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1 Introduction

Resistive Plate Chambers (RPC) detectors are widely udgl hexperiments for muon detection
and triggering at high-energy, high-luminosity hadronlidets, in astroparticle physics experi-
ments for the detection of extended air showers, as well asedical and imaging applications.
At the LHC, the muon system of the CMS experiment relies orit Dtibes (DT), Cathode Strip
Chambers (CSC) and RPCs for the muon trigger system, wittahgas volume of about 50
Utmost attention has to be paid to the possible presencesof@aaminants which degrade the
chamber performance. The gas gain monitoring (GGM) systemitors the gas quality online
and is based on small RPC detectors. The working point — gadhedficiency — is continu-
ously monitored along with environmental parameters, sisdiemperature, pressure and humidity,
which are important for the operation of the muon detectstesy. Design parameters, construc-
tion, prototyping and preliminary commissioning resulfsle CMS RPC Gas Gain Monitoring
(GGM) system have been presented previous)\2]. In this paper, results on the response of the
GGM detectors to environmental changes are presented.

The CMS RPCs are bakelite-based double-gap RPCs with stgout (for construction de-
tails see 8] and reference therein) operated with a 96.29%61¢F, — 3.5% Iso-GH1g— 0.3% Sk
gas mixture humidified at about 40%. The large volume of theSqRIPC system and the cost of
the gas make the operation of RPCs in a closed-loop gas systeancomplete description sed]]
mandatory, in which the gas fluxing the gaps is reused afiaghmurified by a set of filtersg].

The operation of the CMS RPC system is strictly correlatetti¢aatio of the gas components,
and to the presence of pollutants that can be produced ittsédgaps during discharges (i.e. HF
produced by Sgor C,H,F4 molecular break-up and further fluorine recombinationfuaculated
in the closed-loop, or by pollution that can be present irgédepiping system (tubes, valves, filters,
bubblers, etc.) and flushed into the gaps by the gas flow. Thétonimg of the presence of these
contaminants, as well as the gas mixture stability, is floeeemandatory to avoid RPC damage and
to ensure their correct functionality.

A monitoring system that detect changes of gas compositidrpallution must provide a fast
response in order to avoid irreversible damage of the whgtes. The GGM system monitors



efficiency and signal charge continuously by means of a aosawitelescope based on RPC detec-
tors. In the following we briefly describe the final setup of tBGM system, and the first results
obtained during its commissioning at the ISR test area (CERN

2 The GasGain Monitoring system

The GGM system is composed by the same type of RPC used in ttg& dekéctor but of smaller
size (2 mm-thick Bakelite gaps, 5050 cnt). Twelve gaps are arranged in a stack located in the
CMS gas area (SGX5 building) on the surface, close to CMSwadgehall (LHC-P5). The choice
to install the system in the surface instead of undergrodiogdva one to profit from maximum
cosmic muon rates. In order to ensure a fast response tongopkiint shifts with a precision of
1%, 1¢ events are required, corresponding to about 30 minutessex@dime on surface, to be
compared with a 100-fold smaller rate underground. Theénigs provided by four out of twelve
gaps of the stack, while the remaining eight gaps are useaiiton the working point stability.

The eight gaps are arranged in three sub-system: one stéws{tsvo gaps) is operated with
the fresh CMS mixture. The second sub-system (three gapgeisated with CMS gas coming
from the closed-loop gas system and extracted before thpugdiers, while the third sub-system
(three gaps) is operated with CMS gas extracted from thedisop after the gas purifiers. The
basic idea is to compare the operation of the three subregsaed, if some changes are observed,
to send a warning to the experiment. In this way, the gas gwrgnd coming from the CMS
RPC is compared to the fresh gas. This setup will ensure teaspre, temperature and humidity
changes affecting the gaps behavior do cancel out becaaiigréie subsystems operate in the same
ambient condition.

The monitoring is performed by measuring the charge digiobhs of each chamber. The eight
gaps are operated at different high voltages, fixed for eaeimber, in order to monitor the total
range of operating modes of the gaps. The operation mode &BC changes as a function of the
voltage applied. A fraction of the eight gaps will work in puavalanche mode, while the remaining
will be operated in avalanche+streamer mode. Comparisaignfl charge distributions and the
ratio of the avalanche to streamer components of the ADGigigeva monitoring of the stability of
working point for changes due to gas mixture variations.

Details on the construction of GGM can be found 2 [Each chamber of the GGM system
consists of a single gap with double sided pad read-out: pper pads are glued on the two
opposite external side of the gap. The signal is read-outitanaformer based circuit A3 (figufig.
The circuit allows to subtract the two signals, which haveasite polarities, and to obtain an
output signal with subtraction of the coherent noise, withraprovement by about a factor 4 of
the signal to noise ratio. The output signals from circuita8 sent to a CAEN V965 ADC (with
a 50 fC/channel sensitivityp] for charge analysis.

A typical ADC distribution of a GGM gap is shown in figuéfor two different effective
operating voltages, defined as the high voltage set on thedwépsupply corrected for the local
atmospheric pressure and temperature. Figajecorresponding to Hy = 9.9 kV, shows a clean
avalanche peak well separated from the pedestal. Figureshows the charge distribution at
HV e = 10.7 kV with two signal regions corresponding to the avalanaidta avalanche+stream-
er mode.
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Figure 1. The electric scheme of the read-out circuit providing tlgelraic sum of the two pad signal (PAD
+ and PAD -).
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Figure 2. Typical ADC charge distributions of one GGM chamber at tvpe@ting voltages. Distribution
(a) correspond to Hy = 9.9 kV while distribution (b) to H\# = 10.7kV. In (b) the streamer peak around
1900 ADC channels is clearly visible. The events on the Iefihe vertical line (1450 ADC channels in this
case) are assumed to be pure avalanche events.

