
JPIP Proxy Server for remote browsing of
JPEG2000 images

Livio Lima #1, David Taubman ∗, Riccardo Leonardi #2

Department of Electronics for Automation, University of Brescia
Via Branze, Brescia, Italy

1 livio.lima@ing.unibs.it
2 riccardo.leonardi@ing.unibs.it

∗ School of Electrical Engineering and Telecommunications, University of New South Wales
Sydney, NSW, Australia

d.taubman@unsw.edu.au

Abstract—The JPEG2000 image compression standard offers
scalability features in support of remote browsing applications. In
particular Part 9 of the JPEG2000 standard defines a protocol
called JPIP for interactivity with JPEG2000 code-streams and
files. In client-server application based on JPIP, a client does
not directly interact with the compressed file, but formulates
requests using a simple syntax which identifies the current “focus
window”. In this kind of application particularly useful could be
a proxy server, that potentially can improve the performance of
the system through a better use of the network infrastructure.
The aim of this work is to propose a proxy server with JPIP
capabilities and shows the benefits that can be brought to remote
browsing applications.

I. INTRODUCTION

The JPEG2000 image compression standard offers scala-
bility features in support of remote browsing applications,
in addition to better compression performance compared to
the previous standards in image compression. Some useful
features are resolution scalability, progressive refinement and
spatial random access.

The first approach proposed for the remote browsing of
JPEG2000 images was the use of byte range access capabilities
offered by the HTTP/1.1 protocol [1]. In this case, the client
reads an index table to determine the locations of the relevant
compressed data and header and explicitly insert the byte
ranges required in the HTTP requests. Even if this approach
requires a very simple architecture, the main drawbacks are
the low level of flexibility and low performance because there
is no possibility for the server to stream data to the client in
a rate-distortion optimized manner.

In order to fully exploit the potential of the JPEG2000 stan-
dard for interactive applications, the ISO/IEC Joint Technical
Committee of Photographic Experts (JPEG) defined Part 9
of the JPEG2000 standard, for interactivity with JPEG2000
code-streams and files. This part of the standard defines a
protocol called JPIP [2][3]. In JPIP, a client does not directly
interact with the compressed file, but formulates requests using
a simple syntax which identifies the current “focus window”,
that defines the region of interest, the resolution and the
components of interest for the client application. In reply

Source
Stream

JPIP
Server

Client
Cache
Model

Client Application

JPIP
Client

Client
Cache

Decoder/
Render

focus
window

focus
window

data

data

data

decompressed
data

JPIP
over

HTTP

HTTP
Server

HTTP
Client

Fig. 1. JPIP client-server architecture.

to a JPIP request, the server is free to determine the most
appropriate response elements in order to optimize the image
quality available at the client.

A simple client-server architecture based on the JPIP proto-
col is shown in Figure 1. In real applications multiple clients
are typically connected to the same server; moreover, the net-
work infrastructure is more complex, including other network
devices like proxies. In particular the use of a proxy server can
improve the performance of the whole system through a better
use of the network infrastructure. The main problem is that,
at the moment, proxy servers used in this kind of architecture
are only HTTP proxies, without any JPIP capabilities. So, for
example, if a client makes a request of a focus window that
is contained within the focus window previously requested by
another client, the HTTP Proxy Server considers these two
requests to be completely different, without understand that it
is possible to reuse the data already received from the server
in reply to the first request also to serve the second request. In
this scenario the network link between proxy and origin server
is not efficiently used because the same content is request
multiple times.

In order to fully exploit the potential of the JPIP protocol
and the JPEG2000 standard with an efficient use of the
network infrastructure, the proxy should understand the JPIP

LLd

LHd+1

HLd+1

HHd+1

precint
on LLd

code-block

Fig. 2. Relationship between precincts, resolutions and code-blocks.

protocol and use efficient algorithms to manage the JPIP
requests and replies. This work concerns the development of
a JPIP proxy and shows the benefits that can be brought to
remote browsing applications.

