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Planar biaxial testing has been applied to a variety of materials to obtain relevant information for mechanical characterization and
constitutive modeling in presence of complex stress states. Despite its diffusion, there is currently no standardized testing procedure
or a unique specimen design of common use. Consequently, comparison of results obtained with different configurations is not
always straightforward and several types of optimized shapes have been proposed. The purpose of the present work is to develop a
procedure for comprehensive comparison of results of biaxial tests carried out on the same soft hyperelastic material, using different
types of gripping methods and specimen shapes (i.e., cruciform and square). Five configurations were investigated experimentally
using a biaxial test rig designed and built by the authors, using digital imaging techniques to track the displacements of markers
apposed in selected positions on the surfaces. Then, material parameters for a suitable hyperelastic law were determined for each
configuration examined, employing an inverse method which combines numerical simulations with the finite element method
(FEM) and optimization algorithms. Finally, efficiency of examined biaxial configurations was assessed comparing stress reductions

factor, degree and uniformity of biaxial deformation, and operative strain ranges.

1. Introduction

Biaxial testing has been employed for a long time for the
study of a variety of engineering materials, including fiber
reinforced composites [1, 2], plastic fabrics [3], sheet metals
[4], elastomers and rubbers [5, 6], or polymers [7, 8]. This
type of test has also gained considerable diffusion in the
field of biomechanics and biomedical engineering, emerging
as a primary technique for mechanical characterization of
anisotropic, hyperelastic, and heterogeneous materials such
as soft biological tissues [9-11] or biomaterials for their
substitution or repair [12, 13].

The main reason that motivates planar biaxial testing
is the possibility of investigating mechanical response for
different combinations of stress states, providing information
especially useful for the development of constitutive laws and
eventually taking into account local anisotropic properties in
a very effective way.

Depending on the nature of the material under investi-
gation the operative range of interest, in terms of applicable
loads or strains, can be quite different. Hence biaxial tests rigs
(either commercial or in-house built) are often customized to
serve for a specific target material [14, 15]. Consequently, there
is currently no standardized testing method or a specimen
configuration of universal use.

In practice two main types of specimen are employed,
square or cruciform, but with several design variants and
gripping techniques that can be adopted to effectively obtain
a biaxial stress state over the largest possible gage area.

For square specimens load is applied along the edges,
using fixtures and loading systems that allow lateral expan-
sion of the specimen as the force applied along the two
orthogonal axes increases. Ideally, the specimen should
retain a square (or rectangular) shape with a large central
region stressed biaxially. To this aim, multiple grips are
distributed along the edges with low friction supports for



a free transversal movement. Locally gripping may perturb
this condition and special care is needed to limit frictional
effects. Square specimens are usually employed also for soft
biological tissues, since it may be difficult to cut them into
more complex shapes. In this case, further specific issues must
be considered. Different mechanisms of load transmission
to the specimen may result in different degree of fiber
recruitment and consequent apparent stiffness, as remarked
by Waldman and Lee in [16]. The use of traditional clamping
systems is prevented by the relatively small size of specimen
(i.e. <20 mm) and by the risk of tissue damaging or slipping
from the grips. Hence, most often the load is transferred to
the specimen by means of hooks (or sutures) connected to the
loading arm by suture wires and pulley systems. Special skill
and fixtures for precise positioning of the hooks are needed.
Such a pointwise loading may result in a less uniform stress
state and premature failure of the specimen may occur due to
high local stress concentrations.

Cruciform specimens are instead clamped at the end of
each arm to transfer the load in the central area. In this
case, the identification of an optimal shape remains a debated
question, as demonstrated by the number of recent papers in
which very different “optimized” specimens were proposed.
Optimal cruciform specimens were investigated and analyzed
by means of finite element method for stiff materials and
soft materials, such as composites and various elastomers or
polymeric membranes [2, 17-19]. Such “optimized” shapes
may involve the introduction of different types of fillets
between crossed arms, tapering of the arms, or the use of
arms with slits (or even the combination of above variants).
Overall, the definition of an optimal specimen shape is
dictated by specific constraints imposed by the nature of
material under examination as well as by the possibility of
machining, cutting, or molding it into a given configuration.

A further aspect that should be underlined concerns
measurement of strain fields and determination of stress state
actually present in the gage region of the specimen, which
may represent very critical issues for biaxial testing, especially
for low stiffness materials.

Different approaches to strain measurement can be found
in literature. In some cases strain determination is simply
based on initial reference dimensions and grips displace-
ments [7], when feasible extensimetric techniques or needle
extensometers [20] are used. However, for soft materials
the use of noncontact methods is mandatory and video-
extensometry is typically employed, tracking markers or lines
apposed on the surface of the specimen during the test [9,
10]. Digital Image Correlation (DIC) techniques were also
applied to analyze the whole field of biaxial deformation in
the specimen [21].

