Search for Monotop Signatures in Proton-Proton Collisions at $\sqrt{s} = 8$ TeV

V. Khachatryan et al.*

(CMS Collaboration)

(Received 5 October 2014; revised manuscript received 18 December 2014; published 10 March 2015)

Results are presented from a search for new decaying massive particles whose presence is inferred from an imbalance in transverse momentum and which are produced in association with a single top quark that decays into a bottom quark and two light quarks. The measurement is performed using 19.7 fb⁻¹ of data from proton-proton collisions at a center-of-mass energy of 8 TeV, collected with the CMS detector at the CERN LHC. No deviations from the standard model predictions are observed and lower limits are set on the masses of new invisible bosons. In particular, scalar and vector particles, with masses below 330 and 650 GeV, respectively, are excluded at 95% confidence level, thereby substantially extending a previous limit published by the CDF Collaboration.

DOI: 10.1103/PhysRevLett.114.101801

PACS numbers: 13.85.Rm, 13.85.Qk, 14.65.Ha

Extensions of theories beyond the standard model (BSM), such as those with universal extra dimensions [1] or supersymmetry [2,3], predict the existence of neutral massive particles that are "invisible," that is, they interact only weakly with matter. Such particles can be produced in collider experiments, but escape detection so that their existence can only be inferred by the presence of a large imbalance in transverse momentum ($E_{\rm T}^{\rm miss}$). Both the ATLAS [4] and CMS [5] collaborations have performed searches for the invisible BSM particles in monojet [6,7] and monophoton [8,9] signatures that manifest themselves through the presence of a single jet or photon associated with large E_{T}^{miss} . These searches have not revealed any evidence for BSM monojet or monophoton final states, but this nonobservation can be accommodated in a theory where the new particles change the quark flavor and convert a light quark to a top quark. In this case, the BSM event signature would not correspond to monojet or monophoton final states, but to events containing single top quarks and large $E_{\rm T}^{\rm miss}$, referred to as "monotop" candidates. In this Letter, we present a search for such events in which an invisible BSM particle is produced in association with a top quark [10-20].

Depending on the spin statistics of the invisible particle, at tree level a monotop system can be produced through two main mechanisms: it can originate either (i) from the decay of a heavy bosonic resonance, with E_T^{miss} arising from an invisible baryon-number violating fermionic state (for instance, $\overline{d} \, \overline{s} \to \tilde{u}_i \to t \tilde{\chi}_1^0$, where \overline{d} and \overline{s} denote anti-*d* and anti-*s* quarks, \tilde{u}_i are any of the up-type squarks of *R*-parity violating supersymmetry [21], and *t* and $\tilde{\chi}_1^0$ are the top

quark and neutralino), or (ii) through flavor-changing (FC) interactions mediated by an invisible bosonic state (for instance, $uq \rightarrow u \rightarrow tv$, where u, q, t, and v are an up quark, gluon, top quark, and invisible BSM particle, respectively) [10]. In both cases, the new invisible particles are assumed to have a branching fraction close to unity for decay to hidden sector particles. While this requires some degree of tuning, such scenarios are well motivated as discussed in Ref. [22]. Consequently, even in the presence of nonvanishing couplings to SM particles, which is necessary for the production of such invisible particles in collider experiments, an $E_{\rm T}^{\rm miss}$ signature is expected. The present study focuses on the second class of the above-mentioned processes where a bosonic invisible state is produced that yields a large $E_{\rm T}^{\rm miss}$ in association with a single top quark that decays to a bottom quark and a W boson, with the latter decaying into a pair of quarks.

The search is performed on data from proton-proton collisions recorded at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb⁻¹, and recorded with the CMS detector [5] at the CERN LHC. The most important backgrounds for the event signature with three jets and large E_T^{miss} are Z+jets, W+jets, and $t\bar{t}$ processes. The Z+jets and W+ jets backgrounds are estimated from data, and the signal yield is determined simultaneously with multijet background, using a likelihood approach based on the observed multiplicity of *b*-tagged jets.

We interpret the results within a simplified field theory [10,11] where the invisible particle can be either a scalar (ϕ) or a vector (v) boson, with its Lagrangian given by

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm kin} + a_{\rm FC}^0 \phi \bar{u} u + a_{\rm FC}^1 v_\mu \bar{u} \gamma^\mu u + \text{H.c.}, \quad (1)$$

where \mathcal{L}_{SM} denotes the SM Lagrangian, \mathcal{L}_{kin} kinetic terms for the ϕ and v fields, and the remaining terms model the interactions of the invisible states with up-type quarks. The coupling strengths are embedded in two 3 × 3 matrices in

^{*} Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.

FIG. 1. Feynman diagrams for *s*-channel (left) and *t*-channel (right) monotop production.

flavor space $(a_{FC}^{0,1})$, where only the elements connecting the first and third generations are nonvanishing and set to 0.1, as done in Ref. [10]. The Feynman diagrams for tree-level production are shown in Fig. 1.

Events are recorded using a trigger requiring $E_{\rm T}^{\rm miss}$ > 150 GeV. For the background estimation we use an independent control sample of events with an isolated single-muon trigger with a transverse momentum threshold of $p_{\rm T}$ > 24 GeV.

The monotop model is implemented within the FEYNRULES package [23,24] and is interfaced [25,26] to the MADGRAPH 5 event generator [27]. Simulated events are produced for masses of invisible particles from 0 to 0.2 TeV in steps of 0.05 TeV, and from 0.2 to 1 TeV in steps of 0.1 TeV. The production cross sections are calculated at leading order (LO) with MADGRAPH using CTEQ6.1L [28] parton distribution functions (PDF). This PDF set is also used for simulating the SM background processes.

The main backgrounds are generated using MADGRAPH. For W + jets and Z + jets processes, events are generated including up to four additional partons. For $Z(\rightarrow ee, \mu\mu, \tau\tau)$ + jets (with mass $m_{\ell\ell} > 50$ GeV) and $W(\rightarrow e\nu, \mu\nu, \tau\nu)$ + jets processes we use the next-to-next-to-leading order (NNLO) cross sections of 3.50 nb and 37.5 nb, respectively, as calculated using the FEWZ 3.1 program [29]. For the $Z(\rightarrow \nu\nu)$ + jets process we use events generated in four bins of $H_{\rm T}$, the scalar sum of $p_{\rm T}$ of all of the generated partons in the process: $50 < H_{\rm T} < 100$ GeV, $100 < H_{\rm T} < 200$ GeV, $200 < H_{\rm T} < 400$ GeV, and $H_{\rm T} >$ 400 GeV, with respective LO cross sections of 381, 160, 41.5, and 5.27 pb. The $t\bar{t}$ sample includes up to three additional partons at the matrix element level, and is rescaled to an inclusive NNLO cross section of 246 pb [30].

Other SM backgrounds arise from single top quark and diboson (*WW*, *WZ*, and *ZZ*) production. Single top quark production is modeled with POWHEG 1.0 [31–34], and diboson production is modeled with PYTHIA 6.4.22 [35]. All Monte Carlo (MC) generated events are evolved using PYTHIA 6.4.22 with Z2* tune [36] and processed with a full simulation of the CMS detector implemented in the GEANT4 package [37].

We require at least one reconstructed primary vertex and reject events with evidence of significant beam halo or events with a large amount of detector noise [38]. The CMS particle-flow (PF) algorithm [39–41] is used to reconstruct and identify each particle with an optimized combination of information from all the CMS subdetectors. The only charged PF particles considered in reconstructing an event are those associated with the main primary vertex, which is defined as the primary vertex with the largest sum of p_T^2 of all the associated tracks. Particles identified as originating from other collisions in the beam crossing (pileup) are removed from consideration.

The three jets from $t \to bW \to bq\bar{q}'$ decay are reconstructed using the anti- $k_{\rm T}$ clustering algorithm [42] with a distance parameter of 0.5. During jet reconstruction, the charged particles arising from pileup interactions are excluded, while the neutral pileup component is accounted for using the area-based energy subtraction procedure described in Refs. [43,44]. Jet energy corrections used in this measurement rely on simulation and on studies performed in data [45]. Only jets with $p_{\rm T} \ge 35$ GeV and $|\eta| < 2.4$ are considered, where η is the pseudorapidity. The two highest- $p_{\rm T}$ (leading) jets must have a $p_{\rm T} > 60$ GeV, while the $p_{\rm T}$ of the jet with third highest $p_{\rm T}$ has to be above 40 GeV. The invariant mass of the three jets has to be less than 250 GeV. Events containing additional jets with a $p_{\rm T}$ above 35 GeV are rejected. We require one of the three jets to be identified as a candidate jet from a b quark. The identification algorithm is based on the reconstruction of a displaced secondary vertex [46]. A jet from a b quark is tagged with $\approx 70\%$ efficiency. The probability to tag a light jet from u, d, or s quarks, or a gluon jet is 1%-4%depending on the jet $p_{\rm T}$. We also use events without b-tagged jets in order to define a background-enriched sample to extract the normalization for multijet background.

Signal-candidate events containing isolated muons or electrons are rejected. Muons are reconstructed by matching tracks from the outer muon detector to tracks reconstructed by the inner tracker [47]. Muons are required to have $p_{\rm T} > 10$ GeV and $|\eta| < 2.4$. Electrons are reconstructed by associating tracks from the inner tracker to clustered energy depositions in the electromagnetic calorimeter [48]. Electrons are required to have $p_{\rm T} > 20 \text{ GeV}$ and be within $|\eta| < 2.5$, excluding the transition region between barrel and endcap defined by $1.44 < |\eta| < 1.57$. Standard CMS muon and electron identification criteria [47,48] are applied. The muon (electron) relative isolation variable I_{rel} is computed by first summing the transverse momenta of the reconstructed particles in a cone of $\Delta R =$ $\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.4(0.3)$ around the muon (electron) direction, excluding the contribution of the lepton, and then dividing this sum by the transverse momentum of the lepton. The lepton candidates are rejected if they satisfy $I_{\rm rel} < 0.2$.

The $E_{\rm T}^{\rm miss}$ vector is defined by the negative vector sum of the transverse momenta of all the reconstructed particles in the event. The $E_{\rm T}^{\rm miss}$ threshold of 350 GeV used in the analysis is optimized to give the most sensitive exclusion

limit on the production cross section. This threshold is also nearly optimal for attaining best significance in the signal.

The dominant backgrounds after implementing the selection criteria are $t\bar{t}$ and V + jets events, with V being either a Z or a W boson. For electroweak vector boson production up to three additional jets are considered, leading to a large systematic uncertainty in the predicted production rate. For this reason, we estimate the V + jets background using data.

