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We present a statistical framework based on Hidden Markov Models (HMMs) for skimming feature films. A chain of HMMs is used
to model subsequent story units: HMM states represent different visual-concepts, transitions model the temporal dependencies in
each story unit, and stochastic observations are given by single shots. The skim is generated as an observation sequence, where, in
order to privilege more informative segments for entering the skim, shots are assigned higher probability of observation if endowed
with salient features related to specific film genres. The effectiveness of the method is demonstrated by skimming the first thirty
minutes of a wide set of action and dramatic movies, in order to create previews for users useful for assessing whether they would
like to see that movie or not, but without revealing the movie central part and plot details. Results are evaluated and compared
through extensive user tests in terms of metrics that estimate the content representational value of the obtained video skims and
their utility for assessing the user’s interest in the observed movie.

“I took a speed reading course and read “War and Peace” in 20
minutes. It involves Russia.”

Woody Allen.

1. Introduction

In the last years, with the proliferation of digital TV broad-
casting, dedicated internet websites, and private recording
of home video, a large amount of video information has
been made available to end-users. Nevertheless, this massive
proliferation in the availability of digital video has not been
accompanied by a parallel increase in its accessibility. In this
scenario, video summarization techniques may represent a
key component of a practical video-content management
system. By watching a condensed video, a viewer may
be able to assess the relevance of a programme before
committing time, thus facilitating typical tasks such as
browsing, organizing, and searching video-content.

For unscripted-content videos such as sports and home-
videos, where the events happen spontaneously and not
according to a given script, previous work on video sum-
marisation mainly focused on the extraction of highlights.
Regarding scripted-content videos—those videos which are
produced according to a script, such as feature films

(e.g., Hollywood movies), news and cartoons—two types of
video abstracts have been investigated so far, namely, video
static summarization and video skimming. The first one is a
process that selects a set of salient key-frames to represent
content in a compact form and present it to the user as a static
programme preview. Video skimming instead, also known as
video dynamic summarization, tries to condense the original
video in the more appealing form of a shorter video clip.
The generation of a skim can be viewed as the process of
selecting and gluing together proper video segments under
some user-defined constraints and according to given criteria.
On the one hand, final user constraints are usually defined by
the time committed by the user to watch the skim, which in
the end determines the final skim ratio. On the other hand,
skimming criteria used to select video segments range from
the use of motion information [1], the exploitation of the
hierarchical organization of video in scenes and shots as in
[2], or the insertion of audio, visual, and text markers [3].

In this paper, in order to derive the skim, we propose to
combine the information deriving from the story structure
with the characterization of the shots in terms of salient
features, that are motion dynamics for action movies,
and the presence of human faces for dramas, respectively.
These salient features inherently estimate the contribution
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of each shot in terms of “content informativeness” and
determines whether the shot will be included in the final
skim. The “structure informativeness” of the video is instead
captured by HMMs, which model semantic scenes and whose
observations produce the shot sequence of the final skim.

The paper is organized as follows. Section 2 gives a
brief overview on the current state-of-the-art related to
video skimming and the other techniques here employed.
Section 3 presents the criteria adopted to realize the skim.
In Section 4, we characterize the content informativeness
of shots by the use of salient features related to the movie
genres. Section 5 describes how to model each story unit by
an HMM. In Sections 6 and 7, the video skims are generated
and evaluated, while in Section 8 conclusions are drawn.

2. Related Work

In the past, HMM has been successfully applied to different
domains such as speech recognition [4], genome sequence
analysis [5], and so forth. For video analysis, HMMs have
been used to distinguish different genres [6], and to delineate
high-level structures of soccer games [7]. In this work
instead, HMMs are used as a unified statistical framework
to represent visual-concepts and to model the temporal
dependencies in story units with the aim of video skimming.

Even if the interest in effective techniques for dynamic
video skimming is highly in demand, to date, there are
relatively less works that address dynamic video skimming
than works related to static video summarisation (see, e.g.,
[8] for a systematic classification of previous works on
condensed representations of video content). In general, to
process huge quantities of video frames is more difficult
than to select a subset of relevant key-frames. It is also
challenging to define which segments have to be highlighted
and mapping the mechanisms of human perception into
an automated abstraction process. For these reasons, at the
moment most current video skimmings are intended as
natural evolutions of the methods employed for generating
the related static summaries. Therefore, many skimming
methodologies rely on the same clustering algorithms which
have been adopted to obtain static video summaries, such
as those that have been extensively reviewed in [9]. For
example, in one of the latest works [10], the authors propose
an algorithm for video summarization which first constructs
story boards and then it removes redundant video content
using hierarchical agglomerative clustering at the key-frame
level.