A little bit more of uncertainty remains instead when
considering the determination of the stress state in the central
gage region of the specimen, in particular for cruciform
specimens. The amount of load actually transferred to this
region may differ substantially from the force measured by
the load cells, depending on details of the gripping system,
arms, and presence of fillets or slits. The determination by
means of finite element analyses of stress correction factors
is possibly the most common approach [20].
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An alternative strategy, which does not require determi-
nation of such correction factors, involves instead the use
of inverse methods. A FE model of the test is created and
by varying values of material parameters the solution of the
model is iterated until some constraints imposed in terms
of force or prescribed displacement are satisfied. Examples
of application of this technique in presence of uniaxial and
biaxial loads can be found in [22] for an estimation of
parameters of Neo-Hookean and Mooney-Rivlin laws for
silicon rubbers. Overall, it can be concluded that comparison
of results obtained with different test rigs and different
specimen shapes is not always straightforward, due to the
variety of test configurations that were adopted by researchers
and some inherent difficulties when interpreting results.

The purpose of the present work is to address this issue
by comparing results of biaxial tests carried out on the same
material but with different types of gripping methods and
specimen shapes.

As anticipated, several optimized shapes were proposed
but the nature of the material or the type of samples available
may dictate specific constraints on the test procedure or
prevent the use of an “ideal” shape as identified by means of
numerical simulations. Further to this, such ideal shape could
be different depending on the mechanical response expected
or the strain range investigated. For this reason, rather than
looking for another optimized shape, we selected a few
cruciform shapes which could be readily obtained without
special tools and that were previously used in different
engineering fields. In particular the case of a soft material
undergoing large deformation was considered, focusing on
systems and specimen shapes applicable to samples of small
size, obtained by means of simple cutting (or die-cutting)
operations.

Then, we checked whether it was possible to determine
material parameters independently of the test configuration
adopted, even in presence of quite different load transmission
mechanisms as well as of small mounting errors, which may
be difficult to avoid when working with small compliant
samples.

The final goal was to rationally compare and interpret
results from different testing strategies to develop a robust
and versatile testing procedure that produces comparable
results independently of the test approach. This could be
particularly relevant when dealing with complex materials,
such as biological tissues or scaffolds used in the context
of tissue engineering, in which case it may be necessary
to adopt different experimental procedures depending on
specific constraints imposed by the nature of materials or type
of samples available.

As detailed in the next paragraphs different configura-
tions were first compared experimentally, using a biaxial test
rig designed and built by the authors, measuring strain by
optically tracking the displacements of markers apposed on
the surface in selected positions.

Then material parameters for a suitable hyperelastic law
were determined for all configurations examined employing
an inverse method, which combines numerical simulations
and optimization algorithms.
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FIGURE 1: Biaxial test rig.

Finally, consistency of results and efficiency of examined
biaxial configurations were assessed comparing stress reduc-
tions factor, biaxiality indexes, and operative strain ranges.

2. Methods

2.1. Biaxial Test Rig. Biaxial tests were carried out using a
biaxial test bench designed by the authors for testing soft
materials, including soft biological tissues (see Figurel).
Briefly, the test bench consists of four independent lin-
ear actuators that can be moved with a load or displace-
ment/speed control. The linear motion is guaranteed by four
brushed 12 V DC motors, connected to as many nylon joints
that transmit the drive torque to four precision single axis
actuators from Misumi (LX2001 model). Load measurements
are handled by four PW6C3MR single point load cells from
HBM, designed for weighing static application. The operative
ranges are £200 N in terms of loads and >130 mm in terms
of displacements (thus >260 mm considering an axis and not
a single actuator). Load accuracy is lower than 0.05N and
displacement resolution is lower than 1 ym.

Different fast interchangeable gripping systems have been
developed, including pulley system for tests with hooks in a
trampoline-like fashion as common for soft tissues [23, 24],
standard screw clamps, and wedge grips (Figure 2). Fixture
and jigs for external mounting of the specimens were also
designed and manufactured by rapid prototyping, both for
cruciform and hooks system.

The software for the bench control and the optical meas-
urements have been developed within a NI Labview real-time
environment to ensure best performance.

The setup to read all the signals and to control actuators
consists of an 8-slot compact RIO (cRIO-9074) module,
which hosts four NI9505 modules dedicated to motors and
encoders. These provide power, control the motors with a
PWM (Pulse-Width-Modulation) signal, and read the output
of the encoders. A single N19237 module is dedicated to all
four load cells: each load cell is connected to the module
with a six-wire connection. Further modules are available to
control thermocouple or heating elements (not connected for
present research).