The control region for W + jets and Z + jets backgrounds is defined with an alternative selection, requiring one or two isolated muons in addition to the three jets. A tighter selection is applied for muons, requiring them to satisfy $p_T \ge 40$ GeV and $|\eta| < 2.1$. In this case, the relative combined isolation variable in a cone of $\Delta R < 0.4$ must be below 0.12. As in the signal selection, the three jets are required to have $p_T > 60$, 60, 40 GeV respectively, and the invariant mass of the three jets has to be less than 250 GeV. Events with any additional jets with a p_T above 35 GeV, as well as events with additional isolated electrons or muons are rejected.

The $Z(\rightarrow \nu\nu)$ + jets background is estimated from events with two muons and three jets. In such events, we replace the requirement for $E_{\rm T}^{\rm miss} > 350$ GeV with the requirement for the vector sum of the $p_{\rm T}$ of the two muons and of $E_{\rm T}^{\rm miss}$ to be greater than 350 GeV. We also suppress the non-Z backgrounds by selecting events with $\mu^+\mu^-$ invariant mass between 60 and 120 GeV. The residual non-Z backgrounds are reduce to 1.5%; thus they make a negligible contribution to the overall uncertainty. The $Z(\rightarrow \nu\nu)$ + jets background is calculated using the following equation:

$$N(Z \to \nu\nu) = \frac{N^{\text{obs}}(\mu\mu)}{A \times \epsilon(\mu\mu)} \frac{\mathcal{B}(Z \to \nu\nu)}{\mathcal{B}(Z \to \mu\mu)}$$
(2)

where $N^{\text{obs}}(\mu\mu)$ is the number of observed events with two muons, $A \times \epsilon(\mu\mu)$ is the product of acceptance and efficiency to identify and select the two muons, as measured in simulation, and $\mathcal{B}(Z \to \nu\nu)/\mathcal{B}(Z \to \mu\mu) = 5.94$ [49] is the ratio of branching fractions for *Z* decays into two neutrinos and two muons. The accuracy of the background estimate is limited by the number of selected events with two muons. The estimated $Z(\to \nu\nu) + \text{jets}$ background is presented in Table I.

The $W(\rightarrow \ell \nu)$ + jets background is calculated from events with a single muon and three jets. Just as in the selected signal events, E_T^{miss} has to be greater than 350 GeV. The transverse mass constructed with the muon- p_T and E_T^{miss} vectors has to be less than 180 GeV. From simulation we estimate the single-muon background that does not arise from W boson production (roughly a third of events), and subtract it from the observed number of events. The resulting number is divided by the acceptance and efficiency of the single-muon selection, providing thereby the number of $W(\rightarrow \mu\nu)$ + jets events. Assuming lepton

TABLE I. Total number of selected events in data compared to the background prediction. The background yields are given with statistical (first) and systematic (second) uncertainties. The multijet background is calculated using all the other backgrounds and therefore its uncertainty is not included in the quadratic sum of background uncertainties.

	No b tag	One <i>b</i> tag
tī	$6 \pm 0 \pm 5$	$12 \pm 0 \pm 12$
W + jets	$18\pm9\pm7$	$3\pm1\pm2$
Z + jets	$103\pm33\pm9$	$11\pm10\pm1$
Single top	$2\pm1\pm1$	$1\pm1\pm1$
VV'	$5\pm0\pm0$	$0\pm0\pm0$
Multijet	$6(\pm 39)$	$1(\pm 9)$
Total background	140 ± 36	28 ± 16
Signal	2 ± 6	3 ± 11
Data	143	30

universality, we use the same estimate for events with other lepton flavors. In the simulation, we calculate the probability that the $W(\rightarrow \ell \nu)$ + jets event can be present after applying the lepton veto that is used to select signal events. The resulting estimate of the $W(\rightarrow \ell \nu)$ + jets background is calculated as follows:

$$N(W \to \nu, \text{lost}\ell) = \frac{N^{\text{obs}}(\mu) - N^{\text{MC}}_{\text{non-}}W}{A \times \epsilon(\mu)} \sum_{\ell=e,\mu,\tau} \mathcal{P}(\text{lost}\ell)$$
(3)

where $N^{\rm obs}(\mu)$ is the observed number of single muon events, $N_{\text{non-W}}^{\text{MC}}$ is the background that does not arise from W bosons, and is estimated through simulation, $A \times \epsilon(\mu)$ is the product of acceptance and efficiency to identify and select the muon, as measured in simulation, and $\mathcal{P}(\text{lost}\ell)$ are the probabilities that a W + jets event with an electron, a muon, or a tau lepton is not rejected by the signal selection, as defined through simulation. The background contributions from other kinematic regions [e.g., $W(\rightarrow e\nu)$ and $W(\rightarrow \tau\nu)$ with two jets] were found to be negligible. The accuracy of the $W(\rightarrow \ell \nu)$ + jets background estimate is limited by the number of selected muon events and by the uncertainty in the simulation of background from other than W boson sources. The rate of W + jets events with one *b*-tagged jet is estimated by scaling the rate without *b*-tagged jets by the probability to have a *b*-tagged jet in simulated W + jets events. The estimated background from W + jets is given in Table I.

The most important background after V+jets processes is from $t\bar{t}$ production, followed by single top quark and diboson production. These backgrounds are estimated through simulation. The leading systematic uncertainties arise in the simulated $t\bar{t}$ sample. They are related to the choice of the renormalization and factorization scales and the scale that determines the transition between modeling

FIG. 2 (color online). The invariant mass of the three jets prior to the selection on their mass to be less than 250 GeV, for events with one b-tagged jet. Data are compared to the simulated backgrounds. The expectation from a model for an invisible vector particle with a mass of 700 GeV is represented by the dashed line.

additional partons at matrix element level and at the level of parton showers. Other systematic uncertainties originate from jet energy scale and resolution, *b*-tagging efficiency and mistagging rate, choice of PDF, and accuracy of the luminosity measurement. The yields from background $t\bar{t}$, single top quark, and diboson sources, together with the systematic uncertainties, are given in Table I.

Figure 2 shows the distribution of the invariant mass of the three jets before requiring their invariant mass to be less than 250 GeV, in events with one *b*-tagged jet. We do not present a simulation of the multijet background; thus, for the comparison between data and simulated backgrounds we suppress the potential contribution from this source with an additional cut on the opening azimuthal angle between the two leading jets: $|\phi^{jet1} - \phi^{jet2}| < 2.8$. The shaded areas represent the sum of the systematic uncertainties related to the renormalization and factorization scales for the $t\bar{t}$ and V + jets backgrounds, smoothed in a second-order polynomial fit, and taken in quadrature. Agreement is observed between data and background predictions. The dashed line in Fig. 2 indicates the prediction from a model based on a 700 GeV invisible vector boson.

The signal cross section, as well as the number of multijet background events, are measured in data using a likelihood approach, where each systematic source is treated as a nuisance parameter. The method is based on the observed number of events without and with just a single *b*-tagged jet accepted in selecting the signal. These two event categories contain untagged and tagged signal

and background events as shown in the following system of equations:

$$N^{0b} = \mathcal{P}^{0b}_{\text{sig}} N_{\text{sig}} + \mathcal{P}^{0b}_{\text{MJ}} N_{\text{MJ}} + N^{0b}_{\text{other}},$$

$$N^{1b} = \mathcal{P}^{1b}_{\text{sig}} N_{\text{sig}} + \mathcal{P}^{1b}_{\text{MJ}} N_{\text{MJ}} + N^{1b}_{\text{other}},$$
(4)

where \mathcal{P}_{sig}^{0b} and \mathcal{P}_{sig}^{1b} are the probabilities to tag 0 or 1 jet as a b jet in the selected signal events, \mathcal{P}_{MJ}^{0b} and \mathcal{P}_{MJ}^{1b} are the corresponding probabilities for the selected multijet events in data, and N_{other}^{0b} and N_{other}^{1b} are the known contributions to 0 and 1 b-tagged event categories from other backgrounds. The $\mathcal{P}_{sig,MJ}^{0b,1b}$ probabilities are estimated using simulation. The uncertainty in the $\mathcal{P}_{MJ}^{0b,1b}$ probabilities is taken as the difference between the estimate obtained from simulation and that obtained from data using a control region defined by relaxing the E_{T}^{miss} requirement. The system above is solved to estimate the number of multijet (N_{MJ}) and signal (N_{sig}) events, by using a numerical minimization of the following likelihood:

$$\mathcal{L}(\sigma_{\rm sig}, \mathbf{\nu}) = \text{Poisson}(N_{\rm obs}^{0b} | N^{0b}) \times \text{Poisson}(N_{\rm obs}^{1b} | N^{1b}),$$
(5)

where σ_{sig} is the signal cross section, ν is the vector of the nuisance parameters describing uncertainties in the expected number of events from the Eq. (4), and N_{obs}^{0b} and N_{obs}^{1b} are, respectively, the total number of observed events in event categories without and with one *b* tag.

The number of expected SM background events is compared to the data after applying the final selections, and is presented in Table I. Systematic uncertainties in the simulated backgrounds ($t\bar{t}$, single top, and VV') are presented as sums of the uncertainties from all of the respective sources, taken in quadrature. The multijet background is calculated using all the other backgrounds and data in Eq. (5). The uncertainty in the multijet background is determined by the uncertainties in the other backgrounds, and is therefore not included in the quadratic sum of background uncertainties.

No excess is observed above the background expectation, and limits are set at 95% confidence level (C.L.). The limits are calculated using the CL_s technique, which is based on statistical inference method jointly adopted by the ATLAS and CMS collaborations for the Higgs boson searches [50]. The resulting limits are calculated using the expected signal and background predictions along with their uncertainties, and the likelihood given in Eq. (5). Statistical uncertainties, arising from number of observed events with one or two muons in the control regions, are modeled with Poisson probabilities while all other uncertainties are modeled as log-normal distributions.

Figure 3 shows the 95% C.L. expected and observed limits on the product of the production cross section of the

FIG. 3 (color online). The 95% C.L. expected and observed CL_s limits as functions of the mass of a scalar (top) and vector (bottom) invisible particle. The expected magnitude of a signal as a function of mass, calculated at leading order, is shown by the dashed curve. The confidence intervals for the expected limit are given at 68% and 95% coverage probability.

monotop and the branching ratio of the W decay to $q\bar{q}'$, as a function of mass of the invisible bosonic state, for scalar and vector fields.

