:
x27 = x1x4 + x2x5 + x3x6.

Put p7 := [e7] and let `7 := `p7
be the line of Σ := R↑(H) through p7. Since p7 6∈ Q∞, the

point p7 is not a pole of H(V∞); hence, `7 is not contained in PG(V∞). We can assume to have
chosen e8 in such a way that [e8] ∈ `7 \ {p7}. With this choice of e8 we have 〈e7, e8〉 ∈ Σ, hence
h(ei∧ e7∧ e8) = 0 for any i < 7, namely ai7 = 0 in (10) for every i < 7. The last claim remaining
to be proved is that A admits no eigenvalue in K.

For any t ∈ K, put Vt := W ⊕ 〈te7 + e8〉, where W := 〈ei〉6i=1. Then {Vt}t∈K∪{∞} is the
family of the hyperplanes of V through W . By Lemma 2 and the information given in case 5) of
Theorem 21, the point-set Qt := P (H(Vt)) of the geometry of poles of H(Vt) is a non-degenerate
quadric. Put Qt,W := Qt ∩ [W ].

Claim (?). With respect to the basis (ei)
6
i=1 of W , the quadric Qt,W is described by the following

equation: (
x1 x2 x3

)
At

x4x5
x6

 = 0, (11)

where At is a suitable non-singular 3 × 3 matrix having no eigenvalue in K for t 6= ∞ and
A∞ = I, where I is the identity matrix of order 3. Moreover,

Qt,W ∩Qs,W =
⋃

{` : ` ∈ Σ(W )}, ∀t, s ∈ K ∪ {∞}, t 6= s. (12)

Proof of Claim (?). Let hW be the linear functional induced by h on
∧3

W . Then hW = 123+456.
As the planes P := [e1, e2, e3] and P ′ := [e4, e5, e6] are contained in Q∞, they are contained also
in Q∞,W . By case 3) of Theorem 20, every line of R↑(H(W )) meets each of them in a point.
Take p ∈ P . Then rk(Rp(H(W ))) = 3. Consequently, the Plücker embedding ε2,W : G2(W ) →
PG(

∧2
W ) maps Rp(H(W )) onto a plane Rp,W of PG(

∧2
W ) contained in [K(H(W ))]. By

Proposition 12 with t = 2, we have dim(K(H(W ))/(K(H) ∩ K(H(W ))) ≤ 2. Consequently,
Rp,W ∩ [K(H)] 6= ∅, namely Rp(H(W ))∩ ε−1

2 ([K(H)]) 6= ∅. However ε−1
2 ([K(H)]) = Σ by (3) of

Subsection 2.3 and Σ does not contain any line of G2(V ). It follows that Rp(H(W )) ∩Σ = {`p}.
By case (3) of Theorem 20, every line ` ∈ R↑(H(W )) meets both P and P ′. Therefore `p meets
P ′ in a point. Thus, the clause α(p) := `p ∩ P ′ defines a bijection α from P to P ′. We have
R↑(H(W )) = Σ(W ) = {`p}p∈P = {`q}q∈P ′ and `p = 〈p, α(p)〉 for any p ∈ P .

Put ΣW :=
⋃

p∈P `p =
⋃
{`: ` ∈ Σ(W )} and consider a hyperplane Vt 6= V∞ of V containing

W , say V0. By Lemma 3 the elements of Σ(V0) cover the quadric Q0 ⊆ [V0]. Similarly, Q∞ is
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covered by the elements of Σ(V∞). Clearly, ΣW ⊆ Q0,W ∩Q∞,W . We claim that Q0,W ∩Q∞,W =
ΣW . Suppose the contrary and let p ∈ (Q0,W ∩Q∞,W ) \ΣW . The line `p is not contained in [W ]
(since p 6∈ ΣW ) but it is contained in [V0∩V∞] (by Lemma 3). It follows that V0 = 〈W, `p〉 = V∞.
We have reached a contradiction. Therefore Q0,W ∩Q∞,W = ΣW . Similarly, Qt,W ∩Qs,W = ΣW

for any choice of distinct indices t, s ∈ K ∪ {∞}, as claimed in (12).
Let t ∈ K∪{∞}. As a by-product of (12), both planes P = [e1, e2, e3] and P ′ = [e4, e5, e6] are