The test bench comes with an optical strain measurement
based on digital tracking of the displacements of markers
on the surface of the specimen. This is implemented using a
Logitech C920 webcam that can record videos up to a 1920

x 1080 resolution at 30 fps, with DirectShow video output,
which is very convenient for handling it with NI Labview.

The VI that operates on the webcam lets the user set opti-
mal camera setting (focus, contrast, brightness, sharpness,
white balance, etc.) and extracts a grayscale image for every
processed frame.

The grayscale image is achieved by extracting one of
the color planes describing the original image of the frame
(best color plane is usually one among, red, green blue, and
luminance planes). Each image is saved by Labview with
the appropriate frame time so that the time information can
be used for the subsequent processing and synchronizations
with load cells signals.

2.2. Experimental Tests: Specimens and Procedures. This study
is focused on biaxial testing techniques for hyperelastic
materials, in particular considering relatively small size of
specimen. Due to the comparative nature of the investigation,
tests were carried out using a rubber specimen (caoutchouc)
capable of undergoing large elastic deformations but with
homogeneous isotropic properties, to exclude effects directly
related to specific local features of the material. As discussed
in the introduction of the paper, there is currently no stan-
dardized approach to biaxial testing, both for what concerns
specimen and for gripping methods. Specimens shapes were
therefore derived from a selection of configurations proposed
in literature [18-20, 25, 26] in different fields. They were cut
from a sheet of material with thickness of 0.5 mm, consider-
ing different configurations as summarized in Figure 3. Four
configurations had cruciform shapes that differ for presence
of a fillet between intersecting arms, tapering, or inclusion
of longitudinal slits to improve efficiency of load transfer. A
square specimen was tested using four hooks for each side
and a uniaxial tensile test was also carried out on a rectangular
strip.

All the specimens were tested in displacement control
moving each actuator at a speed of 0.1 mm/s.

On the surface of each specimen markers were located
at specific positions of interest. For all tests, four markers
were in the center of the specimen. For cruciform specimens
four markers were at the intersection between the arms or
in the middle of the fillets. At least one marker was located
near connections between arms and central area, either at the
middle or on each slit portion. The position of the hooks was
also monitored. After the test, a Matlab script developed by
the authors was used to process all the images saved during
the test to extract the displacements of the markers. The
image processing script is based on a combination of filters,
edge detection, and morphing operations (dilations, erosions,
filling, etc.). The script allows the user to interactively set a
rectangular region of interest (ROI) and to set the number of
markers to be searched. Marker centroids were calculated for
every frame and their displacements were saved as a function
of time into a text file for use in subsequent numerical
simulation.

Note that it is also possible to calculate strain at the
center of the specimen using the approach described in [27],
in which central markers are treated as the nodes of an
isoparametric finite element mesh.
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FIGURE 2: Different mounting options: hooks (a), screw clamps (b), and wedge grips (c).
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FIGURE 3: Specimens (dimensions in mm).

2.3. Numerical Simulations: Constitutive Modeling and Inverse
Method. The stress-strain response of the material under
examination was studied in the framework of finite strain
continuum mechanics, considering constitutive models
applicable to nearly incompressible hyperelastic materials.
The existence of a Helmholtz free-energy or strain-energy
function W is postulated and the nearly incompressible
hyperelastic behavior is treated by additive decomposition
of W into the isochoric elastic part W, and the volumetric
elastic part W,,.

This type of formulation is very often used if large elastic
deformations of rubber or rubber-like material are con-
cerned, because of the advantages in the numerical treatment
of either incompressible or nearly incompressible properties.

Several specific forms of strain-energy functions can
be defined to describe the hyperelastic properties [28, 29].
Here we considered the Mooney-Rivlin (MR) form, often

employed in the description of the nonlinear behavior of
isotropic rubber-like materials at moderate strain [30], as
reported in

WMR = ‘/Viso (71,72) + Wvol (]el)

=Cy(I,-3)+Cy (I, -3) + %k(]el -1)

in which the material constants to be determined are C,,
and C,;. Usually these parameters are determined by apply-
ing fitting algorithms to match predicted and experimental
stress-strain response. Data typically refer to a specimen
gage region where strain is measured and a nominal stress
can be calculated, based on some reference dimensions or
assumptions. The accuracy of the fitting can eventually be
checked by using the set of parameters determined for finite
element simulation of an experimental test under different



Advances in Materials Science and Engineering

conditions [31]. However, as previously mentioned, in the
case of biaxial testing accurate determination of stress state
in the central region can be difficult, in essence because the
region of interest biaxially deformed is located in the center
of the specimen, whereas the reaction forces are measured at
the ends of the specimen’s arms [32]. In order to improve the
correctness of stress values to be used in the fitting process,
stress correction factors may then be introduced, based on
FEM calculation. Ideally, the procedure for obtaining the
correction factor should be repeated for any constitutive
model that best suits a particular material being tested in
biaxial tension [33]. Moreover, the correction factor should
also be obtained for any specific specimen shape and over the
strain range of interest.