In summary, a search has been performed by the CMS Collaboration for invisible particles produced in association with a single top quark that decays into three jets, one of which is *b*-tagged. The results are interpreted using a monotop model that predicts the existence of invisible scalar or vector particles. The signal and the backgrounds are extracted using a likelihood-based method. No excess of data over the standard model prediction is found and exclusion limits are set at 95% confidence level. The observed lower limits on mass for invisible scalar and vector particles are set at 330 and 650 GeV, respectively. For a coupling constant $a_{\rm FC} = 0.2$ these limits increase to 530 and 930 GeV, respectively. These results substantially extend a previous limit on monotop production of an

invisible vector particle published by the CDF Collaboration [51] and complement the 8 TeV results of the ATLAS Collaboration [52] obtained with the leptonic top quark decay channel.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil): MES (Bulgaria): CERN: CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/ IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

- T. Appelquist, H.-C. Cheng, and B. A. Dobrescu, Phys. Rev. D 64, 035002 (2001).
- [2] H. P. Nilles, Phys. Rep. 110, 1 (1984).
- [3] H. E. Haber and G. L. Kane, Phys. Rep. 117, 75 (1985).
- [4] ATLAS Collaboration, JINST 3, S08003 (2008).
- [5] CMS Collaboration, JINST **3**, S08004 (2008).
- [6] ATLAS Collaboration, J. High Energy Phys. 04 (2013) 075.
- [7] CMS Collaboration, Search for dark matter, extra dimensions, and unparticles in monojet events in proton-proton collisions at $\sqrt{s} = 8$ TeV, arXiv:1408.3583.
- [8] ATLAS Collaboration, Phys. Rev. Lett. **110**, 011802 (2013).
- [9] CMS Collaboration, Phys. Rev. Lett. 108, 261803 (2012).
- [10] J. Andrea, B. Fuks, and F. Maltoni, Phys. Rev. D 84, 074025 (2011).
- [11] J.-L. Agram, J. Andrea, M. Buttignol, E. Conte, and B. Fuks, Phys. Rev. D 89, 014028 (2014).
- [12] F. del Aguila, J. A. Aguilar-Saavedra, and L. Ametller, Phys. Lett. B 462, 310 (1999).

- [13] D. E. Morrissey, T. M. P. Tait, and C. E. M. Wagner, Phys. Rev. D 72, 095003 (2005).
- [14] N. Desai and B. Mukhopadhyaya, J. High Energy Phys. 10 (2010) 060.
- [15] Z. Dong, G. Durieux, J.-M. Gerard, T. Han, and F. Maltoni, Phys. Rev. D 85, 016006 (2012); 85, 039907(E) (2012).
- [16] H. Davoudiasl, D. E. Morrissey, K. Sigurdson, and S. Tulin, Phys. Rev. D 84, 096008 (2011).
- [17] J. Wang, C. S. Li, D. Y. Shao, and H. Zhang, Phys. Rev. D 86, 034008 (2012).
- [18] J. F. Kamenik and J. Zupan, Phys. Rev. D 84, 111502 (2011).
- [19] E. Alvarez, E. Coluccio Leskow, J. Drobnak, and J. F. Kamenik, Phys. Rev. D 89, 014016 (2014).
- [20] A. Kumar, J. N. Ng, A. Spray, and P. T. Winslow, Phys. Rev. D 88, 075012 (2013).
- [21] R. Barbier, C. Bérat, M. Besançon, M. Chemtob, A. Deandrea, E. Dudas, P. Fayet, S. Lavignac, G. Moreau, E. Perez, and Y. Sirois, Phys. Rep. 420, 1 (2005).
- [22] I. Boucheneb, G. Cacciapaglia, A. Deandrea, and B. Fuks, Revisiting monotop production at the LHC, J. High Energy Phys. 01 (2015) 017.
- [23] N. D. Christensen and C. Duhr, Comput. Phys. Commun. 180, 1614 (2009).
- [24] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, Comput. Phys. Commun. 185, 2250 (2014).
- [25] N. D. Christensen, P. de Aquino, C. Degrande, C. Duhr, B. Fuks, M. Herquet, F. Maltoni, and S. Schumann, Eur. Phys. J. C 71, 1541 (2011).
- [26] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, and T. Reiter, Comput. Phys. Commun. 183, 1201 (2012).
- [27] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torielli, and M. Zaro, J. High Energy Phys. 07 (2014) 079.
- [28] J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, and W.-K. Tung, J. High Energy Phys. 07 (2002) 012.
- [29] R. Gavin, Y. Li, F. Petriello, and S. Quackenbush, Comput. Phys. Commun. 182, 2388 (2011).
- [30] M. Czakon, P. Fiedler, and A. Mitov, Phys. Rev. Lett. 110, 252004 (2013).
- [31] P. Nason, J. High Energy Phys. 11 (2004) 040.
- [32] S. Frixione, P. Nason, and C. Oleari, J. High Energy Phys. 11 (2007) 070.

- [33] S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy Phys. 09 (2009) 111.
- [34] S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy Phys. 06 (2010) 043.
- [35] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.
- [36] R. Field, Acta Phys. Pol. B 42, 2631 (2011).
- [37] S. Agostinelli (GEANT4), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
- [38] CMS Collaboration, JINST 5, T03014 (2010).
- [39] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-09-001, 2009, http://cdsweb .cern.ch/record/1194487.
- [40] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-10-001, 2010, http://cds.cern .ch/record/1247373.
- [41] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-10-002, 2010, https://cds.cern .ch/record/1279341.
- [42] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 063.
- [43] M. Cacciari, G. P. Salam, and G. Soyez, Eur. Phys. J. C 72, 1896 (2012).
- [44] M. Cacciari and G. P. Salam, Phys. Lett. B 641, 57 (2006).
- [45] CMS Collaboration, JINST 6, P11002 (2011).
- [46] CMS Collaboration, JINST 8, P04013 (2013).
- [47] CMS Collaboration, JINST 8, P11002 (2013).
- [48] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-EGM-10-004, 2010, http://cds.cern .ch/record/1299116.
- [49] J. Beringer *et al.* (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
- [50] ATLAS and CMS Collaborations, Tech. Rep. Nos. ATL-PHYS-PUB-2011-011, ATL-COM-PHYS-2011-818, CMS-NOTE-2011-005, 2011, http://cds.cern.ch/record/ 1379837.
- [51] T. Aaltonen *et al.* (CDF Collaboration), Phys. Rev. Lett. 108, 201802 (2012).
- [52] ATLAS Collaboration, Search for invisible particles produced in association with single-top-quarks in protonproton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, arXiv:1410.5404.

V. Khachatryan,¹ A. M. Sirunyan,¹ A. Tumasyan,¹ W. Adam,² T. Bergauer,² M. Dragicevic,² J. Erö,² C. Fabjan,^{2,b}
M. Friedl,² R. Frühwirth,^{2,b} V. M. Ghete,² C. Hartl,² N. Hörmann,² J. Hrubec,² M. Jeitler,^{2,b} W. Kiesenhofer,² V. Knünz,² M. Krammer,^{2,b} I. Krätschmer,² D. Liko,² I. Mikulec,² D. Rabady,^{2,c} B. Rahbaran,² H. Rohringer,² R. Schöfbeck,² J. Strauss,² A. Taurok,² W. Treberer-Treberspurg,² W. Waltenberger,² C.-E. Wulz,^{2,b} V. Mossolov,³ N. Shumeiko,³ J. Suarez Gonzalez,³ S. Alderweireldt,⁴ M. Bansal,⁴ S. Bansal,⁴ T. Cornelis,⁴ E. A. De Wolf,⁴ X. Janssen,⁴ A. Knutsson,⁴ S. Luyckx,⁴ S. Ochesanu,⁴ R. Rougny,⁴ M. Van De Klundert,⁴ H. Van Haevermaet,⁴ P. Van Mechelen,⁴ N. Van Remortel,⁴ A. Van Spilbeeck,⁴ F. Blekman,⁵ S. Blyweert,⁵ J. D'Hondt,⁵ N. Daci,⁵ N. Heracleous,⁵ J. Keaveney,⁵ S. Lowette,⁵ M. Maes,⁵

A. Olbrechts,⁵ Q. Python,⁵ D. Strom,⁵ S. Tavernier,⁵ W. Van Doninck,⁵ P. Van Mulders,⁵ G. P. Van Onsem,⁵ I. Villella,⁵ C. Caillol,⁶ B. Clerbaux,⁶ G. De Lentdecker,⁶ D. Dobur,⁶ L. Favart,⁶ A. P. R. Gay,⁶ A. Grebenyuk,⁶ A. Léonard,⁶

A. Mohammadi,⁶ L. Perniè,^{6,c} T. Reis,⁶ T. Seva,⁶ L. Thomas,⁶ C. Vander Velde,⁶ P. Vanlaer,⁶ J. Wang,⁶ F. Zenoni,⁶ V. Adler,⁷

