

N. Adami*, E. Izquierdo°, R. Leonardi*, M. Mrak°, A. Signoroni*, T. Zgaljic°

- Queen Mary Univ. London, UK (on behalf of ACEmedia Consortium)
- * University of Brescia, IT

Summary

- · Where from?
- Scalability requirements in video
- Making use of time redundancy
 - Decorrelating in time
 - MCTF
 - Architectural issues (decomposition order)
- Motion Adaptive WT versus
 - JPEG 2000
 - JSVM
- Recommendations

Where from?

- Research
 - Transform coding, 1970's (Jain)
 - Motion-Compensated Transform coding, 1980's (Mussman)
 - WT based compression, late 1980's (Woods, Shapiro, ...)
 - Motion Compensated Temporal Filtering (Ohm 1994)
 - X-lets (late 1990's)
 - Advanced space-time transforms (late 1990's, Taubman, Pesquet-Popescu, ...)

Where from?

- Standardization
 - JPEG (Transform coding, late 1980's)
 - H.261 (MC Transform coding, late 1980's)
 - MPEG1, MPEG2 (MC Transform coding with B pictures, early 1990's)
 - JPEG 2000 (WT compression, early 2000)
 - MPEG4 AVC, H.264 (MC Transform with improved entropy coding, early 2000)
 - MPEG21 SVC (Interlayer MC predictive Transform coding, currently)
 - In addition, MPEG exploration on Wavelet Video Coding
 - (stopped at the last MPEG meeting)

Scalability requirements in video

- Typical (image) scalability
 - Spatial resolution (dyadic, non dyadic)
 - Quality (SNR)
- Add temporal scalability, i.e.
 - reduced frame rate (dyadic, non dyadic)
- Encapsulation of decoded bit-stream may turn out more complex for any desirable S-T-Q decoding path.

Combined scalability test procedure defined at 69th ISO/MPEG Redmond, WA, USA (w6521)

• • •

Making use of time redundancy

Decorrelating in time

QCIF

- 3D wavelet transform (space+time)
 - > Poorly adapts to low temporal rate...
 - > strong discontinuities in time at moving object boundaries
- As in MC Transform Coding, need to take into account motion information
- Motion Compensated Temporal Filtering
 - Effective lifting implementation for Haar
 Transform, 5-3 filters, along motion trajectories.

General framework for WT based video compression

\bullet

Issues in WT based video compression

- Time then Space decomposition
 - Block-based motion estimation
 - > blocky displaced frame difference (DFD)
 - · OBMC can reduce problem
 - DFD is not a piecewise smooth function
 - > WT transform is not optimal
 - > Less spatial Interband dependencies + difficult handling of subband coefficients due to poor energy compaction (sophistication of entropy coding)
 - Shift variant nature of the WT
 - > Non invertibility of the transform if lower spatial resolution needs to be reconstructed (unknown motion information)

Issues in WT based video compression

- Space then Time decomposition
 - Shift variant nature of the WT
 - > Different structure of spatial subband in presence of translation makes Motion Based Model inappropriate
 - · Overcomplete spatial transform can reduce the problem
 - Motion fields can be quite different at various resolutions (loss of physical like motion)
 - > small coding efficiency in motion representation
- Layered representation (Laplacian pyramid)
 - Increased number of coefficients in transformed domain
 - May be adequate to preserve motion field consistency across layers

JSVM comparison (see W8043)

- Objective comparison (Y PSNR)
 - SNR scalability: WT
 - Spatial / Combined scalability: JSVM
- Subjective comparison
 - on average JSVM is slightly superior.

Visual Comparison: Crew QCIF 15fps 128kbps JSVM STP-tool "t+2D" Fr 17 Fr 83

• • •

JPEG 2000 comparison

- Objective comparison (combined scalability experiment)
 - Average PSNR: (4.Y+Cr+Cb)/6
 - Motion Adaptive WT significantly superior (both aceSVC and STP-tool)
 - > performance gain for City 4-6 dB
 - > Performance gain for Crew 2-3 dB
- Subjective comparison
 - Unquestionable for City
 - Superior for Crew

Concluding remarks

- For a variety of applications that handle Moving Image Sequences
 - needs to have a more effective bandwidth representation
 - ensures a baseline JPEG 2000 compatibility
- · Preliminary simulations indicate
 - a substantial performance gain
 - at a slightly higher complexity
- · Many additional interesting features, e.g.
 - Compressed domain processing for content description and information retrieval

THUS

 ISO/JPEG should open within AIC a study of technologies for better handling of temporal correlation