An alternative approach consists in the identification of
the material parameters by solving a complete boundary
problem with the reaction forces as boundary condition and
the displacements of selected markers in the measured area as
command variable. In practice the determination of material
parameters is carried out with an inverse computation, as
proposed in [22, 30], by means of an adequate simulation
tool capable to couple FE solution of a structural model and
numerical optimization. In this study, Comsol Multiphysics
was used, combining structural, nonlinear materials, PDE,
and optimization modules.

In synthesis in the optimization procedure, the vector
of control parameters p = (C,,,Cy;) has to be modified
until a close match between the experimental data and the
prediction of the numerical model is achieved. To this aim,
an objective function of the least squares type has to be
minimized to find the optimal set of parameters:

"Dnum _ Dexp”

e — Min (f (p)). (2)

fp) =

Herein D®? is a vector of experimental displacements of each
surface marker at each time increment. D™ is the vector
of displacements obtained from the model, at the same time
increments for the same locations of each marker, with an
arbitrary set of material parameters.

It should be remarked that the choice of the optimization-
based method for minimizing an objective function is still a
topic of research [30] and here only the algorithms available
in the optimization module of Comsol Multiphysics were
considered. The present results were obtained using a Con-
strained Optimization by Linear Approximation (COBYLA)
algorithm [34], setting bounds and initial values of the
parameters, which obviously influence convergence speed to
the optimal results, based on some preliminary analysis.

For each biaxial test a FEM model was created, carrying
out a stationary static analysis in which the forces measured
by the load cells were introduced as boundary loads and
the solution was calculated at predefined increments of
time. An objective function was defined for each marker,
basing on the displacements obtained with the Matlab script
at the same time increments as FE solutions. It is worth
noting that commonly marker displacements are applied
as boundary conditions and loads as objective functions,
although examples can be found in literature also for the

TABLE 1: Values of C,, and C,; parameters identified for different
specimen geometries.

Test configuration C,, (MPa) Cy; (MPa)
Square-hooks 145.0 19.0
Cruciform 159.4 20.0
Cruciform-fillet 137.8 26.7
Cruciform-tapered 168.9 13.7
Cruciform-slits 150.6 21.0
Uniaxial 153.7 17.4
Average 152.5 19.6
Standard deviation 9.9 3.9

opposite case [32]. For the present models, we find out that
with this latter approach the solution process was more
efficient.

It should be noted that in the real case the distribution
of transmitted force along the edges of the specimen is
not known and in general, it may be different from corre-
sponding numerical models. In the FE models, a uniform
distribution of the load along the grips was considered,
under the assumption that the area possibly perturbed by
such mismatch is limited to regions close to the grips.
This issue could be addressed, at least partially, by using a
three-dimensional model with more details of grips/hooks
interactions with specimen. This would require information
about grip pressure and friction or the forces actually applied
to each hook’s wire, which were not available.

Only a portion of the arms near the central region was
modeled in order to reduce the computational effort for
cruciform specimens. For the biaxial test with hooks, the
whole specimen was considered and some markers close to
the points where the hooks penetrated specimen surface were
also tracked.

As biaxial alignment can be difficult when handling small
samples and since the specimens were obtained by manual
cutting, few small imperfections were present. Consequently,
to circumvent the problem and to have more realistic simula-
tions, the initial shape of the specimens and exact location of
markers were directly extracted from digital image of unde-
formed specimens after mounting, using CAD tools available
in Solidworks. For structural analyses, triangular plane stress
elements were used, taking advantage of automatic meshing
algorithms to maintain an average mesh quality index of
0.95 for all models. In order to exclude mesh dependency of
results, preliminary mesh convergence studies were carried
out for each configuration. Depending on the complexity
of geometry, the number of elements ranged from 3335
(cruciform with fillet) to 20052 (cruciform with slits).

Finally, a further set of simulations was conducted to
compare the performance of different specimen geometries.
In this case, average values of C,, and C,, (see Table 1)
considering idealized geometries are reported in Figure 3.