K. Beernaert,⁷ L. Benucci,⁷ A. Cimmino,⁷ S. Costantini,⁷ S. Crucy,⁷ S. Dildick,⁷ A. Fagot,⁷ G. Garcia,⁷ J. Mccartin,⁷ A. A. Ocampo Rios,⁷ D. Ryckbosch,⁷ S. Salva Diblen,⁷ M. Sigamani,⁷ N. Strobbe,⁷ F. Thyssen,⁷ M. Tytgat,⁷ E. Yazgan,⁷ N. Zaganidis,⁷ S. Basegmez,⁸ C. Beluffi,^{8,d} G. Bruno,⁸ R. Castello,⁸ A. Caudron,⁸ L. Ceard,⁸ G. G. Da Silveira,⁸ C. Delaere,⁸ T. du Pree,⁸ D. Favart,⁸ L. Forthomme,⁸ A. Giammanco,^{8,e} J. Hollar,⁸ A. Jafari,⁸ P. Jez,⁸ M. Komm,⁸ V. Lemaitre,⁸ C. Nuttens,⁸ D. Pagano,⁸ L. Perrini,⁸ A. Pin,⁸ K. Piotrzkowski,⁸ A. Popov,^{8,f} L. Quertenmont,⁸ M. Selvaggi,⁸ M. Vidal Marono,⁸ J. M. Vizan Garcia,⁸ N. Beliy,⁹ T. Caebergs,⁹ E. Daubie,⁹ G. H. Hammad,⁹ W. L. Aldá Júnior,¹⁰ G. A. Alves,¹⁰ L. Brito,¹⁰ M. Correa Martins Junior,¹⁰ T. Dos Reis Martins,¹⁰ C. Mora Herrera,¹⁰ M. E. Pol,¹⁰ W. Carvalho,¹¹ J. Chinellato,^{11,g} A. Custódio,¹¹ E. M. Da Costa,¹¹ D. De Jesus Damiao,¹¹ C. De Oliveira Martins,¹¹ S. Fonseca De Souza,¹¹ H. Malbouisson,¹¹ D. Matos Figueiredo,¹¹ L. Mundim,¹¹ H. Nogima,¹¹ W. L. Prado Da Silva,¹¹ J. Santaolalla,¹¹ H. Malbouisson,¹¹ D. Matos Figueiredo,¹¹ L. Mundim,¹¹ H. Nogima,¹¹ W. L. Prado Da Silva,¹¹ J. Santaolalla,¹¹ A. Santoro,¹¹ A. Sznajder,¹¹ E. J. Tonelli Manganote,^{11,g} A. Vilela Pereira,¹¹ C. A. Bernardes,^{12b} S. Dogra,^{12a} T. R. Fernandez Perez Tomei,^{12a} E. M. Gregores,^{12b} P. G. Mercadante,^{12b} S. F. Novaes,^{12a} Sandra S. Padula,^{12a}
A. Aleksandrov,¹³ V. Genchev,^{13,c} P. Iaydjiev,¹³ A. Marinov,¹³ S. Piperov,¹³ M. Rodozov,¹³ S. Stoykova,¹³ G. Sultanov,¹³
V. Tcholakov,¹³ M. Vutova,¹³ A. Dimitrov,¹⁴ I. Glushkov,¹⁴ R. Hadjiiska,¹⁴ V. Kozhuharov,¹⁴ L. Litov,¹⁴ B. Pavlov,¹⁴
P. Petkov,¹⁴ J. G. Bian,¹⁵ G. M. Chen,¹⁵ H. S. Chen,¹⁵ M. Chen,¹⁵ R. Du,¹⁵ C. H. Jiang,¹⁵ R. Plestina,^{15,h} J. Tao,¹⁵ Z. Wang,¹⁵ C. Asawatangtrakuldee,¹⁶ Y. Ban,¹⁶ Q. Li,¹⁶ S. Liu,¹⁶ Y. Mao,¹⁶ S. J. Qian,¹⁶ D. Wang,¹⁶ L. Zhang,¹⁶ C. Avila,¹⁷
L. F. Chaparro Sierra,¹⁷ C. Florez,¹⁷ J. P. Gomez,¹⁷ B. Gomez Moreno,¹⁷ J. C. Sanabria,¹⁷ N. Godinovic,¹⁸ D. Lelas,¹⁸
D. Polic,¹⁸ I. Puljak,¹⁸ Z. Antunovic,¹⁹ M. Kovac,¹⁹ V. Brigljevic,²⁰ K. Kadija,²⁰ J. Luetic,²⁰ D. Mekterovic,²⁰ L. Sudic,²⁰
A. Attikis,²¹ G. Mavromanolakis,²¹ J. Mousa,²¹ C. Nicolaou,²¹ F. Ptochos,²¹ P. A. Razis,²¹ M. Bodlak,²² M. Finger,²²
M. Finger Jr.,^{22,i} Y. Assran,^{23,j} A. Ellithi Kamel,^{23,k} M. A. Mahmoud,^{23,1} A. Radi,^{23,m,n} M. Kadastik,²⁴ M. Murumaa,²⁴ M. Raidal,²⁴ A. Tiko,²⁴ P. Eerola,²⁵ G. Fedi,²⁵ M. Voutilainen,²⁵ J. Härkönen,²⁶ V. Karimäki,²⁶ R. Kinnunen,²⁶
M. J. Kortelainen,²⁶ T. Lampén,²⁶ K. Lassila-Perini,²⁶ S. Lehti,²⁶ T. Lindén,²⁶ P. Luukka,²⁶ T. Mäenpää,²⁶ T. Peltola,²⁶
E. Tuominen,²⁶ J. Tuominiemi,²⁶ E. Tuovinen,²⁶ L. Wendland,²⁶ J. Talvitie,²⁷ T. Tuuva,²⁷ M. Besancon,²⁸ F. Couderc,²⁸ E. Tuominen,²⁶ J. Tuominiemi,²⁶ E. Tuovinen,²⁶ L. Wendland,²⁶ J. Talvitie,²⁷ T. Tuuva,²⁷ M. Besancon,²⁸ F. Couderc,²⁸ M. Dejardin,²⁸ D. Denegri,²⁸ B. Fabbro,²⁸ J. L. Faure,²⁸ C. Favaro,²⁸ F. Ferri,²⁸ S. Ganjour,²⁸ A. Givernaud,²⁸ P. Gras,²⁸ G. Hamel de Monchenault,²⁸ P. Jarry,²⁸ E. Locci,²⁸ J. Malcles,²⁸ J. Rander,²⁸ A. Rosowsky,²⁸ M. Titov,²⁸ S. Baffioni,²⁹
F. Beaudette,²⁹ P. Busson,²⁹ C. Charlot,²⁹ T. Dahms,²⁹ M. Dalchenko,²⁹ L. Dobrzynski,²⁹ N. Filipovic,²⁹ A. Florent,²⁹
R. Granier de Cassagnac,²⁹ L. Mastrolorenzo,²⁹ P. Miné,²⁹ C. Mironov,²⁹ I. N. Naranjo,²⁹ M. Nguyen,²⁹ C. Ochando,²⁹ P. Paganini,²⁹ S. Regnard,²⁹ R. Salerno,²⁹ J. B. Sauvan,²⁹ Y. Sirois,²⁹ C. Veelken,²⁹ Y. Yilmaz,²⁹ A. Zabi,²⁹ J.-L. Agram,^{30,0} J. Andrea,³⁰ A. Aubin,³⁰ D. Bloch,³⁰ J.-M. Brom,³⁰ E. C. Chabert,³⁰ C. Collard,³⁰ E. Conte,^{30,0} J.-C. Fontaine,^{30,0} B. Fuks,³⁰ D. Gelé,³⁰ U. Goerlach,³⁰ C. Goetzmann,³⁰ A.-C. Le Bihan,³⁰ P. Van Hove,³⁰ S. Gadrat,³¹ S. Beauceron,³² N. Beaupere,³² G. Boudoul,^{32,c} E. Bouvier,³² S. Brochet,³² C. A. Carrillo Montoya,³² J. Chasserat,³² R. Chierici,³² D. Contardo,^{32,c} P. Depasse,³² H. El Mamouni,³² J. Fan,³² J. Fay,³² S. Gascon,³² M. Gouzevitch,³² B. Ille,³² T. Kurca,³² M. Lethuillier,³² L. Mirabito,³² S. Perries,³² J. D. Ruiz Alvarez,³² D. Sabes,³² L. Sgandurra,³² V. Sordini,³² M. Vander Donckt,³² P. Verdier,³² S. Viret,³² H. Xiao,³² L. Rurua,³³ C. Autermann,³⁴ S. Beranek,³⁴ M. Bontenackels,³⁴ M. Edelhoff,³⁴ L. Feld,³⁴ O. Hindrichs,³⁴ K. Klein,³⁴ A. Ostapchuk,³⁴ A. Perieanu,³⁴ F. Raupach,³⁴ J. Sammet,³⁴ S. Schael,³⁴ H. Weber,³⁴ B. Wittmer,³⁴ V. Zhukov,^{34,f} M. Ata,³⁵ M. Brodski,³⁵ E. Dietz-Laursonn,³⁵ D. Duchardt,³⁵ M. Erdmann,³⁵ R. Fischer,³⁵ A. Güth,³⁵ T. Hebbeker,³⁵ C. Heidemann,³⁵ K. Hoepfner,³⁵ D. Klingebiel,³⁵ S. Knutzen,³⁵ P. Kreuzer,³⁵ M. Merschmeyer,³⁵ A. Outil, T. Hebbekel, C. Heidemann, K. Höephiel, D. Kningebiel, S. Khutzen, F. Kleuzer, M. Merschneyel,
A. Meyer,³⁵ P. Millet,³⁵ M. Olschewski,³⁵ K. Padeken,³⁵ P. Papacz,³⁵ H. Reithler,³⁵ S. A. Schmitz,³⁵ L. Sonnenschein,³⁵ D. Teyssier,³⁵ S. Thüer,³⁵ M. Weber,³⁵ V. Cherepanov,³⁶ Y. Erdogan,³⁶ G. Flügge,³⁶ H. Geenen,³⁶ M. Geisler,³⁶ W. Haj Ahmad,³⁶ A. Heister,³⁶ F. Hoehle,³⁶ B. Kargoll,³⁶ T. Kress,³⁶ Y. Kuessel,³⁶ A. Künsken,³⁶ J. Lingemann,^{36,c} A. Nowack,³⁶ I. M. Nugent,³⁶ L. Perchalla,³⁶ O. Pooth,³⁶ A. Stahl,³⁶ I. Asin,³⁷ N. Bartosik,³⁷ J. Behr,³⁷ W. Behrenhoff,³⁷ U. Behrens,³⁷ A. J. Bell,³⁷ M. Bergholz,^{37,p} A. Bethani,³⁷ K. Borras,³⁷ A. Burgmeier,³⁷ A. Cakir,³⁷ L. Calligaris,³⁷ A. Campbell,³⁷ S. Choudhury,³⁷ F. Costanza,³⁷ C. Diez Pardos,³⁷ S. Dooling,³⁷ T. Dorland,³⁷ G. Eckerlin,³⁷ D. Eckstein,³⁷ T. Eichhorn,³⁷ G. Flucke,³⁷ J. Garay Garcia,³⁷ A. Geiser,³⁷ P. Gunnellini,³⁷ J. Hauk,³⁷ M. Hempel,^{37,p} D. Horton,³⁷ H. Jung,³⁷ A. Kalogeropoulos,³⁷ M. Kasemann,³⁷ P. Katsas,³⁷ J. Kieseler,³⁷ C. Kleinwort,³⁷ D. Krücker,³⁷ W. Lange,³⁷ J. Leonard,³⁷ K. Lipka,³⁷ A. Lobanov,³⁷ W. Lohmann,^{37,p} B. Lutz,³⁷ R. Mankel,³⁷ I. Marfin,^{37,p} I.-A. Melzer-Pellmann,³⁷ A. B. Meyer,³⁷ G. Mittag,³⁷ J. Mnich,³⁷ A. Mussgiller,³⁷ S. Naumann-Emme,³⁷ A. Nayak,³⁷ O. Novgorodova,³⁷ E. Ntomari,³⁷ H. Perrey,³⁷ D. Pitzl,³⁷ R. Placakyte,³⁷ A. Raspereza,³⁷ P. M. Ribeiro Cipriano,³⁷ B. Roland,³⁷ E. Ron,³⁷ M. Ö. Sahin,³⁷ J. Salfeld-Nebgen,³⁷ P. Saxena,³⁷ R. Schmidt,^{37,p} T. Schoerner-Sadenius,³⁷ M. Schröder,³⁷ C. Seitz,³⁷ S. Spannagel,³⁷ A. D. R. Vargas Trevino,³⁷ R. Walsh,³⁷ C. Wissing,³⁷ M. Aldaya Martin,³⁸ V. Blobel,³⁸ M. Centis Vignali,³⁸ A. R. Draeger,³⁸