Since it is easy to understand how a tool that can
automatically shorten the original video while preserving
only the important content would be greatly useful to most
users, alternative skimming methods have been developed
in time. The oldest and most straightforward approach is
to compress the original video by speeding up the playback
without considerable distortion, as pointed out by Omoigui
[11]. A similar approach is also described in [12], where an
audio time-scale modification scheme is applied. However,
these techniques only allow a maximum time compression
of around 2.5 times, depending on the rate of speech; since

once the compression factor goes beyond this range, the
perceived speech quality becomes quite poor or annoying. A
similar method is found in [13], where the skim generation
is formulated as a rate-distortion optimisation problem.

A number of approaches use attention and saliency
models to derive the video skim. In [14] summaries are
generated by merging together those video segments that
contain high-confidence scores in terms of motion-attention.
In a further generalisation described in [1], the same authors
take into account also the presence of human faces and
the present audio information. One limitation of these two
approaches, that we try to overcome in this work, is that the
structural information such as the intershot relationship is
not exploited for video skimming. As a result, the produced
dynamic video summary is purely a collection of video
highlights in terms of attention model and does not take
into account the content coverage and relationships. In [15]
a method for the detection of perceptually important video
events, based on saliency models for the audio, visual and
textual information, is also described.

Other techniques rely on the presence of textual informa-
tion only. The Informedia project [3], for example, concate-
nates audio and video segments that contain preextracted
text key-words to form the skim, for example from news.

Without relying on text cues, in [16] skims are generated
by a dynamic sampling scheme. Videos are first decomposed
into subshots, and each subshot is assigned a motion-
intensity index. Key-frames are then sampled from each
subshot based on an assigned rate which is derived by the
motion index. During the skim playback, techniques of linear
interpolation are adopted to provide users with a dynamic
storyboard. Similar methods for skim generation based on
precomputed key-frames are described in [17, 18].

Singular Value Decomposition and Principal Compo-
nent Analysis have been also proposed in [19] as attractive
models for video skimming. However, these techniques
remain computationally intensive since they process all video
frames, which cannot be practical for huge repositories.

More recently, research on generating skims for specific
unscript-content video has been reported. For example, ad-
hoc summarisation methods for rushes were designed within
the RUSHES project [20] and have been a field of competi-
tion in the TrecVid 2008 [21] as in the related work in [22].

In [23], a skimming system for news is presented. By
exploiting news content structure, commercials are removed
by using audio cues, and then anchor persons are detected
(using a Gaussian Mixture Model) and glued together to
form the skim.

Home video skimming is addressed in many works, such
as in [2, 24]. In this last work, video skimming is based on
media aesthetics. Given a video and a background music,
this system generates a music-video-style skimming video
automatically, with consideration of video quality, music
tempo, and the editing theory.

Some research efforts [25] have been investigating the
generation of skims for sports videos based on the identifi-
cation of exciting highlights such as soccer goals or football
touchdowns, therefore, according to the significance of play
scenes.
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Finally, regarding movies and narrative video, the rules
of cinematic production are exploited in [26–28] to produce
a syntactical-based reduction scheme for skim generation.
Based on both audio and visual information, some utility
functions are modelled to maximise the content and coher-
ence of the summaries.

3. Skimming Criteria

Since a skimming application should automatically shorten
the original video while preserving the important and
informative content, in this work it is proposed that the
time allocation policy for realising a skim should fulfil the
following criteria.

(i) “Coverage”. The skim should include all the parts of
the movie structure into the synopsis. Since in the movie
cinematic syntax, the story structure constitutes a fundamen-
tal element for conveying the movie message, each Logical
Story Units (LSU), that is, each “sequence of contiguous and
interconnected shots sharing a common semantic thread”
[29] (which is the best computable approximation to a
semantic scene), should participate the skim. Therefore, if V
is the original video of total length l(V), we consider it to be
already segmented into n Logical Story Units Λi by previous
analysis as in [30] or in [31], that is, V = {Λ1,Λ2, . . . ,Λn}.
The final skim v will contain the skimmed version of each
LSU, that is, v = {λ1, λ2, . . . , λn}.

