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ABSTRACT

A new QIM-based image watermarking system for still im-
ages is proposed. The new system is expressly designed to
cope with non-linear value-metric scaling attacks such as his-
togram stretching and gamma correction. By recognizing that
any value-metric scaling attack must not change the global ap-
pearance of the image, we argue that the watermark should be
inserted into high level visual features. We move a first step
into this direction by proposing a system embedding the wa-
termark into the kurtosis of selected image blocks. Though
the kurtosis is not strictly invariant against non-linear gain, its
value tends to remain constant whenever the image content is
not altered significantly. The experiments we carried out con-
firm the validity of the new system, though some problems
still need to be solved to make it suitable for real applications.

1. INTRODUCTION

The development of watermarking algorithms based on the
QIM paradigm [1] that are robust against value-metric scaling
is an active research field. It is well known, in fact, that weak-
ness against value-metric scaling is one of the main draw-
backs of QIM schemes with respect to classical spread spec-
trum algorithms [2]. In the last years, many solutions to this
problem have been proposed including adaptive quantization
DM [3], dirty-trellis watermarking [4], watermarking based
on orthogonal-codes [5], and also Rational Dither Modula-
tion (RDM) [6]. An approach which is somewhat similar to
those described in [3, 6] was also proposed by Mihcak et al
in [7]. The common denominator of all the works proposed
so far is that they focus on the so-called constant gain attack,
whereby the features hosting the watermark are multiplied by
a constant gain factor unknown to the decoder. Despite the
importance of the constant gain attack, other classes of value-
metric attacks must be considered, such as, for instance, non-
linear scaling and space- (time-) varying scaling; in particular,
this paper focuses on the former class of attacks.

Applying a non-linear gain to pixel grey levels is a rather
common operation. For instance, it may be used to correct the
non-linearities of CRT display (gamma correction), to aug-

ment the image contrast (histogram stretching) or to improve
the overall readability of the image by lightening dark areas
and making bright pixels darker. Being such operations so
common, it is mandatory that a robust watermarking algo-
rithm survives them to a large extent. In order to exactly de-
fine the non-linear gain attack, let us indicate the vector with
the to-be-marked grey levels by x = {x1, x2 . . . xn} and the
corresponding watermarked values by y = {y1, y2 . . . yn}.
Robustness against non linear scaling requires that the detec-
tor is able to reveal the watermark presence into an attacked
version of y obtained as:

z = g(y), (1)

where g(·) is a generic non-linear function applied point-wise
to all the image pixels, i.e.,

zi = g(yi), i = 1, 2 . . . n. (2)

In the following section we propose a general approach to
cope with the above attack. Then, in section 3, we intro-
duce a specific algorithm designed to work with still images
in the presence of histogram stretching and gamma correc-
tion. Some experimental results demonstrating the validity of
the proposed system are given in section 4. Conclusions and
directions for future work are drawn in section 5.

2. OVERVIEW OF THE GENERAL APPROACH

In this paper we consider 1-bit watermarking, where the de-
tector is only asked to verify the presence of the watermark.
We use a QIM approach wherein the presence of the water-
mark is determined by verifying whether the marked features
are close enough to the quantization centroids. The easiest
way to design a QIM watermarking algorithm that survives
the general attack described in equations (1) and (2) consists
in extracting from the vector x a new feature f that is inva-
riant with respect to g and then applying a standard (scalar)
QIM algorithm to f . In other words we would need to find a
function f such that:

f = f(x) = f(g(x)), (3)



and then apply a QIM algorithm, e.g., DM or DC-DM [1],
to f . Of course, due to the generality of the function g, this
is an impossible task. Fortunately, some important restric-
tions apply to the function g(·), since the processed version
z of the marked image must be perceptually equivalent to
y. For instance, the function g(·) could be required to pre-
serve the order of pixel values, hence restricting the analysis
to monotonic functions. Even so the class of admissible g(·)
is too large, and the problem of finding a feature f invariant
to all the admissible g(·) appears to be very complicated.