Section II briefly reviews the organization of the JPEG2000
code-stream, while section III gives an overview of the JPIP
protocol. In Section IV the description of the proposed JPIP
proxy is given, while Section V presents experimental results.

II. JPEG2000 ELEMENTS

JPEG2000 is based on the Discrete Wavelet Transform
(DWT), together with Embedded Block Coding with Op-
timized Truncation (EBCOT). D stages of DWT analysis
decompose the image into 3D+1 subbands, labeled LHd, HLd,
HHd and LLD, for d = 1, ..., D.

Each subband is partitioned into rectangular blocks called
code-blocks, each of which is independently coded. Resolution
scalability is obtained by discarding the code-blocks of detail
subbands and omitting the final DWT synthesis stage. Quality
scalability is obtained through a “quality layers” abstraction.
Each layer represents an incremental contribution (possibly
empty) from the embedded bit-stream associated with each
code-block in the image. Discarding one or more layers
(starting from the highest one) produces a representation of
the code-block with lower quality. Spatial random access is
possible because each code-block is associated with a limited
spatial region, typically 32 × 32 or 64 × 64 pixels, and
independently coded.

Given any spatial region of interest within a particu-
lar resolution, it is possible to determine the set of code-
blocks which contribute to the reconstruction of that region.
JPEG2000 also defines collections of spatially adjacent code-
blocks as “precincts.” Figure 2 illustrates the relationship
between precincts, resolutions and code-blocks.

Each precinct of resolution level LLd consist of the code-
blocks corresponding to the same spatial region within the
subbands LHd+1, HLd+1 and HHd+1 if d < D, or within the
subband LLD if d = D. The data-stream associated with each
precinct is organized as a collection of “packets,” one for each
quality layer, as shown in Figure 3.

HDR
l1

LHd+1
blocks

HLd+1
blocks

HHd+1
blocks

HDR
l2

LHd+1
blocks

HLd+1
blocks

HHd+1
blocks

HDR
l0

LHd+1
blocks

HLd+1
blocks

HHd+1
blocks

packet 1 : layer 1 data packet 2 : layer 2 data

packet L : layer L data

Fig. 3. Data stream for a single precinct on resolution LLd.

Bin
lD

message header

Class
lD

CS
lD

data
offset

data
length AUX data

Fig. 4. Structure of a JPIP message.

III. JPIP OVERVIEW

JPIP defines a protocol consisting of a series of interactions
between a client and a server to enable request and transfer
of selected content from JPEG2000 family files, codestreams
and other elements. Basically, a client uses the JPIP syntax
to define a request that includes a “Focus Window.” The
Focus Window specifies the interest of the client in terms
of resolution, size, location, components, layers, and other
parameters for the image. The server replies by delivering the
image data, using a precinct-based stream, a tile-based stream,
or else the whole image.

For the purpose of exchange and storage of JPEG2000
compressed data, JPIP defines a means of partitioning the
JPEG2000 codestream into a collection of so-called “data-
bins.” JPIP support two partitioning schemes, one based on
precincts and the other on tiles. In this paper we consider
only the more flexible case of precinct data-bins. A precinct
data-bin represents the sequence of JPEG2000 packets which
contain coded information for the precinct. A single JPIP
message contains any contiguous subset (byte range) from a
single data-bin. Each message contains a header, identifying
its data-bin and byte range, while a concatenated sequence of
messages makes a stream. The structure of a message is given
in Figure 4. For the purpose of understanding the policies
applied by our proposed JPIP proxy, the data offset, data
length and AUX fields need clarification. Data offset is the
location within the precinct’s data-bin, from which the first
byte in the data field is taken; data length is the number of
bytes in the data field. The AUX is an optional field, which
the server may use to provide information about the quality
layers represented by the message. Specifically, the AUX field
identifies the number of complete quality layers which a client
would receive if the byte range represented by the message
were extended to include the start of the data-bin.

