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Abstract. In this paper we focus on image and video
coding with an l-infinity norm criterion. From a general
point of view, we discuss the problem by considering seg-
mentation and piecewise approximations in linear spaces
when dealing with the l-infinity norm. We apply then
the main ideas to the case of image compression show-
ing some practical techniques which represent the first
attempts to adapt second generation image coding ap-
proaches under the l-infinity norm. Based on this setting
we consider the problem of video compression and we
propose some frameworks to the more complex problem
of spatial-temporal segmentation for second generation
video coding under l-infinity norm constraints.

1 Introduction

When considering the topic of lossy image and video
coding almost all the available literature refers to
the case of a weighted mean square error distortion
criterion, i.e. the loss in the compressed data with
respect to the original one is measured by taking the
average squared error. In some situations it is how-
ever important to preserve the quality of the recon-
structed signal at every point and not just in a mean
square sense. In these cases it is thus necessary to
consider lossy compression algorithms designed so
as to be optimized in an l∞ sense. Only very few
attempt have been made so far in this direction. Of
notable importance is the particular case of near
lossless coding, for which effective techniques have
been developed which use predictive based or trans-
form based approaches ([1, 2]) while a second gen-
eration approach has been proposed for the wider
error range problem in [3, 4].

In [3], the image was recursively partitioned into
rectangular regions by means of a binary tree de-
composition, and bilinear surfaces were used as ap-
proximations of the original signal within each re-
gion. In [4] an improvement over the method of [3]
was proposed where neighboring regions of similar
content are jointly coded.

With respect to [3, 4], in this paper we aim at
providing a more general framework to the problem
of segmentations and piecewise approximations in
linear spaces under the l∞ norm criterion and its
application to image and video coding. The previ-
ously published works of [3] and [4] are given a more
general and comprehensive context.

The content of the paper is as follows. In the
next section we discuss the theoretical aspects of
l∞ approximations in linear spaces and we consider
the problem of segmentation within this context. In
Section 3 we focus on applications to image coding
and we discuss some examples of segmentations and
piecewise approximations for this particular case.
Finally, in Section 4 we consider the more difficult
problem of segmentations and approximations for
image sequences, analyzing the main difficulties and
giving some hints for future directions.

2 Approximations and Segmentations

Given a discrete domain of n points D =
{p1, p2, . . . , pn}, we consider a digital signal s as a
function from D to the set of real numbers. Given
a set B = {b1, b2, . . . , bm} of m basis functions from
the set D to R, call V the linear space spanned by
B, i.e.

V =

{

m
∑

i=1

cibi, ci ∈ R ∀ i

}

(1)

The l∞ distortion between the signal s and a func-
tion v ∈ V is defined as

d(s, v) = max
p∈D

|s(p) − v(p)| (2)

Given a signal s, we are interested in finding a func-
tion v ∈ V which is a sufficiently good approxima-
tion of s, say d(s, v) ≤ δ, or, in some cases, we
are interested in finding the best approximation of
s in V . Consider this latter case where we want
to find the best approximation; this problem can



be reformulated as the problem of minimizing, for
v ∈ V , the value of e subject to the constraints
|s(pi) − v(pi)| ≤ e, i = 1, . . . , n. Given the linear
structure of V , this corresponds to minimizing, for
(c1, c2, . . . , cm) ∈ R

m, the value of e under the con-
straints
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≤ e, i = 1, . . . , n. (3)

By considering the vector of unknown
(c1, . . . , cm, e) ∈ R

m+1 the problem is thus
equivalent to a linear program in (m + 1) di-
mensions with 2n constraints (2 constraints for
every point pi in equation (3)). So, many known
algorithms for linear programming can be applied
in order to find the optimal approximation (see [5]
for a detailed technical and historical discussion).
A classic algorithm can be found in [6] while more
recent randomized algorithms with O(n) expected
time complexity were given in [7, 8].

