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ABSTRACT

We present an improvement of the classical marker-controlled
watershed approach in the direction of a better exploitation of user-
defined markers. The combined action of a partial flooding and paint
drops falling downwards on the gray value relief from marker loca-
tions, leads to a robust and meaningful identification of the candidate
basins, which is a prerequisite for an accurate segmentation. This
is useful for user-controlled segmentation of biomedical volumes
in that it facilitates robust identification of complex 3D structures
with inhomogeneous borders. To this end, a visual interactive seg-
mentation system has been implemented where different user-data
interaction tools can be selected by physicians to generate machine-
understandable knowledge in a quick and compact way. Experimen-
tal results on selected use-cases demonstrate the strengths of the pro-
posed solutions.

Index Terms— Image segmentation, Interactive systems, Wa-
tershed, 3D Biomedical Datasets

1. INTRODUCTION

Segmentation is a fundamental step in many medical image anal-
ysis pipelines. Its performance critically depends on how clinical
information is conveyed to the segmentation algorithms. In general,
the higher the target variability (related to anatomo-physiological or
pathological factors) the lesser the amount of information that can be
established a priori. Therefore, fully automatic methods are special-
ized with respect to a precise application domain in terms of image
modality and diagnostic question and may have limitations in suc-
cessfully handling target variabilities or discrepancies with respect
to basic hypothesis. Conversely, interactive (also user-guided) sys-
tems can be designed starting from a more general level of knowl-
edge to act in situations where automatic solutions do not guarantee
sufficient degree of accuracy or robustness. They should therefore
be characterized and evaluated in terms of the joint level of segmen-
tation accuracy vs variability robustness they can reach. The role
of user-guided techniques is not always recognized, and new ideas
in this area are subject to the risk to be judged only for the user
burden they entail in comparison with eventually existing fully au-
tomatic alternatives. However a more articulated vision should be
adopted in that there are many situations, of relevant clinical inter-
est, that can not be addressed by automated tools because either they
have not been sufficiently investigated or they are too vunerable to
target variability. In some cases such variability may lead outside
the parameters of the models to which automatic methods refers to,
while in other cases it may hamper the very definition of any model.
Hence, the need of methods that may be deemed valid under more
general hypothesis, and for a fairly wide range of problems, arises,
even at the cost of an interaction with the user. Desirable charach-
teristics of the interactive segmentation systems, for 2D biomedi-
cal images, have been recognized in [1]: the user burden must be

kept low and the application should converge to the desired result
in an intuitive, robust, efficient and repeatable way. For the reasons
stated above we try to define and use another desirable feature, that
could be called generality, in the design of our novel algorithmic
and methodological solutions. Generality can be thought as the ap-
titude of a segmentation system for the successful completion of a
given segmentation task, with respect to different types of problems
and imaging modalities, according to some suitable mechanism of
knowledge from markers (i.e. an expressive transfer of information
from the user about the specific task to be accomplished)[2]. Particu-
larly interesting are methods which foresee meaningful and compact
primitives to be used in a quick and intuitive user-data interaction,
while another key point for an effective and robust user-guided seg-
mentation system is a sound concordance between interaction tools
and the algorithmic solutions. Morphology-based techniques and,
in particular, marker-based watershed ones [3] are good candidates
for this matching in that, many cues coming from user world can
be effectively translated in algorithmic parameter or conditions to be
used for guaranteeing accuracy and fast convergence to the desired
result. If, from one side, the use of markers (deriving from inter-
action primitives) solves the typical over-segmentation problem of a
WS analysis, for reasons that will be clear, not all markers set by the
user could be equally exploited by the algorithms, and this can to the
contrary generate under-segmentation problems.
In the following sections, after a concise background introduction
on WS related aspects (Sec.2), we present a solution to the above
problem by proposing a variant to the classical marker-based WS
segmentation that we called Paint-Drop Marking, which increases
the possibility of user-defined markers to be significantly exploited
(Sec.3). Our algorithmic solution has been included within a fully-
featured interactive segmentation system (Sec.4). Finally, we present
some experimental results on representative use-cases (Sec.5).