The approach we proposed here is slightly different. By
recognizing that any admissible function g(·) must preserve
the visual appearance of the image, we argue that choosing a
feature f which is related to the semantic content of the host
image is sufficient to ensure robustness (if not complete in-
variance) against the presence of g(·). Now the problem is to
identify a good semantic feature that can be easily quantized
to embed the bit b. Note that classical semantic features such
as image segments or edges may not satisfy this requirement
for the difficulties of modifying them in a predefined way.

The solution that we explore in this paper is to use norma-
lized higher order statistics as to-be-quantized features. This
choice is motivated by observing that such features are re-
lated to the shape of the histogram of the host image, and that
the histogram somewhat reflects the image content. For in-
stance, a bimodal histogram (corresponding to a high fourth
order moment) is a clue that the image consists of two distinct
regions having a different gray level. To be specific, accor-
ding to the results of some preliminary tests we carried out
on a set of 100 images, we found that the kurtosis β2 (nor-
malized fourth order central moment, which is invariant to
affine transformations) exhibits a poor sensitivity to two im-
portant classes of operations, namely gamma correction and
histogram stretching (see figure 1).

The kurtosis of a given x = {x1, x2 . . . xn} is defined as:

β2(x) =
µ4(x)
µ2

2(x)
=

∑n
i=1(xi − x)4

(
∑n

i=1(xi − x)2)2
, (4)

where µi is the i-th order central moment and x is the mean
of x.

Watermarking is achieved by quantizing the kurtosis fea-
ture. Quantization is achieved by modifying the values of x in
such a way that the kurtosis assumes the desired value, while
minimizing the introduced distortion.

3. WATERMARKING SYSTEM DESCRIPTION

In this section we describe in detail the watermarking algo-
rithm that we developed by starting from the considerations
given in the previous section. The watermark embedding sys-
tem proposed is depicted in figure 2. First, the host image is
wavelet decomposed. The second-level approximation coeffi-
cients of a 8-length Daubechies wavelet decomposition is the
chosen watermark domain, both for its low-pass and spatial
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Fig. 1. Percentage of 8 × 8 blocks whose absolute variation
is the percentage specified by the x-axis

localization characteristics and for dimensionality reduction.
Then the wavelet band is subdivided into N square blocks
on a regular basis; in our case, for a 512×512 pixels image,
K =256 square blocks of 8×8 coefficients are obtained. For
every block, the coefficients kurtosis is evaluated.

As suggested by figure 1, we employ an adaptive quan-
tization of the kurtosis quantization, i.e. we use 3 different
quantization steps {∆1,∆2, ∆3}, where the larger steps are
used for higher kurtosis values. Furthermore, we define a
range of embeddable kurtosis so to avoid very low kurtosis
values because they tend to blow successive watermark em-
bedding and very high values for their erratic behavior (i.e.
tendency to vary considerably). We derive randomly from the
secret key a length-N vector d and we shift the reconstruc-
tion values of the quantizer for the n-th block by dn, with
−∆i/4 ≤ dn ≤ ∆i/4. The quantization rule in the non-
shifted case employed by the embedding system is depicted
in figure 3. The successive step is watermark embedding in

Fig. 2. Watermarking embedding flow-chart



the wavelet domain. Given the host coefficients vector x with
kurtosis k we wish to find a new (watermarked) coefficients
vector y constrained to have kurtosis h, the quantized version
of k. We search the solution of this under-determinated prob-
lem that minimizes the L2 norm of the watermark n = y−x.
This non-linearly constrained minimization of a non-linear
function is an operation computationally expensive and prone
to divergence. Hence, we slightly relax the constrain and
solve iteratively what follows:

min
y

‖n‖ subject to h− ε ≤ β2(y) ≤ h + ε (5)

where ε is a small tolerance parameter. Finally, the water-
marked image is recovered from the watermarked approxi-
mation coefficients, obtained substituting x with y for every
block, and from the host detail subbands.

Solving equation (5) leads to a number of problems. As it
is a strongly non-linear problem, it might diverge; even when
it converges to a solution, it could introduce in the pixel do-
main visible artifacts or saturated pixel. In case of divergence,
the block is left untouched. The visibility problem is ad-
dressed evaluating the distortion introduced in the image; if
it is excessive, again the block is left untouched. Dashed lines
in figure 2 account for the possible discarding of watermarked
blocks. The saturation problem is critical because storing the
watermarked image in a file clips the saturated pixel values
and could significatively modify the feature value; to avoid
this problem, we have so far considered artificially reduced
dynamic range images.