In order to take advantage of the AUX field information,
the client has to explicitly request this functionality through
the “EXTENDED HEADER” capability syntax element of the
JPIP protocol. Since usually the server is free to choose the

byte
range

layer 1 layer 2 layer 3 layer 4
precinct
data-bin
stream

data off = 65
data len = 135
AUX = 3

msg bodyCASE 1

data off = 50
data len = 70
AUX = 2

msg body

CASE 2
data off = 50
data len = 110
AUX = 3

msg body

CASE 3

50 120 160 220

Fig. 5. Examples of JPIP messages.

JPEG
2000

codestream

precint
data-bin 1

precint
data-bin 2

messages

JPP-stream

Fig. 6. Relation between JPEG2000 codestream, data-bins, messages and a
JPIP stream.

data to send to the client, different situations may arise, as
shown in Figure 5. In Case 1, a single JPIP message includes
parts of 3 different quality layers. In this case, the client can
deduce that layer 3 is fully contained within the message, but it
cannot deduce the boundaries of any of the layers. In order to
discover layer boundaries, the client may use the “ALIGN”
JPIP syntax element in the request; this forces the server
to include a whole number of packets (layers) within each
message, as illustrated for Cases 2 and 3 in Figure 5. Even with
the align option, the server may include multiple layers in each
message, as in Case 2. This often improves communication
efficiency, but it means that the proxy server cannot always
determine the exact composition of each precinct’s data bin in
terms of layers.

The relation between JPEG2000 codestream, data-bins,
messages and an entire JPIP stream is shown in Figure 6.

IV. JPIP PROXY SERVER

In the following sections, we use the terms proxy and
server to refer to the Proxy Server and Origin Server1. In
computer networks, proxies are placed at specific key points
between the user and the server. Proxies service the requests
presented by their clients, by forwarding these requests to
servers or other proxies, or by using the responses cached from
previous requests for the same resource. In remote browsing
applications, a client connects to the proxy, requesting a focus

1The Origin Server interacts directly with the complete original image,
stored on an appropriate file system.

window inside an image. The proxy provides the resource by
connecting to the specified server and requesting the service on
behalf of the client. A proxy may optionally alter the client’s
requests, retrieving a different subset of data from the server
to that explicitly requested by the client. The proxy may also
subset or reorder the server’s response data in order to generate
a response to its own client, possibly introducing data from
its own cache. In some cases, the proxy may have sufficient
cached data to serve a request without contacting the server.
More generally, the proxy may start serving the client’s request
based its own cache contents, and later introduce additional
content as it arrives from the server, so as to maximize the
responsiveness of the network for interactive users. A JPIP
proxy should typically realize the following services:
• understand the JPIP syntax, in order to check if the

requested data are already stored in the cache or to cache
JPEG2000 compressed data received from the server;

• edit, reformulate or resequence JPIP requests from its
clients, in order to most efficiently utilize the available
communication bandwidth with the server; and

• implement algorithms to efficiently serve its clients using
cached data.

In Sections IV-A and IV-B we propose algorithms to enable
these capabilities, while in Section V we show the gain
obtained in remote browsing applications with a proxy that
implements these capabilities.

A. Serving problem

The proxy’s serving problem concerns the best order in
which to deliver content in its cache to the clients. The solution
adopted to solve this problem is similar to the approach used
in [4].

Recalling Section III, we use the “EXTENDED HEADER”
and “ALIGN” JPIP capabilities in the proxy’s own requests
to the server, so that the server’s replies are aligned on layer
boundaries and the number of layers in each message can be
known by the client, as shown in Cases 2 and 3 of Figure 5.

