
NT5A.3.pdf 2016 Photonics and Fiber Technology  Congress (ACOFT,
BGPP, NP) © OSA 2016
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Abstract: We report on the experimental observation of inviscid Burgers’ equation dynamics and 
Riemann wave formation when a properly tailored optical pulse is coupled into a nonlinear fiber. 
Experimental results clearly show controllable pulse front steepening and shock formation.  
OCIS codes: (060.4370) Nonlinear optics, fibers; (190.5530) Pulse propagation and temporal solitons 

 
1. Introduction 

One of the seminal equations of fluid dynamics is the Inviscid Burgers’ Equation (IBE), a one-dimensional analogue 
of the Navier-Stokes equation in the limit of zero viscosity , which describes nonlinear wave dynamics in 
incompressible fluids. The IBE has particular importance in understanding the dynamics of shock formation and is 
thus widely used well beyond hydrodynamics [1] (e.g. to model the formation of large-scale structures in the early 
universe or even traffic flows evolution). Surprisingly, however, experiments in Burgers’ equation systems are often 
limited by viscosity and dissipation, precluding a quantitative comparison with theory, especially in the limit of 
evolution towards a shock (the so-called inviscid case).  Here, we show that this problem can be solved in an optical 
system.  By properly tailoring an ultrashort pulse injected into a highly nonlinear fiber, propagation can be 
accurately mapped to an IBE model, allowing quantitative measurements and comparison of pulse front steepening, 
together with a novel approach to efficiently control shock dynamics.  Our results pave the way towards the 
experimental study, in a convenient benchtop system, of complex physical phenomena otherwise difficult to access. 

2.  Theory  

The IBE can be derived from the Euler momentum equation in the absence of pressure gradient and external forces, 
but interestingly, it can also be obtained from the Nonlinear Schrödinger Equation (NLSE) when considering a pulse 
of envelope A(z,T) propagating in an optical fiber in a weakly (normal) dispersive regime [2]. In this particular case 
(i.e. when the dispersion length is much longer than the nonlinear length), if an input excitation has the particular 
form of a simple Riemann pulse AR where the instantaneous frequency profile (chirp) is a properly scaled replica of 
the amplitude, then this proportionality is preserved during propagation so that [3,4]: 
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where γ is the nonlinear Kerr coefficient and β2>0 the group velocity dispersion of the fiber at the excitation 
wavelength. Remarkably, under these conditions, the amplitude obeys the propagation dynamics described by IBE: 
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Physically, IBE propagation is associated with pulse envelope steepening and eventually the formation of a so-
called gradient catastrophe, where amplitude derivatives tend to infinity and lead to characteristic shock wave 
behavior [3,4]. Importantly, since the IBE can be solved using the method of characteristics (providing a parametric 
representation of the energy flow) [1], we can analytically predict the distance at which the shock occurs for 
arbitrary input pulses satisfying the IBE.   

3.  Results 

Numerical results illustrating Riemann pulse propagation in 2 km of highly nonlinear fiber (HNLF) are shown in 
Fig. 1(a-c). We see progressive steepening of the pulse trailing edge until z = 500 m, where a near-vertical front is 
formed.  
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Fig. 1. (a) 3D intensity plot of the NLSE simulations used to model the evolution of a Riemann pulse over 2 km of fiber (top). The projected 

pulse intensity (bottom) is compared with the characteristic lines obtained analytically from the IBE (white lines), showing shock formation at z = 
500m, where the characteristics intersect to give rise to a multi-valued solution (Parameters: Gaussian pulse with 0.89W peak power of and 4.5ps 

duration (FWHM) propagating in a HNLF: β2 = 0.8397 ps2.km-1 and γ = 11.7 W-1.km-1 at 1550 nm). Temporal profiles of (b) intensity and (c) 
chirp are shown at selected distances, comparing IBE predictions (solid black) with NLSE simulations (dashed blue). (d) Cross-correlation traces 

are extracted at the input and output of the 500m fiber, confronting experimental results (solid red line) with the profiles expected from IBE 
simulations (black dashed line). 

 
 The calculated IBE characteristic lines shown in Fig. 1a (white lines) follow the direction of the energy flow and 

the shock formation distance obtained from simulations is elegantly predicted from the IBE (zB = 500 m for our 
parameters). In essence, until the shock onset, the IBE and NLSE predictions are indistinguishable, illustrating how 
the Riemann pulse maintains its proportionality between chirp and amplitude throughout propagation. For z > 500 
m, however, the IBE representation of the NLSE solutions loses validity: chirp oscillations develop on the pulse 
trailing edge as a typical signature of dispersive shock waves formation [5]. To observe these effects experimentally, 
a pulse train emitted from an optical parametric oscillator (260 fs duration) is spectrally shaped in intensity and 
phase (via a commercial Waveshaper [6]) and amplified to generate the desired Riemann pulse (4.5 ps duration, 0.89 
W peak power). The target pulse is then injected into a 500m-long HNLF and characterized at both the input and 
output using standard techniques (i.e. optical spectrum analyser, cross-correlator/FROG). The experimental results 
are in excellent agreement with both numerical and analytical predictions as illustrated in Fig. 1(d), where we show 
the experimentally measured cross-correlation traces at the input and output (z = 500 m) of the HNLF, compared 
with those expected from IBE predictions.  

Further studies are carried out considering more arbitrary (asymmetric) input Riemann pulses generated through 
an additional tailoring of the initial pulse spectral phase.  Both experimental and numerical results show the ability 
to efficiently tune the distance at which the shock develops, over several hundreds of meters, by simply varying the 
degree of asymmetry of the initial pulse. 

These results in an optical system therefore provide, we believe, the first clear, quantitative and controllable 
experimental demonstration of IBE dynamics in a wave system. In the framework of nonlinear fiber optics, the 
ability to transform propagation dynamics from a NLSE system to an IBE model of greatly reduced complexity 
represents a significant addition to the available experimental toolbox for studying nonlinear dynamics.  
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