contained in Qt,W . Hence Qt,W is described by the equation (x1, x2, x3) · At · (x4, x5, x6)T = 0
for a suitable non–singular 3 × 3 matrix At, as claimed in (11). Moreover A∞ = I, as Q∞ is
described by the equation x27 = x1x4+x2x5+x3x6. It remains to prove that At has no eigenvalue
in K for any t ∈ K. Given t ∈ K and a = (a1, a2, a3), let pa = [a1e1 + a2e2 + a3e3] ∈ 〈e1, e2, e3〉.
It follows from (12) that the point α(pa) = P ′ ∩ `pa

, regarded as a 1-dimensional subspace of
〈e4, e5, e6〉, is the complete solution of the system aTAtx = aTA∞x = 0, where x = (x4, x5, x6)
stands for the triple of coordinates of a vector of 〈e4, e5, e6〉 with respect to the ordered basis
(e4, e5, e6) of 〈e4, e5, e6〉. Consequently, the system aTAtx = aTA∞x = 0 has rank 2, for any
choice of a ∈ 〈e1, e2, e3〉 \ {0}. However A∞ = I. Hence the system aTAtx = aTx = 0 has rank 2
for any choice of a ∈ 〈e1, e2, e3〉 \ {0}. This is equivalent to say that At admits no eigenvalues in
K. Claim (?) is proved.

We are now ready to prove that A = (ai,3+j)
3
i,j=1 admits no eigenvalues in K. We shall obtain

this conclusion as a consequence of Claim (?), by showing that A is proportional to a matrix A0

associated to Q0,W as in (?).
Given a non-zero vector u = (u1, u2, u3, u4, u5, u6, u8) ∈ V0 = W ⊕ 〈e8〉, let p := 〈u〉 and

denote by πp the canonical projection of V0 onto V0/p and by Sp(H(V0)) = π−1
p (Sp(H(V0)))

the pre-image in V0 of Sp(H(V0)) by πp. Then Sp(H(V0)) is a polar space of symplectic type.
It is necessarily degenerate, as p belongs to its radical. The antisymmetric matrix representing
Sp(H(V0)) with respect to the basis E0 := E \ {e7} of V0 is M0(u) := T0(u) − T0(u)

T where
T0(u) is the following upper triangular matrix:

T0(u) =



0 u3 + a12u8 −u2 + a13u8 a14u8 a15u8 a16u8 b1
0 u1 + a23u8 a24u8 a25u8 a26u8 b2

0 a34u8 a35u8 a36u8 b3
0 u6 + a45u8 −u5 + a46u8 b4

0 a56u8 + u4 b5
0 b6

0


with

b1 = −a12u2 − a13u3 − a14u4 − a15u5 − a16u6, b2 = a12u1 − a23u3 − a24u4 − a25u5 − a26u6,
b3 = a13u1 + a23u2 − a34u4 − a35u5 − a36u6, b4 = a14u1 + a24u2 + a34u3 − a45u5 − a46u6,
b5 = a15u1 + a25u2 + a35u3 + a45u4 − a56u6, b6 = a16u1 + a26u2 + a36u3 + a46u4 + a56u5.

For ū = (u1, u2, u3, u4, u5, u6, 0), let C1, . . . , C7 and R1 = −CT
1 , . . . , R7 = −CT

7 be the columns
and the rows of M0(ū). By adding the linear combination −a23C1 + a13C2 − a12C3 − a56C4 +
a46C5−a45C6 to C7 and the linear combination −a23R1+a13R2−a12R3−a56R4+a46R5−a45R6



A geometric approach to alternating k-linear forms 23

to R7 we obtain the following matrix:

M ′
0(ū) =



0 u3 −u2 0 0 0
−u3 0 u1 0 0 0
u2 −u1 0 0 0 0
0 0 0 0 u6 −u5
0 0 0 −u6 0 u4
0 0 0 u5 −u4 0

(
0 −A
AT 0

)(
u1
u2

)

(uT1 , u
T
2 )

(
0 −A
AT 0

)
0


where u1 = (u1, u2, u3)

T , u2 = (u4, u5, u6)
T and A = (ai,3+j)