(ii) “Representativeness”. Each Logical Story Unit should be
represented in the skim proportionally to its duration in the
original video. Therefore, if r is the skimming ratio defined
by the user (i.e., r = l(v)/l(V)), the length of each LSU in the
synopsis should be l(λi) = r · l(Λi), for all i = 1, . . . ,n.

(iii) “Structure Informativeness”. Since in the movie cine-
matic syntax, the information which is introduced by the film
editing process, especially by the shot patterns inside story
units (e.g., dialogues, progressive scenes, etc.), is relevant for
the storytelling and for conveying the plot, this information
should be preserved in the final skim. Therefore, if Λi is a
dialogue in the movie V , the corresponding story unit λi ∈ v
should preserve the dialogue structure.

(iv) “Content Informativeness”. To represent each story unit,
the most “informative” video segments should be preferred.
Of course, “informative” is a term that can assume multiple
meanings depending on context. Since we are dealing with
movies, a segment is intended as “informative” if it is
effective in conveying the general concept presented in
the film. One possibility of relating this to some physical
properties of the video material is to link the concept of
“informative” segment with the genre of the movie. If the
film is an action movie, for example, an informative segment
will be a high dynamic one, while in case of a dramatic film,
informative segment will be those showing key dialogues
between main characters. We can therefore quantify the
“informativeness” of a video segment by assessing in the

video the presence of one salient feature F which is related
to the film genre.

4. Salient Features

In order to assess the content informativeness of each shot of
the film, we introduce the concept of salient feature F related
to the movie genre. The skimming procedure that follows
this description is general and can be applied to any film
provided that a salient feature for that movie genre is defined.
The user can also choose to apply a salient feature which is
not related to the movie genre, just because he/she is more
interested in that, or as a leisure activity, for example, in the
context of a video mash-up application. There is of course no
limit to the set of salient features that can be defined.

In order to provide a couple of examples of possible
salient features, we shortly describe in the following a
measure of motion activity which can be useful to skim
action movies, and a face detection procedure to assess the
presence of human faces in dramatic movies, where most
information is conveyed by dialogues between characters.

4.1. Motion Activity. The intensity of motion activity is a
subjective measure of the perceived intensity of motion in
a video segment. For instance, while an “anchorman” shot
in a news program is perceived by most people as a “low-
intensity” action, a “car chasing” sequence would be viewed
by most viewers as a “high-intensity” sequence.

As stated in [32], the intensity of motion activity in a
video segment is in fact a measure of “how much” the content
of a video is changing. Motion activity can be therefore
interpreted as a measure of the “entropy” (in a wide sense) of
a video segment. We characterize the motion activity of video
shots by extracting the motion vector (MV) field of P-frames
(see Figure 1) directly from the compressed MPEG stream,
thus allowing low computational cost.

For compression efficiency, MPEG uses a motion-
compensated prediction scheme to exploit temporal redun-
dancy inherent in an image sequence. In each GOP (Group of
Pictures), I-frames are used as references for the prediction.
P-frames are coded using motion-compensated prediction
from a previous P or I-frame (forward prediction), while
B-frames are coded by using past and/or future pictures
as references. This means that, in order to reduce the bit-
rate, macroblocks (MBs) in P and B-frames are coded using
their differences with corresponding reference MBs, and a
motion vector carries the displacement of the current MB
with respect to a reference MB.

The raw MV field extracted turns out to be normally
rough and erratic, and not suitable for tasks such as
accurately segmenting moving objects. However, after being
properly filtered, the MVs can be very useful to describe the
general motion dynamics of a sequence, thus characterising
the amount of visual information conveyed by the shot.

The filtering process applied includes first removing the
MVs next to image borders which tend to be unreliable, then
using a texture filter, followed by a median filter. The texture
filter is needed since, in the case of low-textured uniform
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Figure 1: A decoded P-frame and its motion vector field.

areas, the correlation methods used to estimate motion often
produce spurious MVs. After having filtered the motion
vectors on texture criterion, a median filtering is used to
straighten up single spurious vectors such as those that could
still be present close to borders.

In general, the perceived motion activity in a video is
higher when the objects in the scene move faster. In this case
the magnitudes of the MVs of the macroblocks (MBs) that
make up the objects are significant, and one simple measure
of motion intensity can be extracted from the P-frame by
computing the mean μP of the magnitudes of motion vectors
belonging to intercoded MBs only.