Figure3 shows the GGM single gap efficiency (full dots), and the radbween the avalanche
and the streamer component (open circles), as a functidmedéffective high voltage. Each point
corresponds to a total of 10000 entries in the full ADC speutr The efficiency is defined as
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Figure 3. Efficiency plot (full dots) of GGM chambers as a function of &. The efficiency is defined as
the ratio between the number of ADC entries abogg.gand the number of acquired triggers. Open dot
plots correspond to the streamer fraction of the chambaas#g a function of Hy.

the ratio between the number of triggers and the number aftesbove 8peq, Whereopeq is the
pedestal width. The avalanche to streamer ratio is definecbbyting the number of entries in
the avalanche region (below the streamer threshold (figlyend above the pedestal region) and
dividing it by the number of streamer events above the steeahreshold. Both efficiency and
avalanche plateau are in good agreement with previoussggpl

In order to determine the sensitivity of GGM gaps to workirajnp shifts, the avalanche to
streamer transition was studied by two methods, the chaajkad and the efficiency method. In
the charge method, the mean value of the ADC charge didtibuh the whole ADC range is
studied as a function of H¥ (figure 4). Each point corresponds to 10000 events in the whole
ADC spectrum, open squares are the anodic charges of theRRfD gaps, while the full squares
are their averages for each high voltage value. In the pteettvorking point regions are identified
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Figure4. Average avalanche charge of the eight monitor chambeali@s a function of H¥. The slope
is (2.24+ 0.05) ADC/V. Each point corresponds to 10000 triggers.

1. inefficiency (H\Gg < 9.8 kV);
2. avalanche (8kV < HVeg < 10.5kV;
3. avalanche+streamer mode (H\> 10.5kV).

The best sensitivity to working point shifts is achievedtia tivalanche+streamer region. A best fit
of a straight line performed over the data points in the fitmeg3 yields g2.2440.05) ADC ch/V
(or (1124 2) fC/V) sensitivity.

In the efficiency method, the ADC avalanche event yield idistias a function of Hy (fig-
ure5). The avalanche signal increases by increasing the HVexppdi the gap, until it reaches a
maximum value after which the streamer component startsctease. A best fit of a straight line
performed over the data points in the 9.2 kV—10.2 kV dasheddion yields 413.4+0.7) events/V
—or (1.3+0.1)% /(10 V) — sensitivity.
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Figure 5. (left) Streamer (empty dots) and avalanche (solid dotsldgi as a function of Hy, for the
eight RPC gaps. Each point corresponds to 10000 colledggets. (right) The solid line is fit to the
average of eight gaps (solid dots) in the dashed region,a\(itt83.4 + 0.7) events/V slope, corresponding to

a(1.3+0.1)%/10V sensitivity.
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3 Response of GGM to environmental effects

The working point of any RPC detector is affected by envirentmn most notably by pressure
and temperature whose effect is customarily parametrizzdinear relationships. An example
of correction of the data from GGM using such parametrizatis shown in figuré, where the
average charge distribution (black dots) is plotted acensBangeover of gas bottles. Data show
a sudden increase in the average charge distribution whashinterpreted as a shift of working
point due to changes in gas mixture composition. By weigthegaverage charge with a correction
factor linearly depending on atmospheric pressure, howeeesignificant increase is left in the
distribution of corrected average charge (green dots) lwhiay signal an anomalous shift due to
gas mixture.

The redundancy in the number of RPC gaps flushed by the samaixjase allows one to can-
cel common environmental effects directly, without neeéradwing the parametrization law. The
cancellation algorithm was studied by means of two-ga i@tithe charge distribution (figurd.
While the charge of two gaps is influenced by the effect of apheric pressure, temperature and
humidity, their ratio, however, is shown to be stable at t#el@vel over a period of several weeks
(figure8).

4 Conclusions

Results from the Gas Gain Monitoring System for the CMS RP@&er have been reported on.
The purpose of GGM is to monitor any shift of the working paifithe CMS RPC detector. The
system redundancy allows for effectively cancelling ot émvironmental effects at the 2% level.
Preliminary results show sensitivity to working point chas in charge distribution

(2.24+0.05)ADC ch/V
(112+ 2)fC/V
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Figure7. Stability of GGM against environment variation commonlt@aps, such as atmospheric pressure
(a), temperature (b), umidity (c). The charge of two gaps@avily influenced by environment (d,e), while
their ratio shows a 2% stability over several weeks (f).

and in efficiency

(134+0.7)eventgV
(1.3+0.1)%/(10V)

The GGM system will be operated with three different gaseshiyas will flush a pair of gaps kept
at the same operating voltage. The signal of gaps flushedsaitte gas will be mutually normal-
ized to cancel out common environmental effects. The nomedloutput will be then compared
with the normalized output of a pair of gaps flushed by a diffirgas. Our results show how the
sensitivity of such a cancellation is adequate to detect &hilfs in the working point. The GGM
is currently being commissioned in the SGX5 area of the CM&eament at CERN.
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