Suppose that Lk
j , k = 1, ...,K are the exact lengths of the

quality layers for a precinct pj , and let L̄k
j denote the proxy’s

estimates of these lengths. In the event that the server sends
exactly one layer of the precinct data-bin (i.e., one packet)
in each message, the proxy can recover the original lengths,
i.e., L̄k

j = Lk
j for each layer k that the proxy has received

and cached. More generally, the ith message for precinct pj

contains layers si
j through to f i

j , so that the proxy can only

know the cumulative length lij =
∑fi

j

k=si
j
Lk

j . In this case, two

possible approaches for estimating the individual lengths L̄k
j

are:

1) Set L̄
si

j

j through L̄
fi

j−1

j equal to 0 and L̄
fi

j

j = lij . In this
case, the proxy will never send messages to its clients
containing any of layers si

j through f i
j − 1, without

also including layer f i
j , so the proxy’s messages will

aggregate quality layers to at least the same extent as
the server’s messages.

2) Distribute the received bytes between the missed layers.
For example, a uniform distribution policy would set
L̄k

j = lij�
(
f i

j + 1− si
j

)
for each k ∈

[
si

j , f
i
j

]
. This

potentially allows the proxy to send more uniform
quality increments to its clients, which could result in
lower distortion, but at the risk that layers are delivered
only partially, so that clients cannot immediately utilize
the transmitted data.

Independently from the approach adopted to form the length
estimates L̄k

j , the following algorithm is used to sequence the
cached precinct data. For each precinct pj in the cache, let
Kj be the value of the highest available quality layer with
non-zero length. For each layer k, k = 1, ...,Kj , let Dk

j be
the distortion and Sk

j the distortion-length slope for the layer,
where Sk

j is defined as

Sk
j =

{
Dk−1

j −Dk
j

Lk
j−Lk−1

j

k = 1, ...,Kj

∞ k = 0

Recalling [4], the R-D optimal service policy is to serve
the quality layers in decreasing order of the distortion-length
slope Sk

j . Unfortunately, only during the encoding process is
it possible to know exactly the values Sk

j , so the solution is
to approximate these values with the distortion-length slope
thresholds Tk, which were used during the encoding process
to generate the quality layers. There is only one such thresh-
old per quality layer, for the entire JPEG2000 code-stream.
Moreover, these thresholds can be included in the header of
the code-stream or the file which embeds it. We suppose that
these values can be known at the proxy, or (in the worst case)
guessed2.

Since we are interested in transmitting only the precincts
that affect the window required by a client, let us define the
relevance function r(pj ,Wc) = rj,c ∈ (0, 1] for the precinct
pj with respect to window Wc. In particular the value of
function r(p,W) may be interpreted as the fraction of precinct
p’s subband samples which are involved in the reconstruction
of window W . So, considering the precinct’s relevance, the
values that affect the distribution policy are the weighted rate-
distortion slopes for non zero quality layers

Γk
j (W) =

{
r(pj ,W)Tk L̄k

j > 0
0 L̄k

j = 0

With perfect length estimates, and a finely spaced collection
of slope thresholds Tk, the optimal proxy serving policy is to
deliver the cached contents of each precinct data-bin to the
client in decreasing order of Γk

j . Figure 7 shows a comparison
between the R-D performance obtained using the optimal
policy described in [4], with clients connected directly to the
server, and the proxy serving policy described here. The Figure
shows results for both of the strategies described above for
estimating cached layer lengths L̄k

j , from the messages which
the proxy receives from its own server.