However, most of the perceived intensity in a video
is due to objects which do not move according to the
uniform motion of the video camera. Thus, a good P-frame-
based measure of motion intensity is given by the standard
deviation σP of the magnitudes of motion vectors belonging
to intercoded MBs.

The measure σP can be also extended to characterize
the motion intensity MI(S) of a shot S, by averaging the
measures obtained on all the P-frames belonging to that
shot. MPEG7 Motion Activity descriptor [32] is also based
on a quantized version of the standard deviation of MVs
magnitudes. For our purposes, each shot S is assigned its
motion intensity value MI(S) in its not-quantized version.
This value MI(S) tries to capture the human perception of
the “intensity of action” or the “pace” of a video segment,
by considering the overall intensity of motion activity in
the shot itself (without distinguishing between the camera
motion and the motion of the objects present in the scene).
Since this is in fact a measure of “how much” the content of a
video segment is changing, it can be interpreted as a measure
of the “entropy” of the video segment, and can be used as a
salient feature F for summarization purposes.

4.2. Presence of Human Faces. Since a user can be interested
in privileging in the final skim the presence of shots
containing human faces, for example, for visualising excerpts
from dramatic movies, it is possible to define, for each shot,
the salient feature F as the percentage of frames in the
shot which contain at least one human face, subjected to a
minimal dimension. In the actual implementation, the work
by Viola and Jones described in [33] has been preferred to
other face detection methods, but no restriction to other
procedures is imposed. A possible extension of this salient
feature related to dramatic movies is the integration of
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Figure 2: Detection of cut edges in a Scene Transition Graph.
Since each cut edges is a sort of one-way transition from a highly
connected group of clusters to another group, this can be considered
as a reliable LSU boundary.

the information related to the human presence with the
information related to the type of audio, for example, by
detecting speech during dialogues.

5. Modelling LSU with Hidden Markov Models

5.1. Logical Story Units Structure. In [30] it is shown how
a video can be represented by a Scene Transition Graph
(STG), whose nodes are clusters of visually similar and
temporally close shots, while edges between nodes stand
for the transitions between subsequent shots. In the same
work, the authors demonstrate that after the removal of
cut-edges, that is, the edges which, if removed, lead to the
decomposition of the STG into two disconnected subgraphs,
each well connected subgraph represents a Logical Story Unit
(LSU), as shown in Figure 2.

In fact, since cut edges are one-way transitions from one
set of clusters which are highly connected among each other
(i.e., nodes connected by cycles in the corresponding indirect
graph, see [30]) to another set of clusters characterized
by a completely new visual-content, cut edges can be then
considered as reliable LSU boundaries.

The STG has been computed on the base of an LSU
segmentation obtained as in [31]. On the shot level, any
existing technique for shot boundary detection can be
employed, without loss of generality. However, the algorithm
here employed adopts the classical twin comparison method,
where the error signal used to detect transitions is based on
statistical modeling [34].
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Figure 3: LSUs of Figure 2 are equivalently modeled by HMMs.
States {Ci} correspond to distinct nodes of the STG subgraph;
transition probabilities are computed according to the relative
frequency of the transitions between clusters, and shots {Si} are
the possible observation set. The HMM initial states have been
indicated with a double circle.

Starting from the STG representation, each LSU can be
equivalently modeled by an HMM. This is a discrete state-
space stochastic model which works well for temporally
correlated data streams, where the observations are a prob-
abilistic function of a hidden state [4]. Such a modelling
choice is supported by the following considerations [7]:

(1) Video structure can be described as a discrete state-
space, where each state is a conveyed concept (e.g.,
“man face”) and each state-transition is given by a
change of concept;

(2) The observations of concepts are stochastic since
video segments seldom have identical raw features
even if they represent the same concept (e.g., more
shots showing the same “man face” from slightly
different angles);

(3) The sequence of concepts is highly correlated in time,
especially for scripted-content videos (movies, etc.)
due to the presence of editing effects and typical shot
patterns inside scenes (i.e., dialogues, progressive
scenes, etc.).

For our aims, HMM states representing concepts will
correspond to distinct clusters of visually similar shots
(where clusters are obtained as described in [9]); state
transition probability distribution will capture the shot
pattern structure of the LSU, and shots will constitute the
observation set (as shown in Figure 3).

5.2. HMM Definition. We now define how the HMM is built,
and then how the models generate observation sequences
in order to produce the video skim. Formally, an HMM
representing an LSU is specified by the following.