Observe that leaving unmarked blocks inside the decoding
range affects system performance; in fact they have a 0.5 pro-
bability of decoding error because of the uniform pdf of d. In
an attempt to reduce the visibility and/or convergence prob-
lem, the embedder tries to reach some nearer feature value,
obviously under the same visibility constraints, up to the bor-
der of the correct decoding region.

Another problem is given by the occurrence of unpre-
dicted decoding of unmarked blocks whose feature value has
entered the decoding range after some kind of image proces-
sing. To reduce these events, the embedder makes an effort to
move blocks with out-of-range kurtosis value well away from
the decoding range.

The detection process is similar to classical QIM; the de-
coder evaluates the kurtosis feature for every block in the
same fashion of the embedder. If the feature h′ is inside

Fig. 3. Non-shifted quantization rule. Subtract dn to obtain
the quantization rule for the n-th block

the decoding range, it performs the adaptive quantization by
using the key-derived d vector and takes a binary decision
whether the n-th block is marked as stated in equation 6.

h′ is marked if |Q(h′, ∆i, dn − h′| ≤ ∆i/4 (6)

where Q(h′, ∆i, dn) represents the quantization with step ∆i

and shift dn and ∆i is derived from the decoding region in
which h′ lies. To decide whether an image is watermarked
or not, the decoder compares the number of blocks correctly
decoded with a threshold T , i.e. an assigned percentage of the
decoded blocks that realizes a suitable tradeoff between false
alarm probability and miss probability.

4. EXPERIMENTAL RESULTS

In order to evaluate robustness performances, we derived the
Receiver Operating Characteristics under various kinds of im-
age processing: addition of white Gaussian noise, gamma
correction, histogram stretching, JPEG compression and con-
stant gain attack. To estimate the expected very low miss
and false alarm probability we operated this way: we water-
marked 100 512×512 pixels images and for every processed
watermarked image we evaluated a mean block error proba-
bility pe from the resulting 25600 potential decodings (inclu-
ding untouched blocks); given the threshold T , the miss pro-
bability pm(T ) is then derived as the probability of having at
least %T · N& correct block decodings (where N is the mini-
mum overall block decodings performed on the images):

pm(T ) =
N∑

i="T ·N#

(
N

i

)
(1− pe)i · pN−i

e (7)

As previously stated, unmarked blocks have 0.5 block error
probability; hence the false alarm probability pfa(T ) is de-
rived by substituting pe = 0.5 in equation (7), thus obtaining:

pfa(T ) =
N∑

i="T ·N#

(
N

i

)
2−N (8)

Predicted ROCs are depicted in figure 4. As expected from
figure 1, the system is more sensitive to AWGN than to gamma
correction, but it retains good performances for all the types
of attacks considered. Constant gain attacks, as expected, re-
sult in rare block errors (due to untouched blocks).

5. CONCLUSIONS AND FUTURE WORK

We proposed a new QIM-based image watermarking algo-
rithm that relies on kurtosis of wavelet approximation coeffi-
cients to achieve robustness against non-linear scaling attacks.
Adaptive quantization is employed to match feature behav-
ior. Experiments carried out so far show good performance
in presence of histogram stretching and gamma correction, as



well as with other common attacks such as AWGN and JPEG
compression.

Open challenges include security and saturation effects.
Security could be assured by inserting key-derived parameters
into the block subdivision and feature evaluation steps (black
dashed lines in Figure 2). In particular, block shape and po-
sition could be random (as in the Bubble Random Sampling
approach [8]) and coefficients might be randomly weighted
(as in [7]) before evaluating the kurtosis. Saturation effects
might be mitigated by a post-processing step similar to the
one used for the convergence problem.
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(b) Histogram stretching
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(c) Addictive White Gaussian Noise
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Fig. 4. Receiver Operating Characteristics (ROCs) under dif-
ferent image processing