<page-header><page-header>

P.G. Verdini, ^{65a} C. Vernieri, ^{65a,65c,c} L. Barone, ^{66a,66b} F. Cavallari, ^{66a} G. D'imperio, ^{66a,66b} D. Del Re, ^{66a,66b} M. Diemoz, ^{66a} M. Grassi, ^{66a,66b} C. Jorda, ^{66a} E. Longo, ^{66a,66b} F. Margaroli, ^{66a,66b} P. Meridiani, ^{66a} F. Micheli, ^{66a,66b,c} S. Nourbakhsh, ^{66a,66b} G. Organtini, ^{66a,66b} R. Paramatti, ^{66a} S. Rahatlou, ^{66a,66b} C. Rovelli, ^{66a} F. Santanastasio, ^{66a,66b} L. Soffi, ^{66a,66b,c} P. Traczyk, ^{66a,66b} N. Amapane, ^{67a,67b} R. Arcidiacono, ^{67a,67b} A. Degano, ^{67a,67b,c} M. Arneodo, ^{67a,67c} R. Bellan, ^{67a,67b} C. Biino, ^{67a} N. Cartiglia, ^{67a} S. Casasso, ^{67a,67b} V. Monaco, ^{67a,67b} A. Degano, ^{67a,67b} M. Demaria, ^{67a} L. Finco, ^{67a,67b} C. Mariotti, ^{67a} S. Maselli, ^{67a} M. Pelliccioni, ^{67a} G. L. Pinna Angioni, ^{67a,67b} A. Potenza, ^{67a,67b} A. Romero, ^{67a,67b} M. Ruspa, ^{67a,67c} R. Sacchi, ^{67a,67b} A. Solano, ^{67a,67b} A. Staiano, ^{67a} U. Tamponi, ^{67a} S. Belforte, ^{68a} V. Candelise, ^{68a,68b} M. Casarsa, ^{68a} F. Cossutti, ^{68a} G. Della Ricca, ^{68a,68b} B. Gobbo, ^{68a} C. La Licata, ^{68a,68b} M. Marone, ^{68a,68b} D. Montanino, ^{68a,68b} A. Schizzi, ^{68a,68b,c} T. Umer, ^{68a,68b} A. Zanetti, ^{68a} S. Chang, ⁶⁹ A. Kropivnitskaya, ⁶⁹ S. K. Nam, ⁶⁹ D. H. Kim, ⁷⁰ G. N. Kim, ⁷⁰ M. S. Kim, ⁷⁰ D. J. Kong, ⁷⁰ S. Lee, ⁷⁰ Y. D. Oh, ⁷⁰ H. Park, ⁷⁰ A. Sakharov, ⁷⁰ D. C. Son, ⁷⁰ T. J. Kim, ⁷¹ J. Y. Kim, ⁷² S. Song, ⁷² S. Choi, ⁷³ D. Gyun, ⁷³ B. Hong, ⁷³ M. Jo, ⁷³ H. Kim, ⁷³ Y. Kin, ⁷³ B. Lee, ⁷³ K. S. Lee, ⁷³ S. K. Park, ⁷⁴ G. Ryu, ⁷⁴ M. S. Ryu, ⁷⁴ Y. Choi, ⁷⁵ Y. K. Choi, ⁷⁵ D. Kim, ⁷⁵ D. Kim, ⁷⁵ J. Lee, ⁷⁵ H. Seo, ⁷⁵ I. Yu, ⁷⁵ A. Juodagalvis, ⁷⁶ J. R. Komaragiri, ⁷⁷ M. A. B. Md Ali, ⁷⁷ H. Castilla-Valdez, ⁷⁸ S. Carrillo Moreno, ⁷⁹ I. Heredia-de La Cruz,^{78,cc} A. Hernandez-Almada,⁷⁸ R. Lopez-Fernandez,⁷⁸ A. Sanchez-Hernandez,⁷⁸ S. Carrillo Moreno,⁷⁹ F. Vazquez Valencia,⁷⁹ I. Pedraza,⁸⁰ H. A. Salazar Ibarguen,⁸⁰ E. Casimiro Linares,⁸¹ A. Morelos Pineda,⁸¹ D. Krofcheck,⁸² P. Vazquez valencia, T. Pedraza, H. A. Salazar Ibarguen, E. Casimiro Elnares, A. Moreios Pineda, D. Kroicheck, P. H. Butler,⁸³ S. Reucroft,⁸³ A. Ahmad,⁸⁴ M. Ahmad,⁸⁴ Q. Hassan,⁸⁴ H. R. Hoorani,⁸⁴ S. Khalid,⁸⁴ W. A. Khan,⁸⁴ T. Khurshid,⁸⁴ M. A. Shah,⁸⁴ M. Shoaib,⁸⁴ H. Bialkowska,⁸⁵ M. Bluj,⁸⁵ B. Boimska,⁸⁵ T. Frueboes,⁸⁵ M. Górski,⁸⁵ M. Kazana,⁸⁵ K. Nawrocki,⁸⁵ K. Romanowska-Rybinska,⁸⁵ M. Szleper,⁸⁵ P. Zalewski,⁸⁵ G. Brona,⁸⁶ K. Bunkowski,⁸⁶ M. Cwiok,⁸⁶ W. Dominik,⁸⁶ K. Doroba,⁸⁶ A. Kalinowski,⁸⁶ M. Konecki,⁸⁶ J. Krolikowski,⁸⁶ M. Misiura,⁸⁶ M. Olszewski,⁸⁶ W. Wolszczak,⁸⁶ P. Bargassa,⁸⁷ C. Beirão Da Cruz E Silva,⁸⁷ P. Faccioli,⁸⁷ P. G. Ferreira Parracho,⁸⁷ M. Gallinaro,⁸⁷ W. WOISZCZAK, F. Bargassa, C. Benao Da Cruz E Silva, F. Faccion, F. G. Ferreira Parracno, M. Gallinaro, ⁸⁸
L. Lloret Iglesias, ⁸⁷ F. Nguyen, ⁸⁷ J. Rodrigues Antunes, ⁸⁷ J. Seixas, ⁸⁷ J. Varela, ⁸⁷ P. Vischia, ⁸⁷ P. Bunin, ⁸⁸ I. Golutvin, ⁸⁸
A. Kamenev, ⁸⁸ V. Karjavin, ⁸⁸ V. Konoplyanikov, ⁸⁸ G. Kozlov, ⁸⁸ A. Lanev, ⁸⁸ A. Malakhov, ⁸⁸ V. Matveev, ^{88,dd} P. Moisenz, ⁸⁸
V. Palichik, ⁸⁸ V. Perelygin, ⁸⁸ M. Savina, ⁸⁸ S. Shmatov, ⁸⁸ S. Shulha, ⁸⁸ N. Skatchkov, ⁸⁸ V. Smirnov, ⁸⁸ A. Zarubin, ⁸⁸
V. Golovtsov, ⁸⁹ Y. Ivanov, ⁸⁹ V. Kim, ^{89,ee} P. Levchenko, ⁸⁹ V. Murzin, ⁸⁹ V. Oreshkin, ⁸⁹ I. Smirnov, ⁸⁹ V. Sulimov, ⁸⁹
L. Uvarov, ⁸⁹ S. Vavilov, ⁸⁹ A. Vorobyev, ⁸⁹ An. Vorobyev, ⁸⁹ Yu. Andreev, ⁹⁰ A. Dermenev, ⁹⁰ S. Gninenko, ⁹⁰ N. Golubev, ⁹⁰ L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev, Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin, V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Epshteyn, V. Gavrilov, A. Zhokin, V. Andreev, A. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Epshteyn, V. Gavrilov, A. Zhokin, V. Andreev, E. Popov, G. Safronov, K. Kirakosyan, A. Spiridonov, N. Stolin, S. Semenov, A. Spiridonov, S. V. Rusakov, A. Zhokin, V. Andreev, E. Boos, S. U. Dremin, Z. M. Kirakosyan, A. Leonidov, G. Mesyats, S. V. Rusakov, A. Vinogradov, A. Belyaev, S. K. Kachanov, K. Sobos, V. Bunichev, M. Dubinin, S. Dubinin, S. Obraztsov, A. Bunichev, S. Kachanov, A. Snigirev, A. Snigirev, A. Sobol, K. Kachanov, K. Kachanov, A. Kalinin, A. D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov, P. Adzic, Sig M. Ekmedzic, S. J. Milosevic, S. V. Rekovic, S. J. Alcaraz Maestre, S. Karakov, A. Dalaeda Baria, S. Obratilana, S. Converge, K. K. Sarakov, K. Karakov, K. Karakov, K. Karakov, A. Kalinin, A. Volkov, K. Kushine, J. Kushin, S. Obraztsov, S. Karakov, S. Kushin, K. Kachanov, K. Kachanov, A. Kalinin, A. Uzunian, A. Volkov, P. Adzic, Sig M. Ekmedzic, S. J. Milosevic, S. Kakovic, S. J. Alcaraz Maestre, S. Kushin, S. Kushin, S. Caraz, Kashin, K. Kachanov, S. Kushin, K. Kachanov, S. Kushin, K. Kachanov, S. Kushin, S. Kushin, S. Kushin, S. Kushin, S. Kushin, K. Kushin, S. Kushin, K. Kushin, S. Kushin C. Battilana, ⁹⁶ E. Calvo, ⁹⁶ M. Cerrada, ⁹⁶ M. Chamizo Llatas, ⁹⁶ N. Colino, ⁹⁶ B. De La Cruz, ⁹⁶ A. Delgado Peris, ⁹⁶ D. Domínguez Vázquez, ⁹⁶ A. Escalante Del Valle, ⁹⁶ C. Fernandez Bedoya, ⁹⁶ J. P. Fernández Ramos, ⁹⁶ J. Flix, ⁹⁶ M. C. Fouz, ⁹⁶ P. Garcia-Abia, ⁹⁶ O. Gonzalez Lopez, ⁹⁶ S. Goy Lopez, ⁹⁶ J. M. Hernandez, ⁹⁶ M. I. Josa, ⁹⁶ M. I. Josa, ⁹⁶ M. C. Fouz, ⁹⁶ P. Garcia-Abia, ⁹⁶ O. Gonzalez Lopez, ⁹⁶ S. Goy Lopez, ⁹⁶ J. M. Hernandez, ⁹⁶ M. I. Josa, ⁹⁶ M. J. M. Hernandez, ⁹⁶ M. I. Josa, ⁹⁶ M. I. Josa, ⁹⁶ M. J. M. Hernandez, E. Navarro De Martino,⁹⁶ A. Pérez-Calero Yzquierdo,⁹⁶ J. Puerta Pelayo,⁹⁶ A. Quintario Olmeda,⁹⁶ I. Redondo,⁹⁶ L. Romero,⁹⁶ M. S. Soares,⁹⁶ C. Albajar,⁹⁷ J. F. de Trocóniz,⁹⁷ M. Missiroli,⁹⁷ D. Moran,⁹⁷ H. Brun,⁹⁸ J. Cuevas,⁹⁸ J. Fernandez Menendez,⁹⁸ S. Folgueras,⁹⁸ I. Gonzalez Caballero,⁹⁸ J. A. Brochero Cifuentes,⁹⁹ I. J. Cabrillo,⁹⁹ A. Calderon,⁹⁹ J. Duarte Campderros,⁹⁹ M. Fernandez,⁹⁹ G. Gomez,⁹⁹ A. Graziano,⁹⁹ A. Lopez Virto,⁹⁹ J. Marco,⁹⁹ R. Marco,⁹⁹ C. Martinez Rivero,⁹⁹ F. Matorras,⁹⁹ F. J. Munoz Sanchez,⁹⁹ J. Piedra Gomez,⁹⁹ T. Rodrigo,⁹⁹ R. Marco,⁵⁹ C. Martinez Rivero,⁵⁹ F. Matorras,⁵⁹ F. J. Munoz Sanchez,⁵⁹ J. Piedra Gomez,⁵⁹ T. Rodrigo,⁵⁹
A. Y. Rodríguez-Marrero,⁵⁹ A. Ruiz-Jimeno,⁵⁹ L. Scodellaro,⁵⁹ I. Vila,⁵⁹ R. Vilar Cortabitarte,⁵⁹ D. Abbaneo,¹⁰⁰
E. Auffray,¹⁰⁰ G. Auzinger,¹⁰⁰ M. Bachtis,¹⁰⁰ P. Baillon,¹⁰⁰ A. H. Ball,¹⁰⁰ D. Barney,¹⁰⁰ A. Benaglia,¹⁰⁰ J. Bendavid,¹⁰⁰
L. Benhabib,¹⁰⁰ J. F. Benitez,¹⁰⁰ C. Bernet,^{100,h} G. Bianchi,¹⁰⁰ P. Bloch,¹⁰⁰ A. Bocci,¹⁰⁰ A. Bonato,¹⁰⁰ O. Bondu,¹⁰⁰
C. Botta,¹⁰⁰ H. Breuker,¹⁰⁰ T. Camporesi,¹⁰⁰ G. Cerminara,¹⁰⁰ S. Colafranceschi,^{100,hh} M. D'Alfonso,¹⁰⁰ D. d'Enterria,¹⁰⁰
A. Dabrowski,¹⁰⁰ A. David,¹⁰⁰ F. De Guio,¹⁰⁰ A. De Roeck,¹⁰⁰ S. De Visscher,¹⁰⁰ E. Di Marco,¹⁰⁰ M. Dobson,¹⁰⁰
M. Dordevic,¹⁰⁰ N. Dupont-Sagorin,¹⁰⁰ A. Elliott-Peisert,¹⁰⁰ J. Eugster,¹⁰⁰ G. Franzoni,¹⁰⁰ W. Funk,¹⁰⁰ D. Gigi,¹⁰⁰ K. Gill,¹⁰⁰
D. Giordano,¹⁰⁰ M. Girone,¹⁰⁰ F. Glege,¹⁰⁰ R. Guida,¹⁰⁰ S. Gundacker,¹⁰⁰ M. Guthoff,¹⁰⁰ J. Hammer,¹⁰⁰ M. Hansen,¹⁰⁰
P. Harris,¹⁰⁰ J. Hegeman,¹⁰⁰ V. Innocente,¹⁰⁰ P. Janot,¹⁰⁰ K. Kousouris,¹⁰⁰ K. Krajczar,¹⁰⁰ P. Lecoq,¹⁰⁰ C. Lourenço,¹⁰⁰