(i) N, the Number of States. Although the states are hidden,
in practical applications there is often some physical signifi-
cance associated to the states. In this case, we define that each
state corresponds to a distinct node of an STG subgraph: each
state is one of the N clusters of the LSU containing a number
of visually similar and temporally close shots. We denote
states as C = {C1,C2, . . . ,CN}, and the state at time t as qt.

(ii) M, the Number of Distinct Observation Symbols. The
observation symbols correspond to the output of the sys-
tem being modeled. In this case, each observation symbol
S = {S1, S2, . . . , SM} is one of the M shots of the video.

(iii) Δ = {δi j}, the State Transition Probability Distribution:

δi j = P
[
qt+1 = Cj | qt = Ci

]
, 1 ≤ i, j ≤ N. (1)

Transition probabilities are computed as the relative fre-
quency of transitions between clusters in the STG, that is,
δi j is given by the ratio of the number of edges going from
cluster Ci to Cj to the total number of edges departing from
Ci. In a HMM, states can be interconnected in such a way
that any state can be reached from any other state (e.g., an
ergodic model); for this special case, we would have δi j > 0
for all (i, j). However, since in our case the interconnections
of states are given by the transitions from shot to shot, and
not all clusters are interconnected with all the others, this
usually makes the model a nonergodic one; in this case it is
likely that we have δi j = 0 for one or more (i, j) pairs.

(iv) Σ={σj(k)}, the Observation Symbol Distribution, where

σj(k)=P
[
Sk at t | qt = Cj

]
, 1≤ j≤N , 1≤k≤M (2)

We define the observation symbol probability in stateCj , that
is, σj(k), as the ratio of the salient feature value in the shot
Sk to the total value of the salient feature of the cluster that
contains Sk. It represents the probability for the shot Sk of
being chosen as observation of the related visual concept, and
it is defined as

σj(k) =

⎧⎪⎪⎨
⎪⎪⎩

F (Sk)

F
(
Cj

) if Sk ∈ Cj

0 otherwise,

(3)

where F (Cj) is defined as the sum of all the salient feature
values of the shots belonging to cluster Cj , that is, F (Cj) =∑

Sh∈Cj
F (Sh). Conversely, if the shot does not belong to the

cluster, its observation probability is null, so that it cannot be
selected to represent the cluster visual concept.

(v) π = {πi}, the Initial State Distribution, where

πi = P
[
q1 = Ci

]
, 1 ≤ 1 ≤ N. (4)

In order to preserve the information about the entry point of
each LSU, πi = 1 if the cluster Ci contains the first shot of the
LSU, otherwise πi = 0.

Therefore, a complete specification of the HMM requires
two model parameters (N and M), the observation symbols
S, and the probability distributions Δ, Σ, and π. Since the
set S = {S1, S2, . . . , SM} is common to all the HMMs,
for convenience, we can use the compact notation Γ =
(Δ,Σ,π,N) to indicate the complete parameter set of the
HMM representing an LSU.
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6. Stochastic Skim Generation

In order to generate an informative skim, the following
solutions have been adopted to fulfill all the skimming
criteria stated in Section 3.

(i) Coverage. Since the skim should include all the semanti-
cally important story units, each detected LSU participates to
the final synopsis. As a general remark, please notice that the
skim ratio r should be subject to a minimal value rmin for the
skim to be representative of the movie structure and content.

(ii) Representativeness. Let l(Λ1), l(Λ2), . . . , l(Λn) be the
lengths of the n LSUs that compose the original video. Then
in the skim, for each LSU, a time slot of length l(λi) is
reserved, where

l(λi) = r · l(Λi), ∀i = 1, . . . ,n. (5)

(iii) Structure Informativeness. In order to include in the
synopsis the information conveyed by the shot patterns
inside the story units, the following procedure is adopted.
Since the state transition probability distribution of HMM
Γi has statistically captured the structure of the transitions
between shots inside the corresponding LSU Λi, a skimmed
version λi of the LSU can be generated as an observation
sequence of the associated HMM, Λi, that is:

λi = O1O2 · · · , (6)

where each observation Oj is one of the symbols from S, that
is, a shot of the original video.

