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Abstract—In this paper we propose a revisitation of the topic
of unique decodability and of some fundamental theorems of
lossless coding. It is widely believed that, for any discrete source
X , every “uniquely decodable” block code satisfies

E[l(X1X2 · · ·Xn)] ≥ H(X1, X2, . . . , Xn),

where X1, X2, . . . , Xn are the first n symbols of the source,
E[l(X1X2 · · ·Xn)] is the expected length of the code for those
symbols and H(X1, X2, . . . , Xn) is their joint entropy. We show
that, for certain sources with memory, the above inequality only
holds when a limiting definition of “uniquely decodable code” is
considered. In particular, the above inequality is usually assumed
to hold for any “practical code” due to a debatable application
of McMillan’s theorem to sources with memory. We thus propose
a clarification of the topic, also providing an extended version of
McMillan’s theorem to be used for Markovian sources.

Index Terms—Lossless source coding, McMillan’s theorem,
constrained sources, minimum expected code length.

I. INTRODUCTION

The problem of lossless encoding of information sources has

been intensively studied over the years (see [1, Sec. II] for a

detailed historical overview of the key developments in this

field). Shannon initiated the mathematical formulation of the

problem in his major work [2] and provided the first results

on the average number of bits per source symbol that must

be used asymptotically in order to represent an information

source.

For a random variable X with alphabet X and probability

mass function pX(·), he defined the entropy of X as the

quantity

H(X) =
∑

x∈X

pX(x) log
1

pX(x)

On another hand, Shannon focused his attention on finite state

Markov sources X = {X1,X2, . . .}, for which he defined the

entropy as

H(X) = lim
n→∞

1

n
H(X1,X2, . . . ,Xn),

a quantity that is now usually called entropy rate of the source.

Based on these definitions, he derived the fundamental results

for fixed length and variable length codes. In particular, he

showed that, by encoding sufficiently large blocks of symbols,

the average number of bits per symbol used by fixed length

codes can be made as close as desired to the entropy rate of

the source while maintaining the probability of error as small

as desirable. If variable length codes are allowed, furthermore,

he showed that the probability of error can be reduced to zero

without increasing the asymptotically achievable average rate.
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Shannon also proved the converse theorem for the case of fixed

length codes, but he did not explicitly consider the converse

theorem for variable length codes (see [1, Sec. II.C]).

An important contribution in this direction came from

McMillan [3], who showed that every “uniquely decodable”

code using a D-ary alphabet must satisfy Kraft’s inequality,
∑

i D−li ≤ 1, li being the codeword lengths [4]. Based on

this result, he was able to prove that the expected length of

a uniquely decodable code for a random variable X is not

smaller than its entropy, E[l(X)] ≤ H(X). This represents a

strong converse result in coding theory. However, while the

initial work by Shannon was explicitly referring to finite state

Markov sources, McMillan’s results basically considered only

the encoding of a random variable. This leads to immediate

conclusions on the problem of encoding memoryless sources,

but an ad hoc study is necessary for the case of sources with

memory. The application of McMillan’s theorem to these type

of sources can be found in [5, Sec. 5.4] and [6, Sec. 3.5]. In

these two well-known references, McMillan’s result is used not

only to derive a converse theorem on the asymptotic average

number of bits per symbol needed to represent an information

source, but also to deduce a non-asymptotic strong converse to

the coding theorem. In particular, the famous result obtained

(see [6, Th. 3.5.2], [5, Th. 5.4.2], [7, Sec. II, p. 2047]) is that,

for every source with memory, any uniquely decodable code

satisfies

E[l(X1X2 · · ·Xn)] ≥ H(X1,X2, . . . ,Xn), (1)

where X1,X2, . . . ,Xn are the first n symbols of the source,

E[l(X1X2 · · ·Xn)] is the expected length of the code for

those symbols and H(X1,X2, . . . ,Xn) represents their joint

entropy.

In this paper we want to clarify that the above equation is

only valid if a limiting definition of “uniquely decodable code”

is assumed. In particular, we show that there are information

sources for which a reversible encoding operation exists that

produces a code for which equation (1) does not hold any

longer for every n. This is demonstrated through a simple

example in Section II. In Section III we revisit the topic of

unique decodability, consequently providing an extension of

McMillan’s theorem for the case of first order Markov sources.

Finally, in Section IV, some additional interesting remarks on

the considered topic are made.

II. A MEANINGFUL EXAMPLE

Let X = {X1,X2, . . .} be a first order Markov source with

alphabet X = {A,B,C,D} and with transition probabilities

shown by the graph of Fig. 1. Its transition probability matrix
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Fig. 1. Graph, with transition probabilities, for the Markov source use in
the example.

is thus

P =









1/2 0 1/2 0
0 1/2 0 1/2

1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4









,

where rows and columns are associated to the natural alpha-

betical order of the symbol values A,B,C and D.

It is not difficult to verify that the stationary distribution

associated with this transition probability matrix is the uniform

distribution. Let X1 be uniformly distributed, so that the source

X is stationary and, in addition, ergodic.

Let us now examine possible binary encoding techniques

for this source and possibly find an optimal one. In order to

evaluate the performance of different codes we determine the

entropy of the sequences of symbols that can be produced by

this source. By stationarity of the source, one easily proves

that

H(X1,X2, . . . ,Xn) = H(X1) +

n
∑

i=2

H(Xi|Xi−1)

= 2 +
3

2
(n − 1),

where H(Xi|Xi−1) is the conditional entropy of Xi given

Xi−1, that is

H(Xi|Xi−1) =
∑

x,y∈X

pXiXi−1
(x, y) log

1

pXi|Xi−1
(x|y)

.

Let us now consider the following binary codes to represent

sequences produced by this source.

Classic code

We call this first code “classic” as it is the most natural

way to encode the source given its particular structure. Since

the first symbol is uniformly distributed between four choices,

2 bits are used to uniquely identify it, in an obvious way.

For the next symbols we note that we always have dyadic

conditional probabilities. So, we apply a state-dependent code.

For encoding the k-th symbol we use, again in an obvious

way, 1 bit if symbol k − 1 was an A or a B, and we use 2

bits if symbol k − 1 was a C or a D. This code seems to

perfectly fulfill the source as the number of used bits always

corresponds to the uncertainty. Indeed, the average length of

the code for the first n symbols is given by

E[l(X1,X2, . . . ,Xn)] = E[l(X1)] +
n

∑

i=2

E[l(Xi)]

= 2 +
3

2
(n − 1).

So, the expected number of bits used for the first n symbols is

exactly the same as their entropy, which would let us declare

that this encoding technique is optimal.

Alternative code

Let us consider a different code, obtained by applying the

following fixed mapping from symbols to bits: A → 0, B → 1,

C → 01, D → 10. It will be easy to see that this code maps

different sequences of symbols into the same codeword. For

example, the sequences AB and C are both coded to 01. This

is usually expressed, see for example [5], by saying that the

code is not uniquely decodable, an expression which suggests

the idea that the code cannot be inverted, different sequences

being associated to the same code. It is however easy to

notice that, for the source considered in this example, the

code does not introduce any ambiguity. Different sequences

that are producible by the source are in fact mapped into

different codes. Thus it is possible to “decode” any sequence

of bits without ambiguity. For example the code 01 can only be

produced by the single symbol C and not by the sequence AB,

since our source cannot produce such sequence (the transition

from A to B being impossible). It is not difficult to verify

that it is indeed possible to decode any sequence of bits by

operating in the