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ABSTRACT
This paper presents a multiscale feature extraction technique
for 3D range images. Optimized and improved 3D Gaussian
filtering and saliency map computation have been conceived
jointly to the exploitation of connectivity relationships natu-
rally induced by the 2D acquisition grid. The proposed al-
gorithmic and implementation solutions guarantee good re-
peatability of detected features on different views and demon-
strated superior computational performance compared to other
known approaches.

1. INTRODUCTION

Nowadays, there is a growing interest in 3D shape acquisi-
tion and analysis because of their broad range of application
fields (industrial, entertainment, security, medical, cultural
heritage,...). In order to acquire the 3D shape of an object,
a stereo scan system is usually employed to obtain a set of 3D
range images (RI). If no information about relative displace-
ments between scanner and object is available, the different
views will not share a common reference system. In order to
reconstruct the object shape, it is thus necessary to accurately
align each view of the acquisition dataset through a registra-
tion procedure. A way to estimate the relative displacement
between two views consists into the identification of a set of
corresponding points taken from each view and the computa-
tion of an optimal rototranslation matrix out of them. Brute
force approaches to solve this problem become impractical as
RI size increases. In order to speed-up this procedure, a com-
mon technique is to reduce the number of candidates by au-
tomatically extracting a small set of feature points from both
views and searching for correspondences between them. The
problem then becomes how to select feature points that, with
high repeatability rate, appear in same positions on overlap-
ping areas of different views, i.e. taken from different angle
directions. Feature extraction repeatability performance are
important within a feature based model acquisition pipeline in
that it heavily influences subsequent steps toward automated
view alignment for 3D model acquisition [1]. Different so-
lutions have been proposed for 3D feature extraction. In [2]
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points are selected based on curvature criteria. In [3], for each
point of the RI, the volume portion of the object inscribed
into a sphere surrounding the point is estimated and only un-
common values are selected. Other solutions, like the pre-
sented one, are based on multiscale analyses [4], [5], [6] and
are somewhat inspired to the Lowe’s SIFT approach [7]. Al-
though differing in algorithmic and implementation aspects, a
typical sequence of processing steps for feature point extrac-
tion is:
• calculate the normals to the RI points (preliminary step)
• calculate N Gaussian filtered (scaled) versions of the RI
• derive N-1 saliency maps from the filtered data
• identify local maxima on each saliency map

Following this approach, we present some improving solu-
tions for feature detection on 3D range data and we measure
their performance in terms of feature repeatability and com-
putation speed. Our main contributions are 1) a new direction-
constrained Gaussian-like filtering, and 2) naturally induced
neighborhood exploitation for computational speed-up.

2. FEATURE EXTRACTION ON 3D RANGE IMAGES

In a RI, each acquired pixel (usually on a image sensing grid
x = (w, h)) is associated to a depth or distance information
(according to the modeled acquisition geometry). Some scan-
ners produce true 3D localization of the point in the acqui-
sition coordinate system. In our formalism a range image
is a map RI : I(Z2) → R(R3), where the domain I is a
regular rectangular grid (usually corresponding to the CCD
matrix), and the co-domain R corresponds to the set of 3D
points belonging to the target object. Not all points in I have
a valid corresponding point px ∈ R (this is due to the na-
ture of the acquisition in terms of target object shape and/or
measure range limitations) so a valid point subset Iv ⊆ I
can be defined. Moreover, although the 2D index grid is uni-
formly distributed, 3D points cannot be considered uniformly
distributed over the 3D space. This is because point density
is inversely proportional to the angle existing between the ac-
quisition direction, and the normal associated to each point.
Considering R as a surface, its point distribution presents



holes in correspondence to occlusions, i.e. parts of the tar-
get object that are not directly visible by the incident rays.
Despite these facts (non-valid regions, non-uniform density
and holes) the regularity of the 2D grid is a useful structuring
resource that can be used as a naturally induced connectivity
lattice to be exploited in 3D point processing and to determine
practical definitions to various data processing operators (e.g.
filtering, interpolation/subsampling, normal computation,...)
and speed-up their computation. We exploit this connectiv-
ity in all the steps of our method, and we propose original
implementations of Gaussian filtering and saliency map cal-
culations on RIs.

2.1. Normal extraction

Our feature extraction algorithm requires the computation of
normal vectors at each point location px ∈ R. Given a px,
its normal is computed by calculating the difference vectors
d = pj − px between px and its 8 neighbor points pj in the
2D index grid. By assigning an index k, ranging from 1 to
8, for each vector d, associated in a anti-clockwise order (see
Fig.1), we define the normal n̂x as:

n̂x =

8∑
k=1

d̂k × d̂j

8
j =

{
k + 2 k <= 6
k − 6 k > 6

(1)

(a) (b)

· · ·

(c)

Fig. 1. d̂ selection for (a) k = 1; (b) k = 2; (c) k = 8

2.2. 3D Gaussian filtering

An important step for our algorithm requires to extract a set of
N Gaussian filtered versions G (n) of the input range image,
with n = [1, N ]. In order to do so, N 3D Gaussian filters with
progressively increasing kernel dimension σn are applied to
each point constituting the original range image, varying its
position as follows:

pfx (n) =

∑
pj∈ηx(2σn)

pj · e
−‖px−pj‖2

2·σ2
n

∑
pj∈ηx(2σn)

e
−‖px−pj‖2

2·σ2
n

(2)

where σn represents the nth kernel radius, while ηx (2σn)
identifies the points within a distance 2σn from px.