Starting from the first Hidden Markov Model Γ1, the
sequence λi is generated as follows:

(1) choose the initial state q1 = Ch according to the initial
state distribution π. Set t = 1;

(2) while (total length of already concatenated shots) <
(time slot l(λi) assigned to the current LSU),

(a) choose Ot = Sk according to the symbol proba-
bility distribution in state Ch, that is, σh(k);

(b) transit to a new state qt+1 = Cj , according to the
state transition probability for state Ch, that is,
δhj ;

(c) set t = t + 1;

(3) repeat the previous steps for all Γi.

The above described procedure means that the generated
skim for each LSU is one of the possible realizations of the
stochastic process described by the corresponding HMM,
where both interstate transitions and the shot selections are
the results of random trials. In order to generate the whole
skim, this method is applied to all Logical Story Units, and
the obtained sequences of observed shots for each LSU are
concatenated in the final synopsis.

Since the skim generation does not take into account
the original shot order inside a story unit, it may happen
that in the skim a shot which is later in the original LSU
can appear before another one which is actually prior to
it (as it sometimes happens in commercial trailers). In the
circumstance of “anticasual” shots, they are repositioned in
causal order inside each LSU, without altering the nature
of the algorithm. The shot repositioning is automatically
performed on the basis of the shot identifiers (corresponding
to the shot positions in the movie), while shots belonging to
different LSUs are already in casual order by construction.

(iv) Content Informativeness. In order to privilege more
“informative” shots, the observation symbol probability
distribution Σ depends on the presence of the salient feature.
In particular, the higher is the value of the salient feature in
a shot Sk of the cluster Cj , the higher will be σj(k), that is, Sk
will be more likely chosen for the skim.

For example, regarding action movies and the salient
feature related to motion activity, by assigning higher prob-
ability of observation to more dynamic shots, we privilege
“informative” segments for the skim generation. At the
same time, we avoid to discard a-priori low-motion shots,
that can be chosen as well for entering the skim, even if
with lower probability. Moreover, once that one shot is
chosen for the video skim, it is removed from the list of
candidates for further time slots, and the observation symbol
distribution is recomputed on remaining shots in the cluster.
This prevents the same shot from repetitively appearing in
the same synopsis, and at the same time allows also low-
motion shots to enter the skim, if the user-defined skim ratio
is large enough. Therefore, as it should be natural, in very
short skims, “informative” shots are likely to appear first,
while for longer skims, even less “informative” shots can
enter the skim later on.

7. User Tests and Performance Evaluation

To quantitatively investigate the performance of the pro-
posed method for video skimming, we carried out two main
experiments using the feature films in Tables 1 and 3.

7.1. User Test A: Informativeness and Enjoyability. In this first
test, for the evaluation of the skims, the method and the
criteria of “informativeness” and “enjoyability” adopted in
[2] have been used. Informativeness assesses the capability of
the statistical model of maintaining content, coverage, rep-
resentativeness, and structure, while reducing redundancy.
Enjoyability assesses the performance of the salient feature
employed in selecting perceptually enjoyable video segments
for the skim. Starting from the LSU segmentation results,
as generated in [31], we produced 20 dynamic summaries
with their related soundtracks: for each video in Table 1, two
associated skims have been produced, one with 10% of the
original video length and the other with the 25%. The salient
feature related to motion activity was used for 5 movies (no.
1, no. 4, no. 7, no. 8, no. 9) which are closer to the genre
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Table 1: Set of feature films (TEST A).

No. Video

1 A Portoguese farewell

2 Notting Hill

3 A beautiful mind

4 Pulp fiction

5 Camilo and Filho

6 Riscos

7 Altrimenti ci arrabbiamo

8 Don Quixotte

9 Più forte ragazzi

10 Don Camillo

“action movie”, while the presence of faces was adopted for
the other ones closer to the genre “drama”.

A first set of 12 students (6 male, 6 female) assessed the
quality of the produced skims by watching, for each movie,
one randomly selected version among the available three:
10%, 25%, and the original movie 100%. Before starting the
test, the participants were given a short oral introduction
about the idea of automatic video skim generation and on
the purpose of the test. After watching the selected version,
each student assigned two scores ranging from 0 to 100, in
terms of informativeness and enjoyability, also in case they
watched the original movie if they thought that this was
not 100% enjoyable or informative (e.g., when an intricate
plot determines that the movie is not completely informative
regarding situations and displayed events).

Table 2 shows the obtained average scores which have
been normalized by the score assigned to the original movie.