3. Results and Discussion

3.1 Experimental Results. In Figure 4 undeformed and
deformed shapes produced at the maximum biaxial load are
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reported for comparison. In general, the material was capable
to tolerate quite well the presence of highly localized loads
(as in the case of hooks configuration) as well as of regions
with geometrical discontinuities, where stress concentrations
are certainly present (i.e., intersection of orthogonal arms for
cruciform or tapered configuration).

For cruciform specimens, the deformed configuration
was qualitatively similar with or without fillets, indicating
that for this specific material the stress relief provided by the
fillet is probably not necessary.

With the tapered configuration, a higher strain range was
reached and the specimen changed its shape significantly.
Square configuration with hooks and cruciform with slits
exhibited a similar deformation of the central area, with a
higher tendency to maintain a square shape of this region due
to the weaker constraint imposed on transversal expansion by
arms with slits and hooks, compared to full arms.

In Figure 5 load cell forces (average of four axes) are plot-
ted as a function of an average Green-Lagrange strain along
x- and y-axes, calculated directly from the displacements of
the four central markers with the method described in [27].

The maximum forces measured by the load cells were in
the range 6-10 N but the highest loads were reached only with
the hooks configuration. For cruciform specimens, the tests
ended because of the slippage of one of the arms from the
grips. In presence of slits and hooks, the tests ended because
of the failure of the specimen with fracture initiation near the
apex of one of the slits or near hooks locations.

For all configurations, it was possible to reach strain levels
up to about 0.7 in the central area and within this range
the cruciform tapered was the one requiring the lower load
(because of the reduced dimensions of central section). For
all cruciform specimens, the section and area clamped in the
grips were the same so they all transmitted approximately
the same maximum force (about 6.35 + 0.25N). However,
the corresponding strains in the central region were notably
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different, providing a first qualitative indication that intro-
duction of tapering or slits may allow the investigation, for
the same load level, of more extended strain ranges.

3.2. Results of FEM Simulations with Inverse Method

3.2.1. Material Parameters and Stress-Strain Curves. As pre-
viously discussed a nearly incompressible hyperelastic law of
Mooney-Rivlin type was adopted as constitutive law for the
material, determining material parameters C,, and C,, by
means of an inverse method applied to each configuration.
Results of optimization procedure are summarized in Table 1.

Overall, the range of variations of the parameters was
indeed limited. The slight differences observed can be
explained considering that fitting procedure is applied on
different strain ranges. Some further discrepancies may arise
because of the usage of test configurations that presented
significant differences of initial geometries. Moreover, this
method implies that the solution is sought for a large area of
the specimen and not just the gage region, so that different
stress states may be simultaneously present and influence
the determination of parameters. On the other hand, one
must also remember that FE simulations were ran on an “as
mounted” condition and not on idealized model. Since some
specimens were particularly difficult to cut and to set up,
the fact that our results were quite consistent indicates that
an inverse method may provide a robust approach allowing
the correct interpretation of material parameters even in
presence of small mounting errors. This is further confirmed
by the stress-strain curves obtained for each configuration
and reported in Figure 6. Each curve describes the biaxial
stress (Ist Piola-Kirchoff) against the Green-Lagrange strain,
considering an averaged value between X and Y directions
at the center of the specimen. As one can see, stress-strain
curves are very similar, especially for strain up to 0.7. Uniaxial
curve is also reported as a reference.
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3.2.2. Biaxial Stress and Strain Field. Upon determination
of material parameters, the stress and strain fields were
investigated by looking at the results when peak biaxial forces
were reached (thus, at the end of FEA and optimization
procedure).

In Figure 7 the von Mises stress contour map for each
configuration is plotted and superimposed on the corre-
sponding final frame acquired by the webcam. In this way it
is much easier to check the correctness of the fitting process
as a visual comparison can be made on the whole deformed
specimen on not only the points used to define the objective
functions for the optimization procedure.

In general, a very good match of predicted and exper-
imental shape can be observed, confirming that the fitting
process was very effective. These contour maps also provide
a first evidence of the dramatic influence that test approach
may have on the extension of a central area with uniform
stress intensity, but this will be discussed more in detail in
the next paragraph. The presence of high stress areas can as
well be noticed, with predicted stress levels that, in some cases
(tapered specimen), were even highly exceeding the cut-off
value of 4 MPa used for the common stress scale in Figure 7.
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FIGURE 8: Contour maps of Green-Lagrange strains Eyy, Eyy-.

Strain fields for biaxial tests are instead reported in
Figure 8, considering Green-Lagrange strains Eyx and Eyy
for X and Y directions.

