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ABSTRACT

Volumetric medical data (CT, MR) are useful tools
for diagnostic investigation, however their usage
may be made difficult because of the amount of
data to store or because of the duration of com-
munication over a limited capacity channel. In or-
der to code such information sources, we present
a progressive three-dimensional image compression
algorithm based on zerotree wavelet coder with
arithmetic coding. We make use of a 3D sepa-
rable biorthogonal wavelet transform and we ex-
tend the zerotree SPIHT algorithm to three dimen-
sions. Moreover we propose some improvements
to the SPTHT encoder in order to obtain a better
rate-distortion performance without increasing the
computational complexity. Finally we propose an
efficient context-based adaptive arithmetic coding
which eliminates high order redundancy. The re-
sults obtained on progressive coding of a test CT
volume are better than those presented in recent
similar works both for the mean PSNR on the whole
volume and for the PSNR homogeneity between
various slices.

1. INTRODUCTION

Today the need to store and communicate large
amounts of biomedical image data requires the
study of new compression techniques. There exists
a rich literature and standardization work (e.g. the
upcoming JPEG2000) regarding two-dimensional
image coding. Diagnostic imaging techniques, for
example computed tomography (CT) or magnetic

resonance (MR), produce a stack of 2D slices mak-
ing up a 3D volume. Obviously compression of such
volume can be accomplished separately for each
slice with a traditional 2D image coder. However
this does not exploit the strong correlation that
may exist between adjacent slices. Such correlation
is influenced by the selected resolution along the
scanning axis [1],[2]. If the distance between slices
in the z direction is of the same order of magnitude
with respect to the xy resolution, i.e. the voxel
anisotropy is low, 3D coding is performing much
better than repeated 2D one (or with respect to
video coding, due to the lack of classical movement
in a 3D scansion) [3],[4],[1] and [2]. The computa-
tional coding cost is a critical factor especially for
multidimensional data. Nowadays, among the best
2D compression schemes, wavelet based zerotree
coding offers high rate-distortion performance with
low algorithmic complexities. Moreover zerotree
schemes may produce progressive bit-stream and
allow an easy extension to Region of Interest cod-
ing; these aspects are essential for biomedical appli-
cations.In this work we develop a 3D extension of
this type of coders. We use a 3D separable wavelet
transform, which makes use of the 9/7 spline fil-
ters of [5] and the more recent 10/18 tap filters
proposed in [6]. These filters have demonstrated
very good performance according to objective as
well as perceptual criterion for natural images. For
the quantization strategy we use the SPIHT algo-
rithm [7] in order to obtain a bit-plane progressive
coding. Beyond extending the SPIHT methodol-
ogy to 3D, we have modified it slightly introducing
an improvement in its rate-distortion performance



through the elimination of redundant bits and more
advantageous coefficient reconstruction procedure.
The output of the SPIHT algorithm is coded [8]
in order to eliminate the remaining statistical re-
dundancy. For this purpose we develop a context
modeling scheme for 3D SPIHT, based on algorith-
mic features of the SPTHT and the statistic cor-
relation between various coefficients of the wavelet
transform. Finally we test our coding scheme and
compare the results to those obtained on a standard
volume by two recent similar works [3],[4].

2. 3D IMPROVED SPIHT

2.1. 2D SPIHT references

We first refer to the 2D SPTHT approach as pre-
sented in [7]. SPIHT is a progressive algorithm
composed of two iterative steps: a significance map
coding and a refinement pass. The first step identi-
fies significant coefficients (i.e. larger than a given
threshold which is a power of two) and codes their
position. The second step refines the significantly-
marked coefficients to reduce the uncertainty in-
terval of these coefficient values. For coding the
significance map efficiently, the wavelet coefficients
are reorganized in a collection of spatial orientation
trees. In fact, in the case of natural data, we can
expect a statistical drop of the wavelet coefficients
amplitude from roots towards leaves (from low to
high resolution). The following sets are used to lo-
cate the significant coefficients:

e D(i, j): set of all descendants of node (i, j);
e O(i,j): set of all offspring of node (i, §);

2.2. 3D extension of SPIHT

The extension of the SPTHT algorithm to three di-
mensions is very easy. In fact it is sufficient to mod-
ify the collection of spatial orientation trees by con-
sidering also the third dimension. In this way the
nodes now have eight sons instead of four. More-
over the wavelet subbands are numbered in such a
way to favor, for a same decomposition level, those
ones highpass-filtered in the z direction, because we
expect to have higher coefficients in these subbands
a cause of the voxel anisotropy.

2.3. Optimization of SPIHT algorithm

Beyond extending the SPTHT methodology to three
dimensions, we make two changes in the basic
algorithm obtaining an improvement in its rate-
distortion performance without increasing its com-
putational complexity. First we improve the cod-
ing of the significance map by removing some re-
dundant bits. In fact, with reference to the al-
gorithm exposed in [7], there are three situations
where the following bit in the encoded stream is
certainly equal to one (i.e. the set is significant):

e when the set D is significant and all the sons
are insignificant then the set £ is significant;

e when D is significant, £ is empty (we are at
the leaves of tree) and the first three (seven in
3D) sons are insignificant then the last son is
significant;

e finally when L is significant and its first three
(seven in 3D) subsets D are insignificant then
the last set D is certainly significant.

Removing these redundant bits from the encod-
ing of the significance map we obviously obtain a
better compression ratio.