In these experiments, average normalized scores for
enjoyability are around 72% and 80% for video skims of
10% and 25% length, respectively. Regarding informative-
ness, average normalized scores are around 69% and 81%,
respectively. These results are comparable with the ones
presented in one of the most referenced works on video skims
[2]. However, results presented here have been obtained on
a larger set of videos, in particular on movies coming from
different genres.

7.2. User Test B: Utility and Comparison. Based on the
user test A only, it is not possible to completely assess the
utility of the generated skim, nor to evaluate the algorithm
performance with respect to other solutions. For this reason,
another user set of 12 students (6 male, 6 female) were
hired for performing a more severe test on another set of 10
movies (in Table 3) concerning the skim utility in a modern
multimedia management system.

It is nowadays believed by broadcasters and content
producers that a skim of a movie would be helpful for the
user to assess whether he/she would be interested in paying
to watch the entire movie. Of course the skim should not
reveal too much about the movie plot, for example, being
limited only to the introductory part of the film. A collection
of movie skims could be offered as a preview on websites to
be watched by users so that they can decide whether or not
to download the whole movie.

Table 2: Performance evaluation of Video Skimming.

No.
Enjoyability Informativeness

10% 25% 100% 10% 25% 100%

1
69.3 75.8 91.9 61.8 72.1 90.3

75.4 82.4 100 68.4 79.8 100

2
62.8 70.5 86.2 65.4 75.8 93.1

72.8 81.8 100 70.3 81.4 100

3
68.2 71.4 88.2 65.6 78.8 89.4

77.2 80.9 100 73.4 88.1 100

4
57.5 67.2 84.6 63.3 72.9 91.5

68.0 79.4 100 69.1 79.6 100

5
68.1 73.6 94.2 65.1 72.3 93.4

72.3 78.1 100 69.7 77.4 100

6
55.2 68.8 93.0 64.0 78.1 94.0

59.3 73.9 100 68.1 83.0 100

7
66.5 78.4 91.2 60.3 78.0 93.8

72.9 85.9 100 64.3 83.2 100

8
69.5 74.9 90.5 60.2 72.1 89.5

76.8 82.7 100 67.2 80.5 100

9
69.8 70.1 85.5 62.8 72.1 92.1

81.6 82.0 100 68.1 78.2 100

10
65.8 68.1 95.3 65.6 71.2 93.0

69.0 71.4 100 70.5 76.5 100

Aver. 72.5 79.8 — 68.9 80.8 —

Drop 27.5 20.2 — 31.1 19.2 —

With this scenario in mind, the user tests were performed
according to the following procedure. From the introductory
part (i.e., the first 30 minutes) of the 10 blockbuster movies
in Table 3, three skims have been generated by three different
methods with the same skim ratio r = 0.1, so that each skim
is about 3 minutes long.

The participants were told that the video skims were
automatically generated by algorithms and that the aim of
the experiments was a comparison of three automatic video
skim generation algorithms. After answering three questions
about gender, age, and film watching behaviour, each user
was requested to watch 10 randomly chosen skims, one
per movie, without being aware of which algorithm was
responsible for the creation of a particular skim.

The first adopted algorithm A generates a video skim
by selecting video segments randomly from the original
movie. The second algorithm B is the algorithm described
in this work, based on the use of salient features and Hidden
Markov Models, where LSUs were generated as in [31] and
the salient feature related to motion activity was used for
action movies no. 1, no. 2, no. 5, no. 9, and no. 10, while
the presence of faces was adopted for the other ones closer
to the genre “drama”, according to their IMBd classification
[35]. In Table 3, more details can be found about the movie
shots, the number of LSUs, the skim length, and the number
of visual concepts (i.e., the hidden states) used to generate
the skim according to the proposed method.
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Table 3: Set of feature films (TEST B) and details about the structure of movies and skims.

No. Video LSUs Shots (30 min) Shots (3 min) Visual concepts

1 Raiders of the lost ark 13 353 35 91

2 Terminator 13 399 37 117

3 Gattaca 30 246 14 85

4 Donnie Darko 12 256 25 31

5 Finding Nemo 14 462 31 80

6 A Beautiful mind 15 353 40 39

7 Talk to her 10 168 24 41

8 Goodbye Lenin 20 499 47 91

9 Kill Bill vol 2 7 224 33 15

10 War of the worlds 15 280 30 74

Table 4: Questionnaire about the utility and quality of watched
skims.