By considering the interpretation of the problem
as a linear program, an important observation can
be made on a particular characteristic of the ob-
tained optimal approximation. It is possible to show
in fact, under some rather weak hypothesis (see [5]),
that the best l∞ approximation of a signal s in a lin-
ear space of dimension m is completely determined
by a particular subset of m+1 points of D; these m

points q1, q2, . . . , qm+1, which we call pivot points,
are such that the optimal approximation v∗ gives
an approximation error which takes its highest ab-
solute value on the point qi, i = 1, · · · ,m + 1. This
fact is of great importance when piecewise approxi-
mation are to be considered, and we will come back
to this point soon when discussing segmentations.

Note that no hypothesis was made on the domain
D up to now, in the sense that we have not spec-
ified if the discrete points pi are one-dimensional
or multidimensional points, i.e. D is a subset of R
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Fig. 1. Straight line approximation of one-dimensional
signals. Vertices A, B and C are the pivot points in this
case.

or R
d. Indeed, the above discussion only consider

the values of s(pi) and bj(pi), for j = 1, . . . ,m
and i = 1, . . . , n. The obtained method for find-
ing the optimal approximation is thus very gen-
eral and can be applied without changes to one-
dimensional or multidimensional domains D. Any-
way, for some particular problems less general but
more efficient algorithms can be used. For the simple
case of straight line approximations in one dimen-
sion, an efficient geometric algorithm was proposed
in [9]. In this case the pivot points are identified to
be three particular vertices of the convex hull of the
points s(pi) as shown in Fig. 1. Two pivot points,
namely A and B in Fig. 1, are extremities of a side
which gives the slope of the optimal approximation
(i.e. r), while the other pivot point C is such that
it is vertically projected inside side AB and it de-
termines the approximation error. A similar situa-
tion can be argued for the case of planar approx-
imations in two-dimensional domains but without
the computational benefits obtained for the one-
dimensional case. In this case the four pivot points
are again vertices of the convex hull of s(pi) and
they again have a clear geometrical meaning, but
but they can be positioned in two different configu-
rations, see Fig 2. Finally, for the case of bilinear ap-
proximations over two dimensional rectangular do-
mains a fast suboptimal solution was proposed in
[3] which is based on a separable application of the
one-dimensional linear case.

Stated in the above form, the problem of l∞ ap-
proximation in linear spaces is easily solved. In the
case of image and video processing, however, one is
usually interested in using a relatively small num-
ber m of basis functions (for complexity reasons),
so that the obtainable approximations cannot de-
scribe the given data with sufficient detail in all the
domain points. So, it is necessary to segment the
domain into subregions and try to approximate the
signal within each one. As opposite to what stated
for the approximation technique, here the dimen-
sions of the domain D plays a fundamental role. The
higher the dimensionality of D and the more com-
plex the segmentation problem becomes. For the
case of one-dimensional signals an exhaustive treat-
ment of the problem of optimal segmentations for
general linear spaces has been proposed in [10] while
for bidimensional signals only empirically good so-
lutions for piecewise bilinear approximations have
been proposed in [3, 4].

From a high level point of view we can adopt an
approach based on the important class of hierarchi-
cal segmentations; the signal is approximated first
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Fig. 2. Two possible configurations for the pivot points (A, B, C, D) of a linear approximation in a bidimensional
space. In the first case the pivot points are disposed in a “pyramidal” configuration, i.e point D is vertically
projected into the ABC face. In the second case instead no pivot point is vertically projected into the face
represented by the remaining pivot points.

on the whole domain and, if the approximation er-
ror is higher than a given threshold, the domain
is partitioned and the procedure is recursively ap-
plied to every subdomain. When using the l∞ norm
within this type of segmentations, the properties of
the optimal approximations computed at every step
must be taken into account in order to partition the
domain in an efficient way. It is very important in
fact to consider that the pivot points are the points
where the maximal error occurs and that the solu-
tion is uniquely determined by those pivot points.
So, in order to decrease the approximation error
from one iteration to the next, it is necessary to split
the domain in such a way that the pivot points are
left in different subdomains. For example, for the
case of linear approximations as in Fig. 1, if r is not
a sufficiently good approximation, points A and B

must be divided by the segmentation process, and
the partition point should be placed in C.