N. Magini,¹⁰⁰ L. Malgeri,¹⁰⁰ M. Mannelli,¹⁰⁰ J. Marrouche,¹⁰⁰ L. Masetti,¹⁰⁰ F. Meijers,¹⁰⁰ S. Mersi,¹⁰⁰ E. Meschi,¹⁰⁰ F. Moortgat,¹⁰⁰ S. Morovic,¹⁰⁰ M. Mulders,¹⁰⁰ P. Musella,¹⁰⁰ L. Orsini,¹⁰⁰ L. Pape,¹⁰⁰ E. Perez,¹⁰⁰ L. Perrozzi,¹⁰⁰ A. Petrilli,¹⁰⁰ G. Petrucciani,¹⁰⁰ A. Pfeiffer,¹⁰⁰ M. Pierini,¹⁰⁰ M. Pimiä,¹⁰⁰ D. Piparo,¹⁰⁰ M. Plagge,¹⁰⁰ A. Racz,¹⁰⁰ G. Rolandi,^{100,ii} M. Rovere,¹⁰⁰ H. Sakulin,¹⁰⁰ C. Schäfer,¹⁰⁰ C. Schwick,¹⁰⁰ A. Sharma,¹⁰⁰ P. Siegrist,¹⁰⁰ P. Silva,¹⁰⁰ M. Simon,¹⁰⁰ P. Sphicas,^{100,ij} D. Spiga,¹⁰⁰ J. Steggemann,¹⁰⁰ B. Stieger,¹⁰⁰ M. Stoye,¹⁰⁰ Y. Takahashi,¹⁰⁰ D. Treille,¹⁰⁰ A. Tsirou,¹⁰⁰ G. I. Veres,^{101, T} J. R. Vlimant,¹⁰⁰ N. Wardle,¹⁰⁰ H. K. Wöhri,¹⁰⁰ H. Wollny,¹⁰⁰ W. D. Zeuner,¹⁰⁰ W. Bertl,¹⁰¹ K. Deiters,¹⁰¹ W. Erdmann,¹⁰¹ R. Horisberger,¹⁰¹ Q. Ingram,¹⁰¹ H. C. Kaestli,¹⁰¹ D. Kotlinski,¹⁰¹ U. Langenegger,¹⁰¹ D. Renker,¹⁰¹ T. Rohe,¹⁰¹ F. Bachmair,¹⁰² M. Donegà,¹⁰² M. Dünser,¹⁰² P. Eller,¹⁰² C. Grab,¹⁰² D. Hits,¹⁰² J. Hoss,¹⁰² W. Lustermann¹⁰² B. Mangano,¹⁰² A. C. Marini,¹⁰² P. Martinez Ruiz del Arbol¹⁰² M. Masciovecchio¹⁰² D. Meister¹⁰² K. Deiters, "W. Erdmann, "R. Horisberger, "Q. Ingram, "H. C. Kaestli, "D. Kotlinski, "U. Langenegger,"
 D. Renker, "G. Dissertori, "M. Dutinar," M. Donegà, "M. Duinser, "P. P. Eller, "G. Carab, "M. D. Hits, "P. J. Hoss, "Gl. N. Duinser, "D. P. Martinez Ruiz del Arbol, "M. Masciovecchi, "D. Meister, "D. Motinar, "C. Nageli, "Mark, P. Enssizhedial, "F. Pandolf, "F. Panset, "M. Meretzal, "M. M. Quittnat, "D. L. Robene, "M. Mosciovecchi, "D. Meister, "M. Masciovecchi, "D. Meister, "M. Masciovecchi, "D. Meister, "M. Rossini, "A. Starodumov, "Mark, M. Takahashi, "F. F. Mongu," S. Taroni, "M. Verzuti, "M. Kuthart, "D. L. Robene, "M. Marking, "J. Ngadibaba, "P. Robenman," F. F. Rongu," S. Taroni, "M. Verzuti, "Y. Kuthart, "D. L. Robene, "M. Rossini, "A. C. Marking, "N. Laroni, "M. Verzuti, "Y. Kuthart, "D. L. Robene, "M. Rossini, "W. A. Chao, "K. F. Chen, "G. P. H. Chen, "G. Nerzuti, "G. W. Round, "N. Cardaci, "M. F. Canelli, "Y. V. Chang, "K. F. Chen, "G. P. H. Chen, "G. C. Dierz, "M. C. Gunnaler," B. Kalminster, "D. Y. Hou, "S. Kuthart, "S. Hou, "S. Kuthart, "G. H. Chen, "G. C. Dierz, "G. U. Gunnaler," S. Karoi, "S. H. Chang, "S. Y. Chao, "S. Y. Chao, "K. F. Chen, "G. P. L. Chen, "G. C. Dierz, "G. U. Gunnaler," W. S. Hou, "S. K. V. Kao, "S. V. Chang, "S. Y. Chao, "S. Y. Lui, "R. S. Lui, "D. Nadigunder, "G. E. Petrakou, "G. Y. M. Tzeng, "B. Wilken, "B. Baswapibbop, "O. Nimanobhas," N. Suwonjandec, "M. A. Adiguzzi, "M. H. Sakata, "G. G. Conzul, "G. P. Satuti, "G. S. Ottark, "G. B. Jakak, "G. M. Kaya, "G. O. Kaya, "G. S. Cankocak, "H. E. Vardari, "G. J. Verkhi, "G. S. Lui, "G. S. Lui, "D. S. Kata, "G. C. Kankocak, "G. J. Senkin, "Y. U. Satuti, "G. J. Satuti, "G. S. Senkin, "Y. U. Satuti, "G. J. Satuti, "G. S. Kawa, "G. J. Verkhi, "G. S. Senkin, "Y. U. Satuti, "G. J. Satuti, "G. S. Kata, "G. W. Kaya, "G. O. Kaya, "G. Kaya, "G. S. Kakare, "G. J. Warka, "G. S. Rawa, "G. Kaya, "G. K. Kata, "G. Kaya, "G. S. Kakare, "G. J. Kawa, "G. S. Senkin, "Y. U. Satuti, "G. Kaya, "G. K. Kaya, "G. S. Cankoak, "G. <page-header><page-header><page-header>