2The present algorithm relies only on knowledge of the ratios Tk/Tk−1

between successive slope thresholds, which are often selected in predictable
ways by compressors which generate reasonably disbursed quality layers.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
rate [bit/pixel]

26

28

30

32

34

36

ps
nr

 [d
B]

Server
Proxy - Splitting method
Proxy - Zero lengths method

Comparison between Proxy methods
and Server for Serving Problem

Fig. 7. Comparison between Server and Proxy for Serving Problem

B. Aggregation problem

In general, the proxy’s aggregation problem concerns the
way to aggregate individual client requests into requests which
it forwards to the server. In this work we assume that the
requests sent by the proxy to its server are drawn from the
collection of original requests sent to the proxy by its clients.
We write Wc, c = 1, . . . , C for the currently active client
request windows, where C is the number of active clients. We
also write WR for the window request that the proxy chooses
to send to its server at any given instant, where WR = Wc

for some client index c. In our current implementation, the
choice of request window WR is re-evaluated only at those
instants when a new reqest arrives from one of the clients, c.
In this case, the proxy has only to decide whether WR should
be changed from its current value to Wc. This solution works
well, so long as all clients issue requests at regular intervals,
so that the proxy is able to regularly re-evaluate its choice
of request window. Fortunately, this is exactly what happens
in a typical HTTP-based JPIP communication session, since
clients must issue requests with constraints on the number of
bytes that should be returned, so as to ensure that interactive
responsiveness is not damaged by a server/proxy flooding the
underlying TCP channel.

The proxy’s goal is to choose WR in such a way as to
maximize the rate at which the expected overall distortion
experienced by its C clients can be reduced. This reduction
in distortion occurs as the server’s response data augments the
proxy’s cache representation, which may benefit more than
one client in general.

It should be noted that the data received from the server
may not match the proxy’s expectations, since the server
is generally free to send data in any order to the proxy.
Moreover the proxy does not generally have sufficient infor-
mation concerning the distortion associated with its current
cache contents, or even the exact lengths of each precinct’s
quality layers, as noted earlier. Despite these shortcomings,
the practical approach proposed here can be justified under

some reasonable assumptions, which we now expound.
The following distortion-rate model is commonly encoun-

tered in the literature and can be justified at least at high bit-
rates:

D∗ = Ue−gR

Here, D∗ measures Mean Squared Error (MSE) per sample
and R is the encoded data rate, measured in bytes/sample. U
and g are constants which generally depend upon the statistical
properties of the source data, although we shall assume that
the rate exponent g is a global constant. In the absence of
more precise information, we apply this model directly to each
precinct pj , so that the total distortion Dj and total available
code bytes

Lj =
Kj∑
k=1

Lk
j

for that precinct may be related according to

Dj = Aj · Uj · e−gLj/Aj

Here, Aj is the number of samples (area) associated with
precinct pj , allowing MSE D∗ to be converted to total squared
error Dj and data rate R to be converted to coded length Lj .

Now suppose the proxy’s current cache contents are de-
scribed by the quantities Kj and Lj , identifying the number
of quality layers and the number of available data bytes for
each precinct pj . Also, suppose for the moment that the proxy
also has access to the distortion-length slope SKj

j associated
with the K th

j layer of precinct pj . That is,

S
Kj

j = − ∂Dj

∂L

∣∣∣∣
L=Lj

= gUje
−gLj/Aj

Finally, suppose that the server uses the correct relevance
factors rj,R to send additional data for each precinct pj ∈WR,
until the relevance weighted distortion-length slopes of all such
precincts are reduced to a common value S0. That is, the server
sends an additional ∆Lj bytes for each precinct pj ∈WR such
that

gUje
−g(Lj+∆Lj)/Aj = min

{
S

Kj

j ,
S0

rj,R

}
This policy essentially describes the behaviour expected of
the R-D optimal service policy described in [4], as well as the
proxy’s own serving algorithm, described in Section IV-A.