The qualitative behavior is similar for cruciform spec-
imens with and without fillet. The presence of the fillet
resulted in a greater extension of a central area, with slightly
lower strain levels (70% versus 80%) but relatively higher
uniformity, as was also noticed in [22]. On the other hand,
the introduction of the fillet does not seem to be significant
for the material under investigation as the sharp edges of
the no-fillet specimen become rounded as soon the specimen
deforms. A fillet between arms may even limit the peak strain
achievable at the center of the specimen, suggesting that its
introduction should be evaluated after taking into account
failure strain and resistance to damage of the material be
tested.

By tapering the arm, the maximum strain level achievable
increased (up to nearly 200% for tapered specimen). Again,
such high levels of biaxial deformation were reached because
of the capability exhibited by this specific material to tolerate
extremely high strain levels, which obviously arise at the
notch between intersecting arm. On one hand, this represents
a positive aspect, as will be later discussed, but on the
other hand, the final deformed configuration shows a quite
uneven strain field, with only a restricted central area really
experiencing an equibiaxial deformation. From a practical
point of view, this may cause problems when considering
locations for central markers.

Introducing slits into sample geometry results in high
strain levels more evenly distributed over the central area and
localized peaks at the apex of each slits, as also noticed in
[19, 35]. This configuration, in some sense, provides a sort of
approximation of a square specimen loaded along the edges,
due to the weak constraint to transversal motion imposed by
each single portion of the arms.

Finally, provided that the material does not fail because
of high stress concentrations, high levels of biaxial strains
in the central region can be reached with hooks and wires
configuration. Despite the load transmission mechanism
being far from uniform, the results show a quite uniform
strain field in the central area where markers could be placed
for the optical strain measurement.

A critical analysis of tests results also gives practical
indications concerning the applicability of these test con-
figurations to samples of small size. Cruciform specimens
without slits were relatively easy to prepare and mount, so
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FIGURE 9: Maps of von Mises stress (MPa) with underlying initial shape of the specimens (one-quarter of the nominal geometry).

experimental strain fields for Exx and Eyy were symmetric,
confirming a good alignment along loading axes. The config-
uration with slits was more complicated to obtain and more
difficult to align perfectly. Hardly noticeable differences in
initial length of the slits resulted in perceivable local changes
of strain distributions along the edges.

The easiest to cut is obviously a square specimen, even
in presence of small size, but positioning the hooks requires
special care. To facilitate our setup operations, a custom-
made jig and mounting fixtures were used to ensure regular
and symmetric placement along the edges. Furthermore,
the loading device includes pulleys system that compensates
small errors or misalignment. Despite this, hooks configura-
tion exhibited the lowest degree of symmetry, mainly because
of the irregular damage and elongation of the holes caused
by hooks penetration. For these reasons, the comparison
between different configurations is postponed to the next sec-
tion, where only ideal symmetric specimens are considered.
On the other hand, such experimental evidences provide a
further confirmation of the usefulness of adopting an inverse
method. In fact, despite differences and imperfections, this
approach provided consistent values of material parameters
as demonstrated by the results reported in Section 3.2.1.

3.3. Results of FEM Simulations on Ideal Shapes. As antici-
pated, FEM simulations using “as-mounted” specimen geom-
etry are more realistic but, for comparison purposes, may
introduce bias error due to possible slight differences between
test series.

Therefore, a finite element model of the five biaxial con-
figurations examined was implemented using ideal geometry
and assuming average values of material parameters C,,
and C,;. Under ideal conditions, only one-quarter of the
specimens was modeled taking advantage of symmetry. The
same load was applied on both X and Y directions using one
of the experimental load cell signals previously acquired for
all the specimens.

In Figure9 the distribution of von Mises stress is
reported, using an elevation plot in which height is propor-
tional to stress value. Again a cut-off value of 4 MPa is used
to better appreciate stress state in the central region.

Stress maps under ideal conditions are similar to those
obtained from simulations of real experiments (note that

Cruciform- Square-
slits hooks

Cruciform-
tapered

Cruciform  Cruciform-
fillet

FIGURE 10: Contour maps of biaxiality index Ry;,,.

here the load is the same for all specimen). The presence of
highly localized peak stress can be noticed for all cases, with
the notable exception of the cruciform specimen with fillet.
For all specimens, the stress is reasonably uniform in the
central region, except for the tapered one. In fact, the tapered
geometry showed a very small area with uniform stress and a
steep stress gradient moving from the center of the specimen
to the edges. The extension of the central area that shows a
uniform biaxial deformation is fundamental to evaluate the
efficiency of the specimens: the higher the ratio between the
dimensions of this area and the dimensions of the specimen,
the more efficient the geometry of that specimen.