Fig. 2. pfx (n) projected over n̂x direction

The set of pfx (n), as calculated in (2), could be directly used
(as done in [5] and [6]) as filtered data. However, we do not
yet consider it as such. This is because, due to the above de-
scribed characteristics of R, border points (on validity region
or hole boundaries) and points lying between two regions with
different normal directions would suffer from shrinking and
position biasing distortions respectively. These distortions
cannot be considered negligible, since most feature points are
located over highest curvature regions and therefore they are
prone to position biasing due to point density disparity over
ηx (2σn). In addition, shrinking distortion would affect bor-
der areas and would lead to artifacts in the saliency compu-
tation, as we will see. In order to avoid such distortions, we
propose to project pfx (n) over the normal direction n̂x, as fol-
lows:

Gx (n) = px +
〈
pfx (n)− px, n̂x

〉
n̂x (3)

This is equivalent to force pfx (n) to move along the axis
associated to n̂x, therefore reducing the distortion caused by
non-uniform points distribution over ηx (2σn), as depicted in
Fig.2.
We define G (n), the set of points Gx (n) ,∀x ∈ RI, as the fil-
tered version of the range image after having applied a Gaus-
sian filter of radius σn, as defined in (3). As the kernel radius
σn increases, details which size is smaller than σn disappear
from G (n). Once the G (n) has been calculated, its normal
vectors are recomputed as indicated in section 2.1.
As usually done in multiscale approaches, when kernel size
doubles, a subsampling factor of two is applied to the image,
also to reduce the computational burden. Here subsampling
is performed on I , thus in a very simple and fast way.

2.3. Saliency maps calculation

Once the G (n) have been computed, N-1 saliency maps can
be derived. A saliency map is a 2D array of difference values,
obtained by pairwise subtraction of G (n) at different kernel
sizes. In a multiscale framework, a pairwise subtraction be-
tween G (n) retains only the details comprised between the
two scale limits (which can be roughly thought as cut-off
frequencies), in other words it highlights features which di-
mension is comprised between two kernel sizes, say σn and



σn+1. Thanks to the shrinking artifact avoidance guaran-
teed by (3), straightforward pointwise subtraction at different
scales can be performed correctly. We then calculate saliency
maps S (n) as follows:

S (n) = |G (n)−G (n+ 1)| · 〈n̂x (n) , n̂x (n+ 1)〉 (4)

Unlike [4] and [5], the factor 〈n̂x (n) , n̂x (n+ 1)〉 has been in-
troduced in order to give more importance to points for which
the normal direction does not change after the filtering pro-
cess, thus restricting saliency distribution to more specific ar-
eas of the range image. A similar approach is employed in
[6], where the correction factor takes into account n̂x (n).

2.4. Maximum extraction

Once each saliency map S (n) has been determined, saliency
maximums are extracted as follows:

sMax (n) = {x | Sx (n) > Sj (n) , ∀j ∈ ηx (2σn+1)} (5)

In order to generate the maximum list for a saliency map, an
iterative search is performed. Once the greatest valid saliency
value for S (n) is found, no other maximum may be selected
within a neighborhood region of ηx (2σn+1). This is because
the greatest detail size that can be detected within S (n) is
σn+1. Such constraints on the distance between maxima guar-
antee the absence of overlap between features.
Each maximum is further tested through two conditions be-
fore being selected as feature point. At first, its neighbor-
hood must be defined. In order to avoid selecting features
which descriptor would result calculated out of few neigh-
bor points, maximums that possess less than 50% of the es-
timated points for ηx (2σn) are discarded. The second check
is about position stability. Saliency maps may slightly vary
due to changes of acquisition direction, therefore maximums
detected over regions with similar saliency values may vary
their position significantly. In order to avoid such points, we
only retain maximums for which the saliency value is much
greater than its neighboring points, and it is not located over
saliency ridges. An example of saliency map with superim-
posed feature points at a given scale is shown in Fig.3.

3. RESULTS

To assess the contribution of each step and the overall per-
formance of the proposed feature extraction method, four dif-
ferent implementations have been tested, depending on which
version of filtering and saliency computation have been used.
The first version, we called basic implementation, reflects
what proposed in [5], i.e. Gaussian filtering performed as in
(2) and saliency computed as pairwise difference between fil-
tered versions of data. The second version only implements
the improved version of Gaussian filter (3); the third ver-
sion only implements the saliency correction (4). Al last, the

Fig. 3. A saliency map with superimposed feature points.