2. BACKGROUND

Morphological image processing approaches like the WS anal-
ysis are based on modeling n-dimensional scalar datasets I as
(n + 1)-dimensional surfaces G representing topographic reliefs
to be flooded by rainfall [3]. Rainfall gradually fill the so called
‘catchment basins’ CB(M), related to local minima mi ∈ M .
These can be used as atoms for the final segmentation, usually con-
sisting in some form of CB selection/aggregation. CB identification
is obtained by a WS induced partition on G. On a continuous do-
main D, the watershed of I is the set of points that doesn’t belong
to any CB, WS(I) = D ∩

(⋃
j CB(mj)

)c
, while the water-

shed transform WST (I) : D → M ∪W is a labeling of I in its
CB(mj), j = 1 . . .ℵ(M) plus a special label W for the set WS.
Alternative to the rainfall model is the so called immersion model
[4], where the WS corresponds to the set of dams raised to separate
different CB’s, while the water level gets higher and higher, entering
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from holes located on G’s local minima. A more direct association
between crest lines of G and object boundaries in I can be reached
consideringG as derived from I ′, the (morphological) gradient of I .
The watershed (WS) transform [3] has computationally effective im-
plementations [4, 5], while WS-based approaches extends efficiently
for discrete domains and multiple dimensions, being suitable for 3D
and 4D biomedical imaging segmentation tasks involving spatially
complex structures. In classical marker-based WS approaches, a
set of markers (marking function, MF ) can be acquired by pattern
recognition tools or directly by the user. An homotopy modification
of the surface G in a new Gh is carried out, where MF are forced
to behave as local minima during the flooding [3].
A WS analysis finds the most pronounced boundaries between ad-
jacent basins, even in presence of low contrasted signals. This
is important because the boundaries of interesting structures do
not always correspond to the most contrasted contours, or the
same structure may have variously contrasted borders (e.g. white-
matter/gray-matter is less contrasted than gray-matter/CSF boundary
in MR imaging). Some of these facets have been also recognized
by Grau et.al [6] and characterize several medical image segmen-
tation problems. Regrettably, the classic usage of a MF to guide
the segmentation could nullify the above advantage of using a WS
approach. In fact, as markers are freely placed by the users, some of
them can be positioned near most contrasted borders, and this gener-
ates a relevant problem in the segmentation of the target structures.
This is depicted in Fig.1 (a-c) where a sectioned portion (1-D view)
of the surface G, derived from I ′, is shown with a couple of markers
selected by the user (a). When filled by water, the MF -modified
homotopy ofG (b) leads to an incorrect result (c). To help envision a
concrete case we can imagine the depicted profile as a path crossing
a GM sulci, as suggested in Fig.1(a). In the next section, we propose
a simple and effective technical solution to the described problem.

3. PAINT DROP MARKERS FOR BASIN SELECTION

The proposed solution (which is valid for any data dimensional-
ity) improves candidate CB identification by exploiting user-defined
marker functions in a mixture of ’flooding by immersion’ and ’rain-
fall (here paint drops)’ approaches. This is based on a two-step CB
selection and does not require homotopy modifications ofG: 1) ’par-
tial flooding’ and 2) identification of candidate basins by CBs’ water
color change using ’paint drops’ falling from marker locations.
Partial flooding. At first, we take the gradient function I ′ and start
flooding the corresponding surface G, from its zero level minima,
until a partial flooding height hpf is reached. Proper hpf values can
be estimated and controlled by interactive tools (see next section).
The partial flooding is implemented by assigning a special label (say
A) to all pixels (or voxels) p of the ordered queue, having I ′(p) ≤
hpf . This produces some beneficial effects, even on the computa-
tional cost, in that partial flooding is an intrinsic denoising tool and
allows to skip the detection and merging of a vast population of mi-
nor basins, rarely representative of real structures. The morphologi-
cal gradient I ′ = grad(I) = maxηijk{abs(I(i, j, k)−I(ηijk))} is
used here, with ηijk being a 18-voxel connected neighborhood. The
so obtained partially-flooded basins (see Fig.1(d) and Fig.2(b)) can
be thought as thick skeleton (or portions of it) of structures that we
would find by reaching their watershed lines, and this is functional
to the subsequent CB identification step.
Paint drop marking. From the set of markers MF (made of sin-
gle voxels or connected components) we let paint drops fall down
on the partially flooded G and change the water color. By doing
so, some drops will directly splash in the partially flooded basins,