M. Rodenburg, ¹⁵⁰ G. Smith, ¹⁵⁰ B. L. Winer, ¹⁵⁰ H. Wolfe, ¹⁵⁰ H. W. Wulsin, ¹⁵⁰ O. Driga, ¹⁵¹ P. Elmer, ¹⁵¹ P. Hebda, ¹⁵¹ A. Hunt, ¹⁵¹ S. A. Koay, ¹⁵¹ P. Lujan, ¹⁵¹ D. Marlow, ¹⁵¹ T. Medvedeva, ¹⁵¹ M. Mooney, ¹⁵¹ J. Olsen, ¹⁵¹ P. Piroué, ¹⁵¹ X. Quan, ¹⁵¹ H. Saka, ¹⁵¹ D. Stickland, ^{151,c} C. Tully, ¹⁵¹ J. S. Werner, ¹⁵¹ A. Zuranski, ¹⁵¹ E. Brownson, ¹⁵² H. Mendez, ¹⁵² J. E. Ramirez Vargas, ¹⁵² V. E. Barnes, ¹⁵³ D. Benedetti, ¹⁵³ D. Bortoletto, ¹⁵³ M. De Mattia, ¹⁵³ L. Gutay, ¹⁵³ Z. Hu, ¹⁵³ M. Kress, ¹⁵³ M. Leonardo, ¹⁵³ D. Lopes Pegna, ¹⁵³ V. Maroussov, ¹⁵³ D. H. Miller, ¹⁵³ N. Neumeister, ¹⁵³ B. C. Radburn-Smith, ¹⁵³ X. Shi, ¹⁵³ I. Shipsey, ¹⁵³ D. Silvers, ¹⁵³ A. Svyatkovskiy, ¹⁵³ F. Wang, ¹⁵³ W. Xie, ¹⁵³ L. Xu, ¹⁵³ H. D. Yoo, ¹⁵³ J. Zablocki, ¹⁵³ Y. Zheng, ¹⁵³ N. Parashar, ¹⁵⁴ J. Stupak, ¹⁵⁴ A. Adair, ¹⁵⁵ B. Akgun, ¹⁵⁵ K. M. Ecklund, ¹⁵⁵ F. J. M. Geurts, ¹⁵⁵ W. Li, ¹⁵⁵ B. Michlin, ¹⁵⁵ B. P. Padley, ¹⁵⁵ R. Redjimi, ¹⁵⁵ J. Roberts, ¹⁵⁵ J. Zabel, ¹⁵⁵ B. Betchart, ¹⁵⁶ A. Bodek, ¹⁵⁶ R. Covarelli, ¹⁵⁶ P. de Barbaro, ¹⁵⁶ R. Demina, ¹⁵⁶ Y. Eshaq, ¹⁵⁶ D. Vishnevskiy, ¹⁵⁶ R. Ciesielski, ¹⁵⁷ L. Demortier, ¹⁵⁷ K. Goulianos, ¹⁵⁷ G. Lungu, ¹⁵⁷ C. Mesropian, ¹⁵⁷ S. Arora, ¹⁵⁸ A. Barker, ¹⁵⁸ J. P. Chou, ¹⁵⁸ E. Halkiadakis, ¹⁵⁸ D. Hidas, ¹⁵⁸ S. Kaplan, ¹⁵⁸ A. Lath, ¹⁵⁸ S. Panwalkar, ¹⁵⁸ M. Park, ¹⁵⁸ R. Patel, ¹⁵⁸ S. Salur, ¹⁵⁸ S. Schnetzer, ¹⁵⁸ E. Halkiadakis, ¹⁵⁸ D. Hidas, ¹⁵⁸ S. Kaplan, ¹⁵⁸ A. Lath, ¹⁵⁸ S. Panwalkar, ¹⁵⁸ M. Park, ¹⁵⁸ R. Patel, ¹⁵⁸ S. Salur, ¹⁵⁸ S. Schnetzer, ¹⁵⁸ S. Somalwar, ¹⁵⁸ R. Stone, ¹⁵⁸ S. Thomas, ¹⁵⁸ P. Thomassen, ¹⁵⁸ M. Walker, ¹⁵⁸ K. Rose, ¹⁵⁹ S. Spanier, ¹⁵⁹ A. York, ¹⁵⁹ O. Bouhali,^{160,ccc} A. Castaneda Hernandez,¹⁶⁰ R. Eusebi,¹⁶⁰ W. Flanagan,¹⁶⁰ J. Gilmore,¹⁶⁰ T. Kamon,^{160,ddd}
V. Khotilovich,¹⁶⁰ V. Krutelyov,¹⁶⁰ R. Montalvo,¹⁶⁰ I. Osipenkov,¹⁶⁰ Y. Pakhotin,¹⁶⁰ A. Perloff,¹⁶⁰ J. Roe,¹⁶⁰ A. Rose,¹⁶⁰
A. Safonov,¹⁶⁰ T. Sakuma,¹⁶⁰ I. Suarez,¹⁶⁰ A. Tatarinov,¹⁶⁰ N. Akchurin,¹⁶¹ C. Cowden,¹⁶¹ J. Damgov,¹⁶¹ C. Dragoiu,¹⁶¹
P. R. Dudero,¹⁶¹ J. Faulkner,¹⁶¹ K. Kovitanggoon,¹⁶¹ S. Kunori,¹⁶¹ S. W. Lee,¹⁶¹ T. Libeiro,¹⁶¹ I. Volobouev,¹⁶¹ E. Appelt,¹⁶² P. R. Dudero, ¹⁶¹ J. Faulkner, ¹⁶¹ K. Kovitanggoon, ¹⁶¹ S. Kunori, ¹⁶¹ S. W. Lee, ¹⁶¹ T. Libeiro, ¹⁶¹ I. Volobouev, ¹⁶¹ E. Appelt, ¹⁶² A. G. Delannoy, ¹⁶² S. Greene, ¹⁶² A. Gurrola, ¹⁶² W. Johns, ¹⁶² C. Maguire, ¹⁶² Y. Mao, ¹⁶² A. Melo, ¹⁶² M. Sharma, ¹⁶² P. Sheldon, ¹⁶² B. Snook, ¹⁶² S. Tuo, ¹⁶² J. Velkovska, ¹⁶² M. W. Arenton, ¹⁶³ S. Boutle, ¹⁶³ B. Cox, ¹⁶³ B. Francis, ¹⁶³ J. Goodell, ¹⁶³ R. Hirosky, ¹⁶³ A. Ledovskoy, ¹⁶³ H. Li, ¹⁶³ C. Lin, ¹⁶³ C. Neu, ¹⁶³ J. Wood, ¹⁶³ C. Clarke, ¹⁶⁴ R. Harr, ¹⁶⁴ P. E. Karchin, ¹⁶⁴ C. Kottachchi Kankanamge Don, ¹⁶⁴ P. Lamichhane, ¹⁶⁴ J. Sturdy, ¹⁶⁴ D. A. Belknap, ¹⁶⁵ D. Carlsmith, ¹⁶⁵ M. Cepeda, ¹⁶⁵ S. Dasu, ¹⁶⁵ L. Dodd, ¹⁶⁵ S. Duric, ¹⁶⁵ E. Friis, ¹⁶⁵ R. Hall-Wilton, ¹⁶⁵ M. Herndon, ¹⁶⁵ A. Hervé, ¹⁶⁵ P. Klabbers, ¹⁶⁵ A. Lanaro, ¹⁶⁵ I. Ross, ¹⁶⁵ T. Sarangi, ¹⁶⁵ A. Savin, ¹⁶⁵ W. H. Smith, ¹⁶⁵ D. Taylor, ¹⁶⁵ P. Verwilligen, ¹⁶⁵

C. Vuosalo,¹⁶⁵ and N. Woods¹⁶⁵

(CMS Collaboration)

¹Yerevan Physics Institute, Yerevan, Armenia ²Institut für Hochenergiephysik der OeAW, Wien, Austria ³National Centre for Particle and High Energy Physics, Minsk, Belarus ⁴Universiteit Antwerpen, Antwerpen, Belgium ⁵Vrije Universiteit Brussel, Brussel, Belgium ⁶Université Libre de Bruxelles, Bruxelles, Belgium ⁷Ghent University, Ghent, Belgium ⁸Université Catholique de Louvain, Louvain-la-Neuve, Belgium ⁹Université de Mons, Mons, Belgium ¹⁰Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil ¹¹Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil ^{12a}Universidade Estadual Paulista, São Paulo, Brazil ^{12b}Universidade Federal do ABC, São Paulo, Brazil ¹³Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria ¹⁴University of Sofia, Sofia, Bulgaria ¹⁵Institute of High Energy Physics, Beijing, China ¹⁶State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China ⁷Universidad de Los Andes, Bogota, Colombia ¹⁸University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia ¹⁹University of Split, Faculty of Science, Split, Croatia

²⁰Institute Rudjer Boskovic, Zagreb, Croatia

²¹University of Cyprus, Nicosia, Cyprus

²²Charles University, Prague, Czech Republic

²³Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics,

Cairo, Egypt

²⁴National Institute of Chemical Physics and Biophysics, Tallinn, Estonia ⁵Department of Physics, University of Helsinki, Helsinki, Finland ²⁶Helsinki Institute of Physics, Helsinki, Finland ²⁷Lappeenranta University of Technology, Lappeenranta, Finland ²⁸DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France ²⁹Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France ³⁰Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France ³¹Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France ³²Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France ³E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia ³⁴RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany ³⁵RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany ³⁶RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany ³⁷Deutsches Elektronen-Synchrotron, Hamburg, Germany ³⁸University of Hamburg, Hamburg, Germany ³⁹Institut für Experimentelle Kernphysik, Karlsruhe, Germany ⁴⁰Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece ⁴¹University of Athens, Athens, Greece ⁴²University of Ioánnina, Ioánnina, Greece ⁴³Wigner Research Centre for Physics, Budapest, Hungary ⁴⁴Institute of Nuclear Research ATOMKI, Debrecen, Hungary ¹⁵University of Debrecen, Debrecen, Hungary ⁴⁶National Institute of Science Education and Research, Bhubaneswar, India Panjab University, Chandigarh, India ⁴⁸University of Delhi, Delhi, India ⁴⁹Saha Institute of Nuclear Physics, Kolkata, India ⁵⁰Bhabha Atomic Research Centre, Mumbai, India ⁵¹Tata Institute of Fundamental Research, Mumbai, India ⁵²Institute for Research in Fundamental Sciences (IPM), Tehran, Iran ⁵³University College Dublin, Dublin, Ireland ^{54a}INFN Sezione di Bari, Bari, Italy ^{54b}Università di Bari, Bari, Italy ⁵⁴cPolitecnico di Bari, Bari, Italy ^{55a}INFN Sezione di Bologna, Bologna, Italy ^{55b}Università di Bologna, Bologna, Italy ^{56a}INFN Sezione di Catania, Catania, Italy ^{56b}Università di Catania, Catania, Italy ^{56c}CSFNSM, Catania, Italy ^{57a}INFN Sezione di Firenze, Firenze, Italy ^{57b}Università di Firenze, Firenze, Italy ⁵⁸INFN Laboratori Nazionali di Frascati, Frascati, Italy ^{59a}INFN Sezione di Genova, Genova, Italy ^{59b}Università di Genova, Genova, Italy ^{60a}INFN Sezione di Milano-Bicocca, Milano, Italy ^{60b}Università di Milano-Bicocca, Milano, Italy ^{61a}INFN Sezione di Napoli, Napoli, Italy ^{61b}Università di Napoli 'Federico II', Napoli, Italy ^{61c}Università della Basilicata (Potenza), Napoli, Italy ^{61d}Università G. Marconi (Roma), Napoli, Italy ^{62a}INFN Sezione di Padova, Padova, Italy ^{62b}Università di Padova, Padova, Italy ^{62c}Università di Trento (Trento), Padova, Italy 63a INFN Sezione di Pavia, Pavia, Italy ^{63b}Università di Pavia, Pavia, Italy ^{64a}INFN Sezione di Perugia, Perugia, Italy ^{64b}Università di Perugia, Perugia, Italy ^{65a}INFN Sezione di Pisa, Pisa, Italy ^{65b}Università di Pisa, Pisa, Italy ^{65c}Scuola Normale Superiore di Pisa, Pisa, Italy