3 Applications to Image Coding

In this section we aim at giving an overview of dif-
ferent l∞ approximations and segmentation tech-
niques used for image coding. In the case of image
coding we must consider some important additional
facts with respect to the theoretical discussion of the
previous section. In fact, in order to use piecewise
approximations for the sake of image coding, it is
important to consider with care the two fundamen-
tal entities involved in the representation, namely
the segmentation information and the approxima-
tion information in every region. For both of them
also the quantization problem must be taken into

account and, as usual in second generation image
coding, the more complex the segmentation is, the
smaller the number of regions. It is then usually
necessary to find a trade-off between the complex-
ity of the segmentation and the number of regions
obtained, which is a trade-off between the coding
rate associated to the partition and the coding rate
associated to the approximations within the regions.

The problem of coding the segmentation is not
different here from the case of l2 approximations,
so that we can focus here on the problem of coding
the approximations found in every region. Let us
consider here the problem in the case where there
is no restriction on the region shape and we are
working in a linear space of dimenstion m. Note
that the optimal approximation v∗ in every region
is identified by the sequence of m coefficients ci,
which are real numbers in the general case. So, in
order to code the solution by using the ci coefficients
it is necessary to quantize them. In the quantization
phase an additional error is introduced and it is not
easy in general to perform the quantization of the
coefficients in such a way that l∞ error is kept under
control.

A different approach can instead be used, which
allows to perform a lossless coding of the optimal
approximation. Again, the solution is given by the
pivot points. As the optimal solution is completely
determined by the pivot points, and as these pivot
points are samples of the image, it is possible to loss-
lessly encode the optimal solution by simply spec-
ifying these points and their values. So, for a typ-
ical image at 8 bits per pixel, the approximation



(a) Linear approximations on
triangles

(b) Bilinear approximations on
QuadTree

(c) Bilinear approximations on
RectTree ([3])

Fig. 3. Examples of segmentation with associated approximations.

relative to a region of n points can be coded with
m(log2 n + 8) bits, if no entropy coding is applied.

A further different approach to the problem of
coding the approximations is obtained if one re-
stricts the attention to some special cases of com-
binations between the approximating functions and
the type of partitions to be used. For example, in
the case of planar approximations, if one divides the
image into triangular regions, it is possible to code
the approximation in every region by quantizing its
values on the three vertices of the domain. This way
it is very easy to keep under control the error due
to quantization. The same thing holds for the case
of bilinear approximations if the used domains are
of rectangular shape.

As examples of the possible choices obtained fol-
lowing the above discussion we show in Fig. 3 two
non-adaptive segmentations and an adaptive one
used in order to approximate the image Lena with
an error threshold of 16. In all cases the hierarchi-
cal segmentation process is iterated until an error
not exceeding the threshold is obtained or, in alter-
native, until the obtained regions are so small that
there is no gain in further using the segmentation
approach, in which case the values of the pixels are
just listed one by one.

The first image shows a regular dyadic parti-
tion in triangular regions with linear approxima-
tions within each region. Here the information re-
lated to the partition is limited to a very small num-
ber of bits (1 bit for every region) and the surface
within every region is encoded with 8 bits for the
value in every one of the three vertices. A similar
thing holds for the second type of approximation
which represents quadtree decomposition with bi-
linear approximations. The segmentation informa-

tion here has a cost of 1/3 of a bit for every region
while the bilinear surface is encoded with 8 bits for
every corner. The last approximation, instead, uses
bilinear approximations combined with an adaptive
segmentation; here the cost of the segmentation is
higher (about 8 bits for every region) but the num-
ber of regions is much smaller, so that the code as-
sociated to the surfaces is lower.

4 Toward Video Coding

Building upon the previously discussed framework,
we consider now the problem of video coding. Here
we aim at giving a first insight to possible appli-
cations of the above discussed techniques and at
proposing some possible extensions for including the
temporal dimension into the coding process.

As already clarified in Section 2, first note that
the problem of finding the optimal approximation
in a linear space can be solved exactly in the same
way in the three dimensional space of a video se-
quence. The main difficulty relies instead in seg-
menting the domain. From a theoretical point of
view it is possible to operate in a similar way to
what was explained for images by extending some
of the partition techniques to the three dimensional
case. For example, it is possible to perform an oct-

tree decomposition which is an immediate extension
of the quadtree. In the case of video anyway, it is
even more important to adopt adaptive techniques.