3
i,j=1. Clearly, M ′

0(ū) and M0(ū)
have the same rank. Assuming that ū 6= 0, let p̄ = 〈ū〉. We have p̄ ∈ Q0,W if and only if
rk(Rp̄(H(W ))) = 2. The latter is equivalent to rk(M0(ū)) = 4, which in its turn is equivalent to
rk(M ′

0(ū)) = 4. It is straightforward to check that rk(M ′
0(ū)) = 4 whenever uT1 Au2 = 0. Hence

the equation uT1 Au2 = 0 implies p̄ ∈ Q0,W , whence it implies uT1 A0u2 = 0 with A0 as in (?). It
follows that A0 = λA for a scalar λ ∈ K. On the other hand, A0 is not the null matrix. Therefore
λ 6= 0. The proof is complete. ut

The next lemma is useful to save some computing time when performing calculations with h.

Lemma 5 The basis E = (e1)
8
i=1 of V considered in Lemma 4 can be chosen in such a way

as to guarantee that at least four of the entries of matrix A are null. In particular, we can force
a25 = a26 = a34 = a36 = 0.

Proof Given E = (ei)
8
i=1 as in Lemma 4 and a 3 × 3 matrix C with determinant det(C) = 1,

consider the basis E′ = (e′i)
8
i=1 defined as follows:

(e′1, . . . , e
′
8) = (e1, . . . , e8) ·

C O O
O C−T O
O O I


where O stands for a suitable null matrix and I is the identity matrix of order 2. Let (e′1, . . . , e′8)
be the basis of V ∗ dual of E′. It is straightforward to check that h admits the following expression
with respect to E′:

h = 123 + 456 + 147 + 257 + 367 +
∑

1≤i<j≤6

bij · ij8

where the symbol ijk stands now for e′i ∧ e′j ∧ e′k, the coefficients bij are as follows b14 b15 b16
b24 b25 b26
b34 b35 b36

 = CTAC−T ,

 0 b12 b13
0 0 b23
0 0 0

 = T(CT

 0 a12 a13
0 0 a23
0 0 0

C),

 0 b45 b46
0 0 b56
0 0 0

 = T(C−1

 0 a45 a46
0 0 a56
0 0 0

C−T )
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and T(X) is defined for a 3× 3 matrix X = (xij)
3
i,j=1 as

T(X) =

 0 x12 − x21 x13 − x31
0 0 x23 − x32
0 0 0

 .

We shall prove that we can always choose C in such a way as b25 = b26 = b34 = b36 = 0. Note
firstly that at least one of a16 and a26 is different from 0; otherwise a36 would be an eigenvalue
of A, while A admits no eigenvalues. Modulo replacing e1 with −e2, e2 with e1 and e4 with −e5,
e5 with e4, if necessary, we can assume a16 6= 0. Thus, we can consider the following matrix:

U1 =

 1 0 0
−a26/a16 1 0
−a36/a16 0 1

 .

The matrix A′ := U1AU
−1
1 has the following form for suitable entries a′ij :

A′ =

a′14 a
′
15 a16

a′24 a
′
25 0

a′34 a
′
35 0

 .

Clearly A′ has no eigenvalues, since A′ and A are similar and A has no eigenvalues by assumption.
Therefore a′24 6= 0 (otherwise a′25 would be an eigenvalue of A′). So, we can consider the following
matrix:

U2 =

 1 a′25/a
′
24 0

0 1 0
0 −a′34/a′24 1

 .

The matrix U2A
′U−1

2 = U2U1AU
−1
1 U−1

2 has the following form:

U2A
′U−1

2 =

 b14 b15 b16
b24 0 0
0 b35 0

 .

Therefore, if we choose C = (U2U1)
T then we get b25 = b26 = b34 = b36 = 0, as we wished. ut

Note 11 Needless to say, with a different choice of U1 and U2 we can force a different quadruple
of coefficients bij to be null. For instance, if we replace a′25/a′24 with −a′14/a′24 in U2 then we get
b14 = 0 instead of b25 = 0.

4.2 End of the proof.

Let R↑(H) be a spread. Then by Lemma 2, any hyperplane H(V ′) of G3(V ) is hexagonal, for every
hyperplane V ′ of V . By the classification of Theorem 21, the set of poles P (H(V ′)) determines
a non-degenerate quadric Q(V ′).