Fig. 1. Representation of the segmentation process with classi-
cal marker-controlled approach (a-c), and the proposed paint-drop
marking (a),(d-f).

while others will come down, slipping on G. In this case, we con-
sider all spreading descending paths (πk = (p0, ..., pl) such that
I ′(pi+1) < I ′(pi)) of a paint drop staining the G function (with a
special label, say B) until partially flooded basins, or other no more
descending levels (minima), are reached. So there are two possibil-
ities: (1) At least one πk meets a voxel in a partially flooded basin,
causing water color change; here a new label C propagates and sub-
stitutes label A within the joined basins (see Fig.1(e)); (2) No πk
joins partially flooded basins, this means that a higher basin has been
reached and that the marker cannot be reliably used. However, with
a proper choice of hpf , the probability of failed marker exploitation
becomes negligible. When all markers have been considered, im-
mersion (voxel labeling) continues only with colored basins (labeled
C) towards their watershed crest lines (Fig.1(f)). Voxels resulting to
share the label C correspond to the segmented object. A real seg-
mentation case with and without using paint drop marking method
is shown in Fig.2. In our 3D extension of the ’flooding by immer-
sion’ approach we use pre-ordered voxel queues, where voxels are
processed only once during the immersion. The gradient plateau
management and the problem of finding a correct implementation
of the immersion recursion, within a fast watershed implementation,
comply with what suggested in [5]. The proposed solution can be
‘immersed’ (included and interfaced) in a full-featured interactive
segmentation system, as shown in the next section.

4. USER-DRIVEN 3D SEGMENTATION SYSTEM

A graphical interactive segmentation environment for the visualiza-
tion, interaction and processing of biomedical volumes (e.g. MR and
CT datasets), has been implemented in C++ language (Borland C++,
with Visual Component Libraries). Its design principles and some
modules derives from previous works on 3D connected component
processing and denoising [7],[8] and interactive 3D region growing



Fig. 2. Segmentation of GM: (a) slice with seeds, (b) partial flood-
ing, (c)/(d) wrong/correct result without/with paint drop masking.

segmentation [9]. The visual environment allows the user (physi-
cian) to interact with images with a set of different tools he can be
freely select and use on any number of 2D slices in different orien-
tations. The tools can be chosen among: a) set of seeds, b) couple of
crossing lines, c) ellipses/rectangles with seeds, d) free-hand closed
lines with seeds. Each tool has its own application vocation [9] and,
depending on the spatial characteristics of the structures, one or more
tools can be considered as appropriate. Associated to each tool there
are specific methods to extract the MF and to determine initial values
of the algorithm parameters: a suitable preflooding height hpf and
the gray-level range [λmin, λmax] of the target structures in I . The
gray-level range can be used to restrict the domain of computation
D of the marker-controlled WS with additional savings in terms of
computational load. In our software, the user can use as much as vi-
sual tools he wants, giving them an unique name or ID which identify
the collected descriptors (MF and parameters). Then he can freely
select a subset of descriptors and use them to segment the desired
structures. He can also manually trim pre-estimated parameters and
have immediate visual feedbacks for an effective conditioning of the
subsequent segmentation. In fact, he can see (e.g. by semiopaque
mask layers on slices and a quick navigation in various orientations)
both the domain restriction and the partially flooded thick skeleton
and, when necessary, he can properly adjust the λmin, λmax and
hpf parameters, helped by real-time and intuitive visual feedbacks.
Then, after the above freely choosen sequence of quick actions, he
can trustfully launch the paint-drop marker-controlled segmentation
(which takes few seconds on a common PC architecture) and visu-
alize the results. The software also offers other possible operations
with previously segmented structures or components (SC): a) a cer-
tain SC can work as inclusion/exclusion domain to refine the result
or to avoid compenetration with other SC’s, b) additional SC’s can
be generated by the union/intersection of other freely chosen already
available SC’s.