The second improvement concerns the coefficient
reconstruction procedure of the decoder. For each
position in the bit stream the reconstructed value
of each coefficient is the middle of its uncertainty
interval. In the original SPTHT algorithm this value
is rounded-up to the nearest integer. But consid-
ering the subband coefficient statistics we can rea-
sonably assume the histograms to be mono-modal
with a peach in zero and a monotonically decreas-
ing behavior towards higher value. Thus the pdf
of the quantization error in each bit-plane interval
is slanted towards negative error values. For this
reason it is more convenient to round to lower in-
teger. In this way the original bit stream remains
the same but the mean square error of the recon-
structed image is reduced. Thanks to these two
changes we obtain an increment of the PSNR of
about 0.1-0.3 dB both for 2D images and for med-
ical CT or MR volumes at rate values from 0.1 to
1.0 bit per pixel; as an example we show in Fig.1
the PSNR increment measured by coding the test
volume CT_SKULL (256x256x128 voxels).
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Figure 1: Comparative evaluation of original and
improved 3D-SPIHT.

3. CONTEXT MODELING IN ARITH-
METIC CODING

To increase the coding efficiency the SPIHT bit
stream is entropy coded using a context-based
adaptive arithmetic coder [8]. For identifying the
most useful contexts we analyze here the SPIHT al-
gorithm as a binary memory symbol source. First
we can identify three main contexts in the structure
of the SPIHT algorithm: sign bits, refinement bits
and significance map coding bits. The last context
can be subdivided into four sub-contexts: single co-
efficients, set D, set £ and sons. We have thus six
different contexts. At this point we consider some
relationships between the wavelet coefficients in the
collection of spatial orientation trees. For this rea-
son we identify sub-contexts dependent on the sig-
nificance value of the father or of the brothers of
the node (or set) we are analyzing. This leads to
a modeling of the SPIHT source with 26 different
contexts.

It is important to note that we entropy code also
the refinement bits (contrary to the original SPTHT
approach) because, as already seen, the subband
coefficient histograms of each bit-plane interval is
unbalanced towards lower values and so it is more
probable that a coefficient lies in the inferior half-
interval rather than in the superior one. Arithmetic
coding permits to obtain an increment of the PSNR
of 0.5-1.0 dB on three-dimensional data at a rate
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Figure 2: Performance improvement by the use of
context based arithmetic coding.

ranging from 0.1 to 1.0 bpp, as shown in Fig.2.

4. EXPERIMENTAL RESULTS

We test our compression scheme using the same
volume CT_SKULL (256x256x128 voxels) used in
[3],/4]. In Fig.3 we show the PSNR calculated on
each slice in z direction for two rate of compres-
sion, 0.5 and 0.1 bpp. In this case we used the 9/7
wavelet filters on zy and the 10/18 ones along the
z direction. The obtained results are better, both
for the mean PSNR on the whole volume and for
the homogeneity of the PSNR between successive
slices as shown in Tab.l for the 128-slice coding
unit at rate of 0.1 and 0.5 bpp. The three methods
are compared in whole volume PSNR, worst slice
PSNR and PSNR-oscillation range (a measure of
the PSNR differences between consecutive or near
slices).

The increment in the mean PSNR is obtained
thanks to the improvements to the SPIHT algo-
rithm and to the context modeling used in the
arithmetic coder. It also benefits from the use
of a different wavelet transform. Moreover, the
achieved reduction of the oscillation between near
slices depends primarily on the selected wavelet.
Integer wavelet transforms are used in [3] and [4]
in order to guarantee the possibility of lossless com-
pression of the biomedical data, but in lossy con-
dition they work worse. Besides, we argue that



| bpp | 3DEZW [3] | 3DSPIHT [4] | I3DSPIHT |

~ 32.5 33.99 34.07
0.1 29.8 29.2 30.98
~ 2.5 ~ 6.0 ~ 2.0
~ 42 42.89 43.67
0.5 39.5 37.5 41.64
~ 2.5 ~ 4.0 ~ 2.0

Table 1: Mean PSNR(dB), worst slice PSNR and
oscillation range, on 128 slice of the CT_ SKULL
volume [3],[4] coded at 0.1 and 0.5 bpp.

SPIHT coding becomes inefficient if pushed to loss-
less compression, that biomedical data are noisy
and so perfect lossless compression is not manda-
tory as it may seems, and that uncontrolled oscilla-
tions of PSNR values between consecutive slice may
lead to objectionable artefacts when compression is
lossy [2].
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Figure 3: Lossy coding of CT_SKULL: PSNR, on
2D slices for 0.5 and 0.1 bpp.

5. CONCLUSIONS

In this paper we proposed an extension of SPTHT
based techniques to the 3D case, and suggested how
to improve the performance of the SPIHT algo-
rithm without adding any computational cost. We
also introduced a set of 3D contexts in order to

obtain a highly performing arithmetic coder. We
showed the effectivenes of our approach by appy-
ing it to a biomedical test volume and comparing
it with respect to others similar works. Based on
the obtained experimental results, we suggest not
to use integer wavelet filters when this makes worse
the objective quality or leads to unpredictable os-
cillations of the inter-slice PSNR. In conclusion, if
lossy compression of biomedical data were accept-
able, as it is reasonable, in some clinical contexts
(e.g. teleradiology, long term storage archives) the
proposed 3D data compression technique could be
useful to code not too anisotropic volumes [9].
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