We shall first show that the discriminant of the quadric Q(V ′), where V ′ is an arbitrary
hyperplane of V , can be written as the cube of a homogeneous polynomial.

More precisely, we will show the following. Let V ′ have equation c1x1 + · · · + c8x8 = 0
with respect to the basis of V as in Lemma 5. Then the discriminant of Q(V ′) is the cube
of a homogeneous polynomial ∆(c1, . . . , c8) of degree 3 in the unknowns ci, 1 ≤ i ≤ 8. So, if K
satisfies the hypothesis (∗) of Theorem 6, then ∆(c1, . . . , c8) always admits at least one non-trivial
solution.
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Consider first the case c1 6= 0; then we can rewrite the equation of V ′ as x1 = b2x2+ · · ·+b8x8
with bi = −ci/c1, 2 ≤ i ≤ 8. Since in (V ′)∗ we have e1 = b2e

2 + · · ·+ b8e
8, the form induced by

H(V ′) on V ′ can be written by formally replacing 1 with b22+ · · ·+ b88 in (9). Denote this new
form by h1.

For any u = (ui)
8
i=1 ∈ V ′ with u8 6= 0, the 8× 8 matrix M1

V ′(u) representing the alternating
bilinear form h1H,〈u〉 (which, restricted to V ′ × V ′, is the same as hu, see Section 2.4) has rank
at most 6 and its last row/column is a linear combination of the remaining ones. Also, by
construction, the first row and column of M1

V ′(u) are null. Thus, the matrix M1
V ′(u) has rank 6

if and only if the minor M1

V ′(u) obtained by deleting the first and last rows and columns has
non-zero determinant.

It is straightforward to see that

detM
1

V ′(u) = (q̃b2,...,b8(u2, . . . , u7))
2

with q̃b2,...,b8(u2, . . . , u7) a suitable quadratic polynomial. By homogenizing q̃b2,...,b8(u2, . . . , u7) in
u8 we obtain a quadratic form qb2,...,b8(u2, . . . , u8) representing the quadric Q(V ′) := P (H(V ′)).
More precisely, the points of Q(V ′) are the points P = [b2u2 + · · · + b8u8, u2 . . . , u8] where
[u2, . . . , u8] is totally singular for qb2,...,b8 . The discriminant of Q(V ′) is zero if and only if the
discriminant of qb2,...,b8 is zero.

Let Ξ̃1(b2, . . . , b8) be the discriminant of qb2,...,b8 . A straightforward, yet long, computation
using [16], see Appendix A, proves that Ξ̃1(b2, . . . , b8) can be written as the cube of the polynomial
∆̃1 = ∆(1, b2, . . . , b8), where ∆ is the polyniomial of degree 3 written in Appendix A with c1 = 1

and c2, . . . , c8 replaced by b2, . . . , b8. Let now ∆1(c1, . . . , c8) be the homogenization of ∆̃1 where
ci = bic1 for 2 ≤ i ≤ 8.

The above computations show that the points of PG(V ∗) representing the hyperplanes V ′ of
V with c1 6= 0 where the quadric Q(V ′) is singular all lie on a cubic hypersurface Γ1 of PG(V ∗).

Acting in an analogous way for every component xi with 2 ≤ i ≤ 7, we eventually determine
a set of 7 polynomials {∆i(c1, . . . , c8)}7i=1 and corresponding hypersurfaces Γi. Direct computa-
tions, performed as before, show that for all 1 ≤ i ≤ 7, the polynomials ∆i are the same; hence
they have the same set of zeroes. It follows that ∆(c1, . . . , c8) = 0 if and only if H(V ′) is not
hexagonal (V ′ having equation

∑8
i=1 cixi = 0)— with the possible exception of the hyperplane

V∞ : x8 = 0 which has not yet been taken into account. However, H(V∞) is, by the construction
in Lemma 4, hexagonal and it is immediate to see that ∆(0, 0, . . . , 0, 1) = −1 6= 0.