No. Question

1 Is the skim useful for understanding the genre of the
original movie? (1–5)

2 Is the skim able to give you a clear idea of the movie
atmosphere? (1–5)

3 Is the skim able to give you a clear idea of the
narration pace? (1–5)

4 Is the skim able to give you a clear idea about the
involved characters? (1–5)

5 Is the skim useful for understanding whether you
would/would not like to watch the entire movie? (1–5)

6 Please give the skim a global score. (1–5)

The third set of skims, generated with method C, have
been manually generated by a cinema lover and expert of
editing systems, aiming at providing an overview of the
storyline and a fair impression of the movie atmosphere.

We expect that skims generated using the random
technique would be of lower quality than skims generated
by our HMM approach. On the other side, manually made
skims certainly represent an upper-bound for the overall
quality of skims. Therefore, we assume that in terms of
quality of results, the random method will be worse than
the HMM approach, and manually made skims will have the
highest possible quality.

After viewing each skim, participants were requested to
fill out a questionnaire (as in Table 4) about the utility and
the quality of the watched skim, and to mark each of the
6 questions on a Likert scale from 1 (min) to 5 (max).
After answering, participants were also asked for detailed
comments and whether they had already seen the original
movie within the last 6 months, more than 6 months ago,
only partially or never before, in order to accordingly weight
their answers.

Results regarding the quality of the three compared skims
are reported in Figure 4. It is evident that for all questions,
the manually made skims stand out as better with respect to
HMM and random. As expected, the HMM skims score on
average better than the random method.

Table 5: Questionnaire about the informativeness of “Raiders of
the lost ark”.

No. Question

1 Why does the room in the cave collapse?

2 What the main male character escape with?

3 What is the topic of the talk in the library?

4 What is the location of the last scene?

The informativeness of each skim was also investigated
by asking the users 4 specific questions regarding the plot
understanding of the original movie that can be inferred
by watching the skimmed version. The proposed questions
concern four main narrative key-points (judged by a human)
which take place in the considered first 30 minutes of each
movie (see, e.g., Table 5 with the questions related to the
introductory part of the movie “Raiders of the lost ark”).

Marks from 0 to 2 were given to wrong/missing, partially
correct, and correct answers, respectively. Answers from
users that declared that they have seen the movie before have
been weighted accordingly.

Results regarding the informativeness of the three com-
pared skims are reported in Figure 5. It is evident that for all
questions regarding the level of understanding of the plot,
the manually made skims stand out as better with respect to
HMM and random. As expected, the HMM skims score on
average better than the random approach.

Regarding the proposed methodology (algorithm B),
we consider r = 0.1 as the lowest skimming ratio that
we can applied to a movie before producing a degenerate
skim, that is, no more representative of the movie structure
and content. For smaller values of r, in fact, the structure
of some scenes would be completely lost. Therefore, we
have produced our experiments testing the system in limit
conditions, and we expect performance to be even better
when bigger skimming ratios are applied.

Further analysis and discussion on obtained results are
ongoing to critically revise results obtained for movies no.
4 and no. 10 whose results for both experiments in test B
are not aligned with the rest of the films. In particular we
plan to carefully analyse shooting scripts since we guess that,
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Figure 4: Average marks on skim quality (A = random sampling)
(B = HMM and salient features) (C = manual).
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Figure 5: Average marks on plot understanding (A = random
sampling) (B = HMM and salient features) (C = manual).
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for both movies, misaligned results are probably due to the
intricate plots (e.g., the use of flashbacks, the mixing of real
scenes with ones taken from dreams, etc.) and the peculiar
editing styles employed by both directors.

8. Conclusions

In this paper a method for video skim generation has been
proposed. This technique is based on a previous high-level
video segmentation and on the use of HMMs. The final skim
is a sequence of shots which are obtained as observations
of the HMMs corresponding to story units, and by a set of
salient features which roughly estimates the informativeness
of shots, depending on film genres. The effectiveness of the
proposed solution has been compared and demonstrated
in terms of informativeness and enjoyability on a large
movie set coming from different genres. From the user study
we can conclude that skims generated using the proposed
method are not as good as manually skims, but have
considerably higher quality than skims generated using a
random sampling method.

Ongoing work aims at broadening the set of available
salient features for different video genres, for example mod-
ifying the already described salient feature related to human
faces according to the percentage of music/silence/speech
inside each shot. The same salient feature based on audio
classification could be useful to skim music programmes, for
example to isolate songs from the other material in the show.
Further applications of the proposed method to video mash-
up are also envisaged and currently under investigation.
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