For comparison purposes, one can define an index of
biaxial uniformity Ry, as the ratio between the average
value of strains Eyy and Eyy and maximum strain Eyjxx_
computed in the center point:

R = (Exx + Eyy) /2
biax — = N

3)

(EMAX)(),()

Contour maps of this index are shown in Figure 10, in which
only areas where the absolute difference between Eyy and
Eyy islower than 0.05 are colored (i.e., in blue area strain field
is not “sufficiently” biaxial).

These maps allow a direct comparison of the efficiency of
examined configurations.

We can see bigger area of uniform biaxial deformation for
the square specimen with hooks and the cruciform specimen
with slits.
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FIGURE 11: Variation of biaxiality index Ry;,, along symmetry axis.

The cruciform tapered specimen presented instead a
severely limited uniform area of biaxial deformation.

A quantitative evaluation of Ry;,, is provided in Figure 11,
in which this index is plotted as a function of X coordinate
along symmetry axis.

As an example, a square central area of uniform biaxial
deformation can be defined for each specimen geometry by
assuming a threshold value of Ry;,, and extrapolating the
corresponding X value. Specifically, assuming Ry, threshold
value of 1.05 defines a square area with uniform biaxial
deformation of about 100 mm? for the square specimen with
hooks and the cruciform specimen with slits, 36 mm* for
the standard cruciform specimens (with or without fillet),
and only 24 mm? for the cruciform tapered specimen. From
a practical point of view, this result implies that, when
choosing marker locations, particular care should be exerted
not to place them outside this region of uniform biaxial
deformation.

Finally, correction factors were determined by comparing
the 1st Piola-Kirchoff stress computed at the center with a
nominal stresses, calculated with simple formulas based on
initial dimensions that can easily be measured:

(1st Piola-Kirchof)

Correction factor = - .
(Nominal stress)

(4)

In particular, for the cruciform specimens the load cell force
was divided by the section of the arms, considering a width
of 15mm. For the tapered specimen, the width considered
was instead the one measured at the intersection of the arms
(i.e., about 9.2 mm). For the square specimen, the side of the
square inscribed by the hooks was used (15 mm).

The values of correction factors, as a function of applied
strain, are summarized in Figure 12. Stress correction factors
showed slight variations as strain increased.

The value of stress correction factor provides an indica-
tion of the load transfer mechanism efficiency, revealing that
cruciform with slits has the most uniform stress distribution
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FIGURE 12: Stress correction factors.

and thus, it is possibly the most effective at transferring the
load from the boundaries to the center of the specimen.

In general, computed values were comparable with those
reported in literature. As an example, in [20] a reduction
factor of 0.95 is used for cruciform specimen of ETFE foils
with slits. In [33] a FEM based correction technique is devel-
oped for both square and cruciform specimens considering
anisotropy. In this case, the correction factor varied between
0.27 and 0.94 depending on shape of the specimen and
material properties. Anyway, correction factors should be
mainly regarded as empirical tools to improve the accuracy
of simplified stress calculations.

3.4. Limitations. Mechanical characterization of hyperelastic
materials is a challenging engineering problem. Depending
on the purpose of the study, different approaches can be
adopted, each with different degrees of accuracy and ease of
implementation. For sure in presence of materials possessing
a high degree of in-homogeneity and anisotropy or under-
going a general state of stress highly heterogeneous, full-field
methods may capture local variations in structural response
and provide a more accurate material characterization. Full-
field displacement maps can be obtained with a great deal
of accuracy by utilizing noncontact optical methods such as
moiré, speckle, and holography. Measured displacements are
then compared with numerical predictions provided by finite
element. Among others, an example of application of such
methods is provided in [36], in which case moiré techniques
and advanced optimization algorithms were used to identify
constitutive behavior and material parameters of hyperelastic
membranes, including bovine pericardium patches. In [32]
silicone rubber was characterized by combining the use
of DIC and optimization algorithms. A different approach
involves the use of the virtual fields method (VFEM). The
base of the method and references about its applications to
a variety of materials can be found in [37]. More specifically
the feasibility of its application for low-density hyperelastic
foams has been investigated in [38]. Recently the use of such



10

technique has been extended to the characterization of visco-
hyper-pseudo elasticity in fluoro-silicon rubbers [39]. In [40]
investigations with VFM on thermomechanical response of
three-branch were instead reported.

On the other hand, possibly because of its straightforward
implementation, marker tracking technique is still widely
employed, especially for soft biological tissues. Most often
only the displacements of a set of markers in the central gage
region are monitored, but noticeably in [41] the use of several
randomized markers tracked with a DIC system has been
reported. Such information is then used for the construction
of stress-strain curves to be fitted, under some simplifying
assumptions, with appropriate constitutive laws.

