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Abstract: We theoretically investigate frequency comb generation in dispersive quadratically

nonlinear resonators. We introduce a single mean field equation to model cavity enhanced

second harmonic generation and find excellent agreement with recent experimental frequency

comb observations.
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Generation of frequency combs from microresonators has attracted significant attention since the first experimen-

tal demonstration in a silica toroid almost a decade ago [1]. The physical mechanisms underlying such broadband

frequency conversion is now very well understood and has been linked to temporal dissipative structures previously

studied in fibre cavities [2, 3]. These combs arise through the interplay between group velocity dispersion (GVD) and

cubic (Kerr) nonlinearity. Interestingly, recent results in a bulk resonator demonstrated the possibility of generating

frequency combs from a purely quadratic nonlinear resonator [4]. This observation, combined with the recent devel-

opment of quadratically nonlinear microresonators [5], suggests that a novel way of generating integrated frequency

combs might be possible. However, no modelling of this process has been put forward and the underlying physics

is still poorly understood. Here we introduce a mean field equation that allows for the modelling of the dynamics of

cavity enhanced second harmonic generation (CSHG) [6]. We mainly focus on the case of singly resonant CSHG as

experimental data is readily available for comparison [4]. Nevertheless, we have found that the same equation (with a

different nonlinear response function) also permits investigating doubly resonant CSHG.

We start from the well known propagation equations describing dispersive second harmonic generation [7]. In the

singly resonant configuration, the second harmonic (SH) wave is removed at the end of each roundtrip, slaving it to

the fundamental. This boundary condition allows approximately solving the SH propagation equation [8] and turn the

system into a single equation for the fundamental, with a delayed nonlinear response. In the condition of low loss for

the fundamental field, that equation can in turn be averaged into a mean field equation that describes the evolution of

the intracavity field. It reads:
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Here, t is the “slow time” variable linked to the roundtrip index and τ is the “fast time” [2], tR is the cavity roundtrip

time, A(t,τ) is the fundamental field (expressed in
√

W), α1 are the total intracavity losses, δ1 is the phase detuning

from the closest cavity resonance, k′′1 is the GVD at the fundamental, L is the cavity length, ρ = (κL)2 where κ is

the effective quadratic nonlinear coefficient, ⊗ denotes convolution, the nonlinear response function I(τ) describes

the interaction with the SH wave, θ1 is the coupling ratio of the input coupler and Ain is the pump field. The delayed

response I(τ) is defined as I(τ) = F−1[Î(Ω)] where Î(Ω) =
[

(1− e−ix− ix)/x2
]

, x(Ω) =
[

∆k+ ik̂(Ω)
]

L, ∆k denotes

the phase mismatch, k̂(Ω) =−αc,2/2+ i
[

∆k′Ω+(k′′2/2)Ω2
]

, αc,2 are the propagation losses around the SH, ∆k′ is the

group velocity mismatch between the fundamental and the SH and k′′2 corresponds to the GVD at the SH wavelength.

See [6] for more details.

To validate our model, we integrate Eq. (1) with the parameters corresponding to the phase-matched CSHG exper-

iments in [4]. We find excellent agreement with the experimental results as can be seen in Fig. 1. The combs seem to

originate from a modulation instability (MI)-like growth of sidebands around the fundamental. Interestingly, previous
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investigations in spatially diffractive quadratic resonators have shown that MI cannot occur unless the SH process is

highly phase mismatched [9]; here, in contrast, we are observing MI for the case of perfect phase-matching. The main

difference between the temporal case and the spatial analog is that the spatial walk-off (physically corresponding to

a mismatch of the two Poynting vectors) is small and often neglected. This indicates that the temporal walk-off plays

a similar role as the phase mismatch in destabilizing the CW field. To gain further insight into this process, and in
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Fig. 1. Frequency comb generation from a CSHG system. (a) Experiment [4] with 2 W input power

(b) Simulation with 2 W input power (|Ain|2), δ1 = −0.02. (c) MI gain as a function of frequency

and walk-off. The white line highlights the walk-off value corresponding to Fig.1 (a),(b).

particular to investigate the role of the walk-off, we perform a linear stability analysis of Eq. (1). The MI gain for

different walk-off values is presented in Fig. 1 (c). The walk-off corresponding to Figs. 1 (a) and (b) is indicated by

the dashed white line. The crucial role of the walk-off is highlighted by the fact that, as known from earlier spatial

studies [9], there can be no MI in the absence of walk-off. This is due to the important role played by the nonlinear

losses on the MI gain. The MI indeed originates from the interplay between three-wave-mixing gain (corresponding

to an optical parametric oscillator with the SH as a pump) and a competing sum frequency generation (SFG) process

that acts as a nonlinear loss. The latter is proportional to the squared sinc-function describing the SFG efficiency that

is constant and highly efficient in the absence of phase mismatch and walk-off (the GVD of the SH plays a negligible

role). Hence MI can only arise when the SFG is phase mismatched through strong walk-off [6].

We stress that Eq. (1) was derived by considering that the SH wave is removed after each roundtrip. Although

relevant to bulk cavities, this is different from what would happen in a high finesse microresonator [5], where both the

fundamental and the SH fields are expected to resonate simultaneously. We have also analyzed such doubly-resonant

CSHG, and found a similar kind of walk-off induced MI as in the singly-resonant case discussed above. Significantly,

we have found that, barring a small additional approximation, doubly-resonant CSHG can be reduced to an equation

formally identical with Eq. (1). The only difference being the response function I(τ), which is highly impacted by the

resonance around the SH.

In conclusion, we have derived a new single mean field equation that fully captures the temporal and spectral

dynamics in singly and doubly resonant CSHG. We obtain excellent agreement with recent experimental results and

our analysis sheds new light on the physical origin of the MI process. We believe this walk-off induced modulation

instability is likely to appear in many different configurations of quadratic resonators.
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