5. EXPERIMENTAL RESULTS

To assess the generality performance of the proposed system is not
a simple task. An exhaustive ’accuracy vs variability’ performance
evaluation would require a wide variety of datasets and segmenta-
tion target applications. This is quite impractical and what it has
been done instead is to choose representative use-cases to assess
accuracy performance and infer on variability related aspects. To
this purpose, we first considered brain structure (gray matter, GM
and white matter, WM) quantification on neurological MR datasets.
This also gave us meaningful information about the adequacy of our
paint drop marking solution to handle complex structures with inho-
mogeneous borders. Other evidences on variability attributes will be
derived from qualitative evaluations on tumor brain segmentation in
MR volumes. Our main use-case is a widely known and challenging
problem, and we are well aware that today best solutions for these
problems comes from the world of statistical data analysis (e.g. Ex-
pectation Maximization approaches incorporating a-priori informa-

(a) WM Dice Coefficient (b) GM Dice Coefficient

Fig. 3. WM and GM segmentation results: K (Dice) parameter at
different noise and INU (without denoising).

tion deriving from brain atlases and statistical models). As stated in
the introduction, it should be clear to the reader that our intent here is
not to compete with highly specialized methods with respect to the
classification performance, but to derive some sound evidences on
the capabilities of the proposed system to handle difficult problems
starting from general hypothesis and counting solely on the poten-
tialities offered by the implemented (algorithmical and interaction
based) knowledge from markers solutions. Therfore no kind of task
specialization is considered here while our term of comparison are
both general and task specialized techniques which can be mean-
ingfully compared to ours in terms of technological approach to the
same segmentation problem.
GM and WM segmentation. We considered 3D-datasets from the
BIC simulated brain repository [10]: 15 MR volumes (T1 mode,
181x217x181 voxels, 1mm slice thickness) in all combinations of
noise (in % wrt brightest tissue: 1,3,5,7,9%) and intensity non uni-
formity (INU) due to RF bias (0, 20,40%). Each volume has been
segmented ’semi-independently’ i.e. loading the same marker func-
tions (selected once) and letting the user (a volounteer neuroradiol-
ogist - from the Neuroradiology Unit of the Civil Hospital of Bres-
cia, Italy - which undergone a proper software usage training) free
to trim hpf , λmin and λmax parameters with real time visual feed-
backs. This was motivated by the need to maintain some degree of
structural consistency of the results, without alteration of the user
experience and freedom in using the segmentation environment. MF
selection can take from about one minute to few minutes depending
on the task and user experience, while the rest of the procedure (in-
teraction and computational time) takes 30-40 sec. on a common PC
architecture. Among the available tools, seeds collected on various
and freely selected slices have been preferred for GM, while couples
of crossing lines was used for a compact sketching of the WM. In
this case the first line must be traced inside the WM and the second
one should cross nearby structures (typically CSF and GM) allow-
ing proper hpf estimation. Only, in few cases (high noise or RF
values) the user desired to repeat the segmentation, by refining the
MF (the system allows it in a comfortable way). WM is segmented
first and used as domain exclusion to prevent WM-GM compenetra-
tion. The following segmentation evaluation parameters have been
measured for each segmented structure: the set of voxels belonging
to the segmented structure NS , the ground truth set NG (provided in
the BIC database), the True Positives TP = NG∩NS

NG
, False Nega-

tives FN = NG−NG∩NS
NG

and False Positives FP = NS−NG∩NS
NG

fractions, the Overlap Metric coefficientOM = TP
1+FP

and the Dice

coefficient K = 2(NG∩NS)
NG+NS

. In Fig.3, K performance results are
shown for all the 15 tested datasets, while in Tab.1 all performance
parameters are compared with available ones from [11] and [6] (3%,



Perform.
coeff.