With respect to this point, a possible extension of
the rectangular tiling with bilinear approximations
can be constructed. The separable approach used in
[3] can be extended to the three dimensional space,
and can thus be used in order to build a trilinear
approximation. Here an outline of the procedure is



(a) Frame 1 (b) Frame 2 (c) Prediction error on Frame 2
(shifted up by 128 levels)

Fig. 4. Segmentations obtained for the first two frames of the foreman sequence (QCIF@15fps) with error threshold
set to 16.

presented. Given the signal s(x, y, t) defined on the
domain

D = {(x, y, t) : x0 ≤ x ≤ x1, y0 ≤ y ≤ y1, t0 ≤ t ≤ t1}

we aim at finding a function f of the form

f(x, y, t) = axy + bxt + cyt + dx + ey + ft + g,

which is a good approximation under the l∞ norm.
Following the idea used in [3] for the two dimen-
sional case, we first fix two values t̄ and ȳ and then
perform linear approximation of the points s(x, ȳ, t̄),
i.e. along the x dimension. We thus obtain a seg-
ment whose extremities, positioned on x = x0 and
x = x1, can be denoted by q0(ȳ, t̄) and q1(ȳ, t̄) re-
spectively. Then, we let y move and we approximate
the points q0(y, t̄) with a segment whose extrem-
ities are h0,0(t̄) and h0,1(t̄); afterward, we do the
same with the points q1(y, t̄) obtaining h1,0(t̄) and
h1,1(t̄). Finally, we let t move and we approximate
the points h0,0(t) with a segment whose extremi-

ties are called f̃0,0,0 and f̃0,0,1; doing the same for
the remaining h·,·(t) points, we obtain all the val-

ues f̃i,j,k for (i, j, k) ∈ {0, 1}3. These are the eight
values of the trilinear approximation in the eight
vertices of the cuboid. At every step the approxima-
tions are constructed so as to minimize a pessimistic
estimate of the actual l∞ error, exactly in the same
way as explained in [3] for the two-dimensional case.
So, the obtained approximation is only sub-optimal
and not optimal. However the construction is very
fast and it gives important information about the
internal structure of the one-dimensional behaviour
of the signal, which is very useful for the sake of
segmentation.

This way, the video sequence can be iteratively di-
vided into smaller cuboids until the error of the tri-

linear approximation within each region is smaller
than the threshold δ.

The main problem of the technique is that it is
not possible to take advantage of the motion, due
to the fixed directions of the cutting planes. So, as
video sequences are usually highly undersampled in
the temporal direction, this leads to a very high
number of regions. In order to take into account the
motion in the coding of the video, a first attempt
can be made by working frame by frame and using
motion compensation. An idea is first to performe
a two-dimensional segmentation on the frames, and
then use motion compensated prediction in order to
encode the segmentation and the texture informa-
tion of each frame given the previous one. In Fig.
4(a) and 4(b) we show the segmentations with bilin-
ear approximations obtained for the first two frames
of the foreman sequence. In Fig. 4(c) instead, we
show the segmentation obtained for the approxi-
mation of the prediction error of the motion com-
pensation between the original second frame and
the approximated first one. By comparing Fig. 4(b)
and 4(c), we note that the number of obtained re-
gion is not fundamentally different in the two cases,
but that there is instead a difference in the position
where regions get finer. In Fig 4(c) in fact, the re-
gions get smaller where there is high motion (the
face of the man), while they are wider where there
is low motion (top left portion of the frame). So,
a possible strategy for the encoding of the second
frame is given by mixing motion compensation and
segmentation in different order, depending on the
level of motion of different regions. Where the mo-
tion is relevant, it is better to use segmentation on
the original frame and use motion compensation in
order to predict the texture of the obtained regions.



In case of low motion instead, it is better first to
compensate the frame and then to apply the seg-
mentation based coding on the residual error. These
considerations are being used in an ongoing work on
video coding.

5 Conclusion

In this paper we have presented an overview of the
main issues involved in the problem of signal ap-
proximation and segmentation under an l∞ norm
constraint. We have considered some applications
to image coding showing different examples of seg-
mentation and approximation, thus strengthening
the basis of previously presented works. Finally, we
have proposed some first attempts to the problem
of video coding, giving some guidelines for future
directions within this context.
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