If the field K is quasi-algebraically closed or, more in general, assumption (∗) holds, then there
exists at least one (c1, . . . , c8) 6= (0, 0, 0, 0, 0, 0, 0, 0) with ci ∈ K such that ∆(c1, . . . , c8) = 0. It
follows now from Lemma 2 that there exists a hyperplane V ′ of V such that H(V ′) is not
hexagonal; consequently R↑(H) cannot be a spread.
The theorem is proved. �

Note 12 We can provide also a synthetic proof that the polynomials ∆i have the same set of
zeroes for all 1 ≤ i ≤ 7. Indeed, observe that the polynomial functions Ξ̃1 formally represent
the discriminant of the quadric qb2,...,b8 even when the coefficients b2, . . . , b8 identifying the hy-
perplane are taken over the algebraic closure K of K. As such, each ∆i is a polynomial function
with coefficients in K representing an algebraic hypersurface Γi of degree 3 in PG(V ∗ ⊗K).

Observe that for i > 1, the hypersurface Γi has in common with Γ1 at least the points of the
set Γi \ [x1xi = 0] which is an open set in the Zariski topology in Γ1. In particular, as Γi ∩ Γ1

is closed in Γ1, Γ1 must be contained in Γi. As K is algebraically closed, this implies that ∆1

(as polynomial) must divide ∆i. Thus, each zero of ∆1 is also a zero of ∆i. This applies, in
particular, to the zeroes of ∆i defined over K.
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Note 13 It is possible to consider the homogenization Ξ1(c1, . . . , c8) of the polynomial Ξ̃1(b2, . . . , b8)
directly. Our computations prove that in this case

Ξi(c1, . . . , c8) = (∆(c1, . . . , c8))
3 · c12i . (13)

We believe that this expression is not fortuitous and it would be very interesting to investigate
the geometrical reason behind such factorization. In any case, we remark that (13) by itself makes
sense only for ci 6= 0, as for ci = 0 the argument on the rank of the matrix does not stand.

Note 14 The use of Lemma 5 provides a massive simplification in the computations leading to the
polynomial ∆(u1, . . . , u8), with a reduction in the memory and time involved of approximately 10
times. However, we have been able also to obtain the conclusion of Section 4.2 using the generic
form for the matrix A as provided by (9) without any simplification in the coefficients. We choose
nonetheless to introduce here the more specialized form for this matrix as in Lemma 5, in order
to be able to present a simpler polynomial in Appendix A and also to make easier to directly
check the result.

5 Proof of Theorem 7

Let n = dim(V ) be even and let K = Fq be the finite field of order q. Let ψ be the number of
point-plane flags (p, [X]) of PG(V ) with X ∈ H and p ∈ [X]. As [X] with X ∈ H is a projective
plane of order q, we have ψ = (q2 + q + 1)|H|. If R↑(H) is a spread, then Sp(H) is a symplectic
polar space of non-degenerate rank r := (n−2)/2 with dim(Rp(H)) = 1 for any point p ∈ PG(V ).
As the lines of Sp(H) correspond to elements of H through p, we see that ψ =M qn−1

q−1 , where

M =
q2r − 1

q − 1

(
1 + q2

q2r−2 − 1

q2 − 1

)
(14)

is the number of lines of the symplectic polar space Sp(H). So,

q2 + q + 1 =
q3 − 1

q − 1
divides M

qn − 1

q − 1
. (15)

By (14),

M
qn − 1

q − 1
=

q2r+2 − 1

q − 1

q2r − 1

q − 1

(
1 + q2

q2r−2 − 1

q2 − 1

)
. (16)

It is well known that (qi−1) divides (qj−1) if and only if i divides j. In particular, if either 2r ≡ 1
(mod 3), that is r ≡ 2 (mod 3), or r ≡ 0 (mod 3) the divisibility condition (15) is fulfilled. On
the other hand, suppose now r ≡ 1 (mod 3). Then

q2r+2 − 1

q − 1
= q2r+1 + q2r + q2r−1 + · · ·+ 1 ≡ 1 (mod q2 + q + 1), (17)

q2r − 1

q − 1
= q2r−1 + q2r−2 + · · ·+ 1 ≡ q + 1 (mod q2 + q + 1). (18)

Reducing (16) modulus q2 + q + 1, we get

M
qn − 1

q − 1
= (q + 1) + (q + 1)q2

q2r−2 − 1

q − 1
≡ q + 1 (mod q2 + q + 1). (19)