Fig. 4. Datasets: (a) Angels, (b) Dolphin, (c) Teeth.

fourth version implements both the proposed improvements.
The comparison has been performed over three pre-aligned
range image datasets which are shown in Fig.4 (where differ-
ent colors have been used for each view). All RIs have been
acquired with a commercial structured-light scanner (Optical
Rev-Eng LE, produced by Open Technologies srl, Italy). All
the range images used for our tests have a resolution of 1280
× 1024, which means that Iv can have up to over 1.3 mil-
lion points. Prior to the first Gaussian filtering, each range
image is down-sampled by a factor 2, thus reducing initial di-
mensions to 640×512. In our implementation, three G (n)
have been calculated, with σn = 2σn−1, while the σ1 is set
to be eight times the average interdistance between points in
R. Although, according to the SIFT methodology [7], the
implemented software can work with any number of scaling
level and σ progression, we experimentally found the above
parameters to give the best compromise between repeatability
and computational performances for the considered datasets.
Repeatability performance evaluations have been executed as
follows: from each range image of a dataset, its features are
extracted, then for each pair of consecutive range images (ac-
cording to a predetermined order), features in the overlapping
area are counted; subsequently, both feature sets are com-
pared in order to find correspondences (feature points are con-
sidered correspondent if their position differ in less than σ

3 ).
At last, feature repeatability is computed as the number of
features that have a correspondence relation divided by the



Feat. extraction versions Feature repeatability
Angels Dolphin Teeth

Basic implementation 37% 8% 19%
Gaussian projection 56% 34% 41%
Saliency projection 35% 11% 19%

Proposed implementation 57% 36% 41%

Table 1. Repeatability performance

Dataset RI Min-max Avg points Exec time
name No. overlap (×103) [ms]
Angels 8 20-60% 1040 4823
Dolphin 20 20-90% 406 1894

Teeth 8 40-90% 408 1836

Table 2. Computational performance

number of features in the overlapping area. In Table1, feature
repeatability performances are presented for each dataset and
for each feature extraction version. Reported data are aver-
aged over all scales and all couples of overlapping RIs. Our
evaluation shows that the modified Gaussian filter improves
repeatability performances by more than 20 percentage points
with respect to the basic implementation of the Gaussian fil-
ter (used in the first and third version). Such improvement
is due to the fact that the proposed filter does not introduce
any shrinking effect usually associated to the Gaussian filter-
ing, thus improving feature localization. The saliency correc-
tion does not yield as much, however a slight performance
improvement is achieved through its introduction. It can be
argued that such repeatability rates may not be considered as
extraordinary. As a matter of fact, to our knowledge, no study
about feature repeatability have been published. In [4], some
feature repeatability results against range data subsampling
and noise addition are presented, but they are not useful here
for comparison. We deem our performances to be satisfactory
because of two reasons. The first one is related to the image
sets employed, since they present a heterogeneous grade of
regularity, different feature types and dimensions, and usually
big differences (borders, holes, point density) when acquired
with different acquisition directions. Secondly, we deem such
repeatability rates as entirely adequate for a robust subsequent
search of correspondences, if suitable feature descriptors or
signatures can be calculated and used to this end.
Computational performances are presented in Table 2, where
we also describe datasets in terms of number of RI views per
dataset, min-max overlap area between views pairs, and av-
erage number of points (i.e. |Iv|) per RI. Algorithms have
been implemented in C++, and executed on a PC with INTEL
CORE2 CPU, 2.80 GHz each, and 4 GB of RAM. As the
differences in computational time for the above four versions
are negligible, we only give the processing time required by
the proposed implementation, which is around 4.5 seconds
for each million of points. This is quite an improvement with
respect to [5] (around 5 minutes per million points), [4] (50

minutes per million points), [3] (around 5 minutes per million
points) and [6] (around 7 minutes per million points), even
considering the upgraded computational resources. Such per-
formance boost is mainly due to the exploitation of neigh-
borhood relationships defined on I . Secondly, the use of a
fast subsampling, and some coding efficiency solutions on
frequent and time-consuming operations make the rest (e.g.
look-up tables for square root computing).

4. CONCLUSION

In this paper a multiscale method for 3D feature extraction on
range images has been presented. This method, that can also
be considered as a 3D extension of a SIFT-based approach,
demonstrated to yield good robustness in terms of feature re-
peatability, and outstanding computational performance. The
work is mainly characterized by the introduction of a modi-
fied version of Gaussian filtering of 3D range images and a
weighted saliency map computation. They both contribute
to improve feature repeatability. In addition, the direct ex-
ploitation of the 2D domain neighborhood helps the definition
of the filter action and is determinant for the computational
speed. Experimental performance confirm that our method is
suitable to be used for automated multiple view registration
and 3D model acquisition, where the degree of accuracy and
obtainable automation strongly depends from the goodness
of the feature extraction phases. The proposed solutions can
be also useful for other 3D feature-based applications, such
as content analysis and description of 3D objects, 3D object
tracking, etc., where features robustness and computational
speed are crucial aspects.
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