The actual value of S0 depends upon the total amount of
data the server will send before the request is changed again
by the proxy. In the absence of any specific information, we
shall assume that S0

rj,R
is much smaller than S

Kj

j so that the
min {} operator is not required to keep ∆Lj positive. This
allows us to deduce that

∆Lj =
Aj

g
ln
(
S

Kj

j

rj,R
S0

)
so the total number of bytes delivered by the server to reach
slope target S0 is

∆L =
1
g

∑
pj∈WR

Aj ·
[
ln
(
rj,RS

Kj

j

)
− ln (S0)

]

The increment of ∆Lj bytes for precinct pj reduces the
distortion associated with that precinct by the amount

∆Dj = AjUje
−gLj/Aj ·

[
1− e−g∆Lj/Aj

]
=
Aj

g

(
S

Kj

j − S0

rj,R

)
It follows that the reduction in aggregate relevance-weighted
distortion, taken over all client windows, is given by

∆D =
1
g

C∑
c=1

αc

∑
pj∈Wc∩WR

rj,cAj

(
S

Kj

j − S0

rj,R

)
Here, the factors αc are client-specific weights, that can be
used to account for clients with different levels of priority in
the proxy’s decision making process. For our experiments, all
clients are considered equally important, with αc = 1 for all
c.

Based on the above analysis, the proxy should set WR to
the request window which maximizes the ratio between ∆D
and ∆L. Unfortunately, this ratio depends upon the unknown
limit S0. However, in the limit as the server’s response to the
chosen request becomes very long, S0 becomes very small, so
that

S
Kj

j − S0

rj,R
≈ SKj

j

and
ln
(
rj,RS

Kj

j

)
− ln (S0) ≈ constant

This allows us to formulate the optimization objective as that
of maximizing

JR =
∆D
∆L

=

∑C
c=1 αc

∑
pj∈Wc∩WR

rj,cAjS
Kj

j∑
pj∈WR

Aj

So when a new request arrive from client c, the proxy has to
compare JR related to the window currently active with JC

related to the new candidate window WC and set WR to WC

if JC > JR.

V. EXPERIMENTAL RESULTS

In order to evaluate the benefits given by a JPIP Proxy and to
validate the policy proposed for the Aggregation Problem, two
architectures has been compared: a Server-multi client and a
Server-Proxy-multi client. Preliminary results have been obtain
simulating remote browsing sessions with three clients. The
optimal policy proposed in section IV-B has been compared
to a FIFO algorithm in which each time that a new request of a
window arrive at the proxy, WR is automatically set to Wc. In
order to show the difference between these two Aggregation
policies the remote browsing sessions of Client 1 and 2 require
windows spatially close, while Client 3 generates requests of
windows in a different spatial area.

In the considered architectures the performance are highly
affected by the rate of each communication link. Has been
chosen to compare the Server-Clients architecture with all the
links at the same rate equal to rs = R with a Server-Proxy-
clients architecture where all the communication links (both

time Client 1 Client 2 Client 3
0-5 1:(0,0)(640,480) - -

5-10 1:(0,0)(640,480) 1:(0,0)(640,480) -
10-15 0:(100,100)(300,300) 1:(0,0)(640,480) 1:(0,0)(640,480)
15-20 0:(100,100)(300,300) 0:(100,250)(100,200) 1:(0,0)(640,480)
20-25 0:(200,200)(300,300) 0:(100,250)(100,200) 0:(600,300)(300,300)
25-30 0:(200,200)(300,300) 0:(250,250)(100,200) 0:(600,300)(300,300)
30-35 0:(0,0)(1280,720) 0:(250,250)(100,200) 0:(600,300)(300,300)
35-40 0:(0,0)(1280,720) 0:(0,0)(1280,720) 0:(600,300)(300,300)
40-45 0:(0,0)(1280,720) 0:(0,0)(1280,720) 0:(0,0)(1280,720)
45-50 0:(0,0)(1280,720) 0:(0,0)(1280,720) 0:(0,0)(1280,720)
50-55 - 0:(0,0)(1280,720) 0:(0,0)(1280,720)
55-60 - - 0:(0,0)(1280,720)

TABLE I
DESCRIPTION OF REMOTE BROWSING SESSIONS

Server-Proxy link and Proxy-Clients links) have a rate equal
to rp = NR where N is the number of clients. Although this
comparison seems unfair, it gives the possibility to show the
increase in efficiency given by the use of a Proxy Server.