^{66a}INFN Sezione di Roma, Roma, Italy ^{66b}Università di Roma, Roma, Italy ^{67a}INFN Sezione di Torino, Torino, Italy ^{67b}Università di Torino, Torino, Italy ⁶⁷^cUniversità del Piemonte Orientale (Novara), Torino, Italy 68a INFN Sezione di Trieste, Trieste, Italy ^{68b}Università di Trieste, Trieste, Italy ⁶⁹Kangwon National University, Chunchon, Korea ⁰Kyungpook National University, Daegu, Korea ⁷¹Chonbuk National University, Jeonju, Korea ⁷²Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea ⁷³Korea University, Seoul, Korea ⁷⁴University of Seoul, Seoul, Korea ⁷⁵Sungkyunkwan University, Suwon, Korea ⁷⁶Vilnius University, Vilnius, Lithuania ⁷⁷National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia ⁷⁸Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico ⁷⁹Universidad Iberoamericana, Mexico City, Mexico ⁸⁰Benemerita Universidad Autonoma de Puebla, Puebla, Mexico ⁸¹Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico ⁸²University of Auckland, Auckland, New Zealand ⁸³University of Canterbury, Christchurch, New Zealand ⁸⁴National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan ⁵National Centre for Nuclear Research, Swierk, Poland ⁸⁶Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland ⁷Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal ⁸⁸Joint Institute for Nuclear Research, Dubna, Russia ⁸⁹Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia ⁹⁰Institute for Nuclear Research, Moscow, Russia ⁹¹Institute for Theoretical and Experimental Physics, Moscow, Russia ⁹²P.N. Lebedev Physical Institute, Moscow, Russia ⁹³Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia ⁹⁴State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia ⁹⁵University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia ⁹⁶Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain ⁹⁷Universidad Autónoma de Madrid, Madrid, Spain ⁹⁸Universidad de Oviedo, Oviedo, Spain ⁹⁹Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain ¹⁰⁰CERN, European Organization for Nuclear Research, Geneva, Switzerland ¹⁰¹Paul Scherrer Institut, Villigen, Switzerland ¹⁰²Institute for Particle Physics, ETH Zurich, Zurich, Switzerland ¹⁰³Universität Zürich, Zurich, Switzerland ¹⁰⁴National Central University, Chung-Li, Taiwan ¹⁰⁵National Taiwan University (NTU), Taipei, Taiwan ¹⁰⁶Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand ¹⁰⁷Cukurova University, Adana, Turkey ¹⁰⁸Middle East Technical University, Physics Department, Ankara, Turkey ¹⁰⁹Bogazici University, Istanbul, Turkey ¹¹⁰Istanbul Technical University, Istanbul, Turkey ¹¹¹National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine ¹¹²University of Bristol, Bristol, United Kingdom ¹¹³Rutherford Appleton Laboratory, Didcot, United Kingdom ¹¹⁴Imperial College, London, United Kingdom ¹¹⁵Brunel University, Uxbridge, United Kingdom ¹¹⁶Baylor University, Waco, USA ¹¹⁷The University of Alabama, Tuscaloosa, USA ¹¹⁸Boston University, Boston, USA ¹¹⁹Brown University, Providence, USA ¹²⁰University of California, Davis, Davis, USA ¹²¹University of California, Los Angeles, USA

¹²²University of California, Riverside, Riverside, USA ¹²³University of California, San Diego, La Jolla, USA ¹²⁴University of California, Santa Barbara, Santa Barbara, USA ¹²⁵California Institute of Technology, Pasadena, USA ¹²⁶Carnegie Mellon University, Pittsburgh, USA ¹²⁷University of Colorado at Boulder, Boulder, USA ¹²⁸Cornell University, Ithaca, USA ¹²⁹Fairfield University, Fairfield, USA ¹³⁰Fermi National Accelerator Laboratory, Batavia, USA ¹³¹University of Florida, Gainesville, USA ¹³²Florida International University, Miami, USA ¹³³Florida State University, Tallahassee, USA ¹³⁴Florida Institute of Technology, Melbourne, USA ¹³⁵University of Illinois at Chicago (UIC), Chicago, USA ¹³⁶The University of Iowa, Iowa City, USA ¹³⁷Johns Hopkins University, Baltimore, USA ¹³⁸The University of Kansas, Lawrence, USA ¹³⁹Kansas State University, Manhattan, USA ¹⁴⁰Lawrence Livermore National Laboratory, Livermore, USA ¹⁴¹University of Maryland, College Park, USA ¹⁴²Massachusetts Institute of Technology, Cambridge, USA ⁴³University of Minnesota, Minneapolis, USA ¹⁴⁴University of Mississippi, Oxford, USA ¹⁴⁵University of Nebraska-Lincoln, Lincoln, USA ¹⁴⁶State University of New York at Buffalo, Buffalo, USA ¹⁴⁷Northeastern University, Boston, USA ¹⁴⁸Northwestern University, Evanston, USA ¹⁴⁹University of Notre Dame, Notre Dame, USA ¹⁵⁰The Ohio State University, Columbus, USA ¹⁵¹Princeton University, Princeton, USA ¹⁵²University of Puerto Rico, Mayaguez, USA ¹⁵³Purdue University, West Lafayette, USA ¹⁵⁴Purdue University Calumet, Hammond, USA ¹⁵⁵Rice University, Houston, USA ¹⁵⁶University of Rochester, Rochester, USA ¹⁵⁷The Rockefeller University, New York, USA ¹⁵⁸Rutgers, The State University of New Jersey, Piscataway, USA ¹⁵⁹University of Tennessee, Knoxville, USA ¹⁶⁰Texas A&M University, College Station, USA ¹⁶¹Texas Tech University, Lubbock, USA ¹⁶²Vanderbilt University, Nashville, USA ¹⁶³University of Virginia, Charlottesville, USA ¹⁶⁴Wayne State University, Detroit, USA ¹⁶⁵University of Wisconsin, Madison, USA

^aDeceased.

- ^bAlso at Vienna University of Technology, Vienna, Austria.
- ^cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

^dAlso at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.

- ^eAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
- ^fAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
- ^gAlso at Universidade Estadual de Campinas, Campinas, Brazil.
- ^hAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
- ⁱAlso at Joint Institute for Nuclear Research, Dubna, Russia.
- ^jAlso at Suez University, Suez, Egypt.
- ^kAlso at Cairo University, Cairo, Egypt.
- ¹Also at Fayoum University, El-Fayoum, Egypt.
- ^mAlso at British University in Egypt, Cairo, Egypt.
- ⁿAlso at Ain Shams University, Cairo, Egypt.

- ^oAlso at Université de Haute Alsace, Mulhouse, France.
- ^pAlso at Brandenburg University of Technology, Cottbus, Germany.
- ^qAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
- ^rAlso at Eötvös Loránd University, Budapest, Hungary.
- ^sAlso at University of Debrecen, Debrecen, Hungary.
- ^tAlso at University of Visva-Bharati, Santiniketan, India.
- ^uAlso at King Abdulaziz University, Jeddah, Saudi Arabia.
- ^vAlso at University of Ruhuna, Matara, Sri Lanka.
- ^wAlso at Isfahan University of Technology, Isfahan, Iran.
- ^xAlso at Sharif University of Technology, Tehran, Iran.
- ^yAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
- ^zAlso at Università degli Studi di Siena, Siena, Italy.
- ^{aa}Also at Centre National de la Recherche Scientifique (CNRS) IN2P3, Paris, France.
- ^{bb}Also at Purdue University, West Lafayette, USA.
- ^{cc}Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico.
- ^{dd}Also at Institute for Nuclear Research, Moscow, Russia.
- ee Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
- ^{ff}Also at California Institute of Technology, Pasadena, USA.
- ^{gg}Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
- ^{hh}Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.
- ⁱⁱAlso at Scuola Normale e Sezione dell'INFN, Pisa, Italy.
- ^{jj}Also at University of Athens, Athens, Greece.
- ^{kk}Also at Paul Scherrer Institut, Villigen, Switzerland.
- ¹¹Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
- ^{mm}Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.
- ⁿⁿAlso at Gaziosmanpasa University, Tokat, Turkey.
- ^{oo}Also at Adiyaman University, Adiyaman, Turkey.
- ^{pp}Also at Cag University, Mersin, Turkey.
- ^{qq}Also at Izmir Institute of Technology, Izmir, Turkey.
- ^{rr}Also at Necmettin Erbakan University, Konya, Turkey.
- ^{ss}Also at Ozyegin University, Istanbul, Turkey.
- ^{tt}Also at Marmara University, Istanbul, Turkey.
- ^{uu}Also at Kafkas University, Kars, Turkey.
- ^{vv}Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
- ^{ww}Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
- ^{xx}Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
- ^{yy}Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
- ^{zz}Also at Argonne National Laboratory, Argonne, USA.
- ^{aaa}Also at Erzincan University, Erzincan, Turkey.
- bbb Also at Yildiz Technical University, Istanbul, Turkey.
- ccc Also at Texas A&M University at Qatar, Doha, Qatar.
- ^{ddd}Also at Kyungpook National University, Daegu, Korea.