However (19) contradicts (15), since q + 1 6≡ 0 (mod q2 + q + 1). Therefore, if r ≡ 1 (mod 3)
then R↑(H) cannot be a spread. Theorem 7 is proved.
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A The polynomial ∆(u1, . . . , u8)

We present in detail the outcome of the computation of the polynomial ∆(c1, . . . , c8) of Section 4. This result has
been obtained by a straightforward implementation of the procedure outlined in Lemma 4.2 using the computer
algebra system [16]. The actual computation, in particular factoring the discriminant of the quadrics, took, for
each polynomial being considered, slightly more than 3 hours on a multiprocessor XEON E7540 machine and has
necessitated a maximum of approximately 22 Gb of RAM.



28 Ilaria Cardinali et al.

∆(c1, . . . , c8) := (−a23a24a45 + a2
24a35)c31 + ((−a23a35a46 + ((a13a24 + a14a23)a45 − 2a14a24a35))c2 + ((a23a24a56+

(a14a23a46 + (−a12a24a45 − a15a2
24)))c3 + ((−a24a45a56 + (a35a2

46 − a13a23a46 + (−a12a23a45 + (2a12a24a35+

a15a23a24))))c4 + ((−a2
23a46 + (a13a2

24 − a14a23a24))c5 + ((a2
23a45 − a23a24a35)c6 + ((a24a35a46 + (−a13a23a24+

a14a2
23))c7 + (a24a45 − a2

23)c8))))))c21 + ((−a23a35a56 + (a13a35a46 + ((a15a23 − a13a14)a45 + (−a15a24 + a2
14)a35)))c22+

((−a13a24a56 + ((−a12a35 + (a15a23 − a13a14))a46 + ((a16a23 + a12a14)a45 + (−3a16a24a35 + a14a15a24))))c3+

(((a35a46 + (a14a45 − a13a23))a56 + ((a2
13 − a15a45)a46 + (a16a2

45 + a12a13a45 + ((a16a23 − 2a12a14)a35 − a14a15a23))))c4+

(((−a24a45 − a2
23)a56 + (a35a2

46 + a13a23a46 + (−a12a23a45 + (a12a24a35 + (−a13a14a24 + a2
14a23)))))c5+

((2a13a24a35 − 2a13a23a45)c6 + ((a24a35a56 + (−a14a35a46 + (a12a23a35 + (a2
13a24 + (a15a2

23 − a13a14a23)))))c7+

(a35a46 + (2a13a23 − a14a45))c8)))))c2 + ((a12a24a56 + ((a16a23 + a12a14)a46 + a14a16a24))c23+

((a24a2
56 + (a14a46 + a12a23)a56 + (−a15a2

46 + (a16a45 − a12a13)a46 + (−a2
12a45 + ((−a13a16 − a12a15)a24 − a14a16a23))))c4+

((−2a12a23a46 − 2a16a23a24)c5 + (((−a24a45 − a2
23)a56 + (a35a2

46 − a13a23a46 + (a12a23a45 + (a12a24a35 + ((2a15a23−
a13a14)a24 + a2

14a23)))))c6 + ((−a15a24a46 + (a16a24a45 + (−a12a13a24 + (a16a2
23 + a12a14a23))))c7+

(−a24a56 + (−a14a46 − 2a12a23))c8))))c3 + (((−a13a46 + (−a12a45 + a15a24))a56 + (−2a16a35a46+

(a2
12a35 + (a13a16 + a12a15)a23)))c24 + (((−a23a46 − a14a24)a56 + (a13a2

46 + a12a45a46 + (a16a24a45 + (a12a13a24 + (a16a2
23−

a12a14a23)))))c5 + (((a23a45 + a24a35)a56 + ((−a13a45 + 2a14a35)a46 + (−a12a2
45 − a15a24a45 + (−a12a23a35+

(a2
13a24 + (−a15a2

23 − a13a14a23))))))c6 + (((−a13a24 + 2a14a23)a56 + ((−a12a35 − a15a23)a46 + (a16a23a45 − 3a16a24a35)))c7+

(−2a23a56 + (a13a46 + (a12a45 − a15a24)))c8)))c4 + ((−a2
24a56 + a23a2

46)c25 + (2(a24a35−
a23a45)a46c6 + ((a23a24a56 + ((a13a24 − a14a23)a46 + (a12a24a45 + a15a2