Act.Cont.1
[11]

Act.Cont.2
[11]

Paint-
drop.WS

Impr.WS
[6]

(%) GM WM GM WM GM WM GM WM
TP 78.0 84.3 93.3 95.1 89.9 91.5 – –
FN 22.0 15.7 6.7 4.9 10.0 8.4 – –
FP 13.0 5.7 5.6 5.8 13.7 2.5 – –
OM 68.9 79.7 88.3 89.8 79.1 89.2 – –
K – – – – 88.3 94.3 89.0 94.6

Table 1. Comparison of GM and WM segmentation methods.

Fig. 4. Visual results. Volume rendering of (a) manual and (b) ob-
tained WM segmentation. (c)/(d) External/internal tumor fractions.

20% INU dataset). In [11], some techniques for active contour seg-
mentation of 3D brain are presented, a first technique (ActCont1)
can be defined ‘general’ in that region growing is used to initial-
ize the contour, a second technique (ActCont2) is specialized on the
segmentation of brain structures, it makes use of skull stripping, his-
togram analysis and user interaction. In [6] a technique for automatic
segmentation of GM and WM is presented which exploits a-priori
knowledge, acquired through statistical analysis and atlas matching,
to guide a watershed-based segmentation. Trends in the obtained
results are consistent, they shows gradual degradations when noise
and INU increase without breaking down. With respect to the same
base technology (WS), performance of our generic (not specialized)
interactive system looks aligned with state-of-art specialized and au-
tomated ones. With respect to other base technologies (active con-
tours) our approach performs better when compared to a generic ap-
proach. As expected, application specialized techniques can perform
better, as shown e.g. by the ActCont2 results, and performance im-
provements with higher automatism could be also obtained special-
izing our system, e.g. by introducing a skull stripping step before
GM segmentation (most brain dedicated techniques use it) or by spe-
cific knowledge from marker strategies. Therefore, our system can
be thought as scalable with respect to specialization and automation
levels with good baseline performance for generic applications.
Other datasets/applications. We did similar tests on real datasets
from the IBSR database[12]. We obtained, on 17 volumes for which
manual segmentation results are provided, results well aligned to the
above ones. In Fig.4(a)-(b) manual vs obtained segmentation results
are shown for MR volume nr.8 in the database.
Another meaningful use-case regards tumor segmentation and quan-
tification problems in brain MR datasets. Here we show a seg-
mentation result which is composed by 2 distinct components exter-
nal/internal, due to the different nature of involved tissues. Domain
exclusion (internal vs external) and subsequent SC logical union
have been used to produce a final result. This use-case offer ad-
ditional cues on the capabilities of the the proposed system and con-
stitutes the subject of an ongoing research activity.

6. CONCLUSION

A novel algorithmic approach for marker-controlled watershed seg-
mentation and his setting in a 3D interactive segmentation system
have been presented. The proposed solution has been described in
terms of marking paint drops which fall on a partially flooded to-
pographic relief (related to a volumetric dataset) and which identify
the catchment basins of interest by means of water color changes.
The combination of the two phases (partial flooding followed by
CB staining) represents an elegant and simple solution for marker-
driven segmentation in a watershed framework, and allows robust
segmentation even when complex or extended anatomical structures
present inhomogeneous borders. Marker selection, parameter tuning
and rapid convergence toward the desired result are provided, guar-
anteeing a strong link between computationally effective algorithms
and a fully featured interactive segmentation environment. The pre-
sented system shows satisfactory results on challenging tasks even
without application domain specialization. This is also due to the
sound matching between algorithmic solutions and interactive tools.
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