Table I shows the description of the remote browsing
sessions simulated for each client, where the notation R :
(rx, ry)(sx, sy) means that a client request the resolution R,
where in the tests performed only the full resolution (R=0)
equal to 1280x720 pixels and the half resolution (R=1) has
been considered, with a Focus Window starting at position
(rx, ry) and with size (sx, sy).

Figure 8 shows the R-D comparison between the Server-
Clients architecture (Server), Server-Proxy-Clients using a
FIFO algorithm for the Serving problem (Proxy FIFO) and
the optimal algorithm presented in section IV-B (Proxy RD).
As shown in Figure 8 the Architecture with a Proxy Server
can greatly improve the performance compared with a simple
Server-Clients model. The gain depends on the quantity of data
stored in the cache. So, for example in the beginning of remote
browsing session of Client 1 the Proxy has no data in the cache
and the performance are comparable with the Server-Clients
model. As soon as the Proxy receive data from the Server, it
can reuse this data to serve other Clients without contact the
Server. This is the reason because the gain obtained with Client
2 is higher than the gain for Client 1, since when the Client 2
starts the session the Proxy has already stored a good amount
of data in the cache. From the comparison between the optimal
algorithm proposed in section IV-B and the FIFO algorithm
can be notice as the optimal algorithm increase the overall
performance. This is obtained giving ”high priority” to Client
1 and 2 because they request spatially adjacent windows. The
result is that Client 1 and 2 increase the performance compared
to FIFO algorithm, but decrease the performance of Client 3.
In some sense the FIFO algorithm seems more fair, but it
shows lower performance compared to optimal algorithm.

VI. CONCLUSIONS

This work proposed a JPIP Proxy Server for remote brows-
ing applications. In particular has been shown as the archi-
tecture using the Proxy can improve the performance of the
whole system, through an efficient use of the communication

0 5 10 15 20 25 30 35 40 45 50 55 60 65

time [s]

24

26

28

30

32

34

36

38

Y
 p

s
n
r

[d
B

]

0 5 10 15 20 25 30 35 40 45 50 55 60 65

time [s]

26

28

30

32

34

36

38

Y
 p

s
n
r

[d
B

]

0 5 10 15 20 25 30 35 40 45 50 55 60 65

time [s]

24

26

28

30

32

34

36

38

Y
 p

s
n
r

[d
B

]

Client 1

Client 2

Client 3

W 1 W 2 W 3 W 4

W 1

W 2 W 3

W 4

W 1 W 2

W 3

Fig. 8. Remote browsing simulation with 3 clients

link with the server. Moreover the R-D optimal approach
for Serving Problem shown better performance compared to
other algorithms like FIFO, especially when multiple clients
require Focus Window spatially adjacent. Another important
consideration is that the performance could be further increase
if the Proxy Server starts with a non-empty cache, for example
retrieving data from previous sessions.

Possible extension of the proposed work could include
architectures with multiple Proxies and Servers connected each
other, connection between Proxy and Clients using a shared
channel instead of dedicated channels.

REFERENCES

[1] S. Deshpande and W. Zeng, “Scalable Streaming of JPEG2000 Images
using Hypertext Transfer Protocol,” in Proc. ACM Multimedia, 2001.

[2] “ITU-T Recommendation T.808 — ISO/IEC 15444-9:2004, Information
Technology - JPEG 2000 image coding system - Part 9: Interactivity
tools, APIs and protocols,” Tech. Rep.

[3] D. Taubman and R. Prandolini, “Architecture, Philosophy and Perfor-
mance of JPIP: Internet Protocol Standard for JPEG2000,” in Proc. VCIP
2003.

[4] D. Taubman and R. Rosenbaum, “Rate-Distortion Optimized Interactive
Browsing of JPEG2000 images,” in Proc. ICIP 2003.