24)))c7 + (3a23a46 + a14a24)c8))c5 + ((a23a2
45−

a24a35a45)c26 + ((a14a23a45 − a14a24a35)c7 + (−3a23a45 + 3a24a35)c8)c6 + ((−a12a24a35 − a15a23a24)c27 + (a13a24−
2a14a23)c8c7 + 2a23c28))))))c1 + ((a13a35a56 + (−a13a15a45 + (a16a2

35 + a14a15a35)))c32 + ((−a12a35a56 + (−a13a15a46+

((−a13a16 + a12a15)a45 + (a14a16a35 + a2
15a24))))c3 + ((a2

13a56 + ((a13a16 − a12a15)a35 − a2
15a23))c4 + (((a35a46+

(a14a45 + a13a23))a56 + (−a15a45a46 + (a16a2
45 + a12a13a45 + ((2a16a23 − a12a14)a35 + (−a13a15a24 + a14a15a23)))))c5+

((a2
13a45 + (−a12a2

35 + (−a15a23 − a13a14)a35))c6 + ((−a14a35a56 + (−a16a35a45 + (−a12a13a35 − a13a15a23)))c7 + (a35a56+

(−a15a45 − a2
13))c8)))))c22 + (((−a13a16 + a12a15)a46 + (a12a16a45 + 2a15a16a24))c23 + ((−2a12a13a56 + (−2a12a16a35−

2a15a16a23))c4 + ((a24a2
56 + (a14a46 − a12a23)a56 + (−a15a2

46 + (a16a45 + a12a13)a46 + (−a2
12a45 + ((−a13a16 − a12a15)a24+

a14a16a23))))c5 + (((a35a46 + (a14a45 + a13a23))a56 + ((−a15a45 + a2
13)a46 + (a16a2

45 − a12a13a45 + (a16a23a35 + (−2a13a15a24+

a14a15a23)))))c6 + ((−a15a24a56 + (−a16a35a46 + (a2
12a35 + (−a13a16 + a12a15)a23)))c7 + (−a15a46 + (−a16a45 + 2a12a13))c8))))c3+

((−a13a2
56 + (−a16a35 − a14a15)a56 + (a2

15a46 − a15a16a45))c24 + ((−a23a2
56 + (a13a46 + (−a12a45 + a2

14))a56 + ((−a16a35−
a14a15)a46 + (a14a16a45 + (a2

12a35 + (a13a16 + a12a15)a23))))c5 + ((−2a13a45a56 + (2a15a35a46 − 2a16a35a45))c6 + (((a15a23−
a13a14)a56 + (a13a15a46 + (a12a15a45 + (−a14a16a35 + a2

15a24))))c7 + (3a13a56 + (3a16a35 + a14a15))c8)))c4 + (((a23a46 + a14a24)a56+

((a12a45 − a15a24)a46 + (2a16a24a45 + (a12a13a24 + (a16a2
23 − a12a14a23)))))c25 + (((−a23a45 + a24a35)a56 + (a13a45a46+

(−a12a2
45 − a15a24a45 + (−a12a23a35 + (a2

13a24 + (−a15a2
23 − a13a14a23))))))c6 + ((−a13a24a56 + ((−a12a35 − a15a23)a46+

((a16a23 − a12a14)a45 + (−3a16a24a35 − a14a15a24))))c7 + (a23a56 + (−2a13a46 + (a12a45 + (−a15a24 − a2
14))))c8))c5+

((a2
35a46 + (−a13a2

45 + a14a35a45))c26 + ((a23a35a56 + (a13a35a46 + ((a12a35 − a13a14)a45 + (a15a24 + a2
14)a35)))c7 + (3a13a45−

2a14a35)c8)c6 + (((−a16a23 + a12a14)a35 + a13a15a24)c27 + (−a12a35 + (−a15a23 + a13a14))c8c7 − 2a13c28)))))c2 + ((a12a16a46+

a2
16a24)c33 + ((a2

12a56 − a2
16a23)c4 + ((−a2

12a46 − a12a16a24)c5 + ((a24a2
56 + (a14a46 − a12a23)a56 + (−a15a2

46 + (a16a45−
a12a13)a46 + (−2a13a16a24 + a14a16a23)))c6 + ((−a16a24a56 + a12a16a23)c7 + (−a16a46 − a2