Recently a hybrid procedure based on inverse method,
similar to the one adopted in the present work, was adopted
to characterize porcine aortic tissue [42]. In consideration
of comparative nature of the present study, with different
geometries and experimental set up, we opted for this latter
approach, providing a good balance between accuracy and
ease of implementation. Since the material under exami-
nation was homogeneous and isotropic, this approach was
deemed to be sufficiently accurate. Of course, it might be
very useful to integrate the present analysis with a full-field
measurement technique, especially for specimens exhibiting
local regions with high stress gradients. This is planned as a
future development.

A further relevant aspect is that stress distribution and
concentration depend on the material behavior. In the present
comparative study, only one class of materials was considered
and this partially reduces the generality of the results. In par-
ticular, it should be remarked that soft biological tissues may
exhibit far more complicated mechanical behaviors. In order
to extend the interpretation of results to this type of materials,
further issues have to be considered, such as the influence of
boundary conditions on load transmission mechanisms and
fiber recruitment, or the higher mathematical complexity of
procedures for the determination of material parameters.

The influence of varying the degree of anisotropy (i.e.,
fiber orientation) for square and cruciform geometries was
investigated by means of finite element simulations in [33].
Stress concentrations were greater for the square geometry
than the cruciform geometry and fiber alignment parallel
to the loading axes increased the load being transferred
to the central region of interest. The application of a
correction factor to experimental biaxial results was also
suggested to obtain more accurate representation of the
mechanical response of fibrous soft tissue. However, to the
best of authors’ knowledge, an experimental comparison
considering hyperelastic-anisotropic behavior has not yet
been reported in literature. This would imply availability
of tissue (engineered) samples with different geometries, in
which the degree of anisotropy (i.e., the fiber architecture) is
manageable and perfectly known in advance. Furthermore,
constitutive behavior of anisotropic materials identified via
hybrid procedures should be validated by carrying out other
independent tests. Considering the comparative nature of the
present study, at this stage such kind of investigation was
beyond our scope, but it certainly represents an important
field of research for the future.

Advances in Materials Science and Engineering

4. Conclusions

Different configurations for planar biaxial testing of a hyper-
elastic material were compared both experimentally and with
FEM simulations, using an inverse method to determine
material parameters for a Mooney-Rivlin hyperelastic law.
The main conclusions are as follows:

(1) Biaxial configurations chosen between those used
(or proposed) for testing small samples of highly
deformable materials may present substantial differ-
ences in terms of stress and strain distributions, con-
firming that interpretation of results can be difficult
and care is needed when comparing.

(2) The inverse method proved to be a useful approach
to compare different biaxial testing methodologies,
overcoming the problem of determining real stress
states by correction factors to improve fitting accu-
racy. Similar values of materials parameters were
in fact obtained in presence of completely different
specimen geometries.

(3) When a cruciform specimen is used, arms with slits
may substantially improve efficiency of load transfer
to the central region and degree of biaxial uniformity.
With tapered arms the central region can be subjected
to high stress and strain levels, but a significant
decay of uniformity is present and this may impair
strain measurements. Use of fillets reduces stress
concentration and loading efficiency as well.

(4) Square specimen tested with hooks may provide a
viable way for biaxial testing but require special care
for sample manipulation and hooks application, due
to high sensitivity even to small mounting errors.

(5) Some types of specimens and loading systems could
lead to stress concentrations that may, or may not, be
tolerated depending on material properties. Different
materials may impose different constraints in terms
of machinability of complex shapes of the specimen.
Optimized shapes should then be evaluated for each
specific material investigated with biaxial testing.

(6) Stress correction factors can help in improving accu-
racy of stress calculation, but when dealing with
highly nonlinear materials they should be determined
with some understanding of the constitutive law to be
used and of the strain range of interest.

In conclusion, a relevant contribution of the present study
is that integrating the use of inverse method with markers’
measurements can actually lead to the determination of very
similar sets of material parameters (and corresponding stress-
strain curve), even if very different experimental configura-
tions are adopted. Such evidence is particularly relevant since,
while keeping a traditional experimental setup, it overcomes
the problem of introducing correction factors “configuration
dependent” for stress determination, allowing comparison of
different efficiency of specimens shapes and loading modes.
In this respect, it has to be underlined that differently to
most of published literature such comparison is not limited
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to a numerical investigation but relies on experimental
observations. We not only compared numerically on the same
material cruciform and square shape but also actually imple-
mented two different gripping systems, with grips and hooks
and considering realistic dimensions, with size comparable to
those of biological tissue samples. The direct comparison of
cruciform and square specimen is a novel contribution that
could be particularly relevant for researchers dealing with
complex materials, such as biological tissues or scaffolds used
in the context of tissue engineering, in which case it may be
necessary to adopt different experimental procedures.
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