12)c8))))c23 + ((a12a2
56 − a14a16a56+

(a15a16a46 − a2
16a45))c24 + ((−2a12a46 − 2a16a24)a56c5 + ((−a23a2

56 + (−a13a46 + (a12a45 + (2a15a24 + a2
14)))a56 + ((−a16a35−

a14a15)a46 + (a14a16a45 + (a2
12a35 + (a13a16 + a12a15)a23))))c6 + (((a16a23 + a12a14)a56 + (a13a16a46 + (a12a16a45 + a15a16a24)))c7+

(−3a12a56 + a14a16)c8)))c4 + ((a12a2
46 + a16a24a46)c25 + (((a23a46 + a14a24)a56 + (a13a2

46 + (−a12a45 − 2a15a24)a46 + (a16a24a45+

(a12a13a24 + (a16a2
23 − a12a14a23)))))c6 + ((−a12a14a46 − a14a16a24)c7 + (3a12a46 + 3a16a24)c8))c5 + (((−a23a45 + 2a24a35)a56+

((−a13a45 + a14a35)a46 + (−a12a23a35 + (a2
13a24 + (−a15a2

23 − a13a14a23)))))c26 + ((−a13a24a56 + ((−a12a35 − (a15a23 + a13a14))a46+

(a16a23a45 − 3a16a24a35)))c7 + (a23a56 + (a13a46 + (−2a12a45 + (−4a15a24 − a2
14))))c8)c6 + (a13a16a24c27 − (a16a23 + a12a14)c8c7+

2a12c28))))c3 + (((a13a16 + a12a15)a56 + a2
16a35)c34 + (((a16a23 − a12a14)a56 + ((−a13a16 − a12a15)a46 − a15a16a24))c5 + (((a12a35−

(a15a23 + a13a14))a56 + ((a13a16 + a12a15)a45 + (−2a14a16a35 + a2
15a24)))c6 + ((a14a2

56 + (a16a45 − a15a46)a56 − a12a16a35)c7+

(−a2
56 + (−a13a16 − a12a15))c8)))c24 + ((−a12a24a56 + ((−a16a23 + a12a14)a46 + a14a16a24))c25 + ((−a13a24a56 + ((−a12a35+

(a15a23 + a13a14))a46 + ((a16a23 − a12a14)a45 + (−3a16a24a35 − a14a15a24))))c6 + ((a24a2
56 − a14a46a56 + (a15a2

46 − a16a45a46−
a13a16a24))c7 + (2a46a56 + (−a16a23 + a12a14))c8))c5 + ((−a23a35a56 + ((a12a35 − (a15a23 + a13a14))a45 + (2a15a24 + a2

14)a35))c26+

(((−a35a46 + a14a45)a56 + (−a15a45a46 + (a16a2
45 + ((a16a23 + a12a14)a35 + a13a15a24))))c7 + (−2a45a56 + (−a12a35 + (a15a23+

a13a14)))c8)c6 + ((−a15a24a56 + a16a35a46)c27 + (−2a14a56 + (a15a46 − a16a45))c8c7 + 2a56c28)))c4 + ((a12a24a46 + a16a2
24)c35+

((a13a24a46 − (a12a24a45 + a15a2
24))c6 − ((a24a46a56 + a16a23a24)c7 + (a12a24 − a2

46)c8))c25 + ((a23a35a46 + (−a13a24a45+

a14a24a35))c26 + ((a24a45a56 + (a35a2
46 + (a12a24a35 + a15a23a24)))c7 + (2a45a46 + a13a24)c8)c6 + ((a15a24a46 − a16a24a45)c27+

(−a24a56 + a14a46)c8c7 − 2a46c28))c5 + ((−a23a35a45 + a24a2
35)c36 + ((−a35a45a46 + (a13a24 − a14a23)a35)c7 + (−a2

45+

a23a35)c8)c26 + ((−a24a35a56 − a14a35a46)c27 + (a35a46 − a14a45)c8c7 + 2a45c28)c6 + (a16a24a35c37 + a15a24c8c27 + a14c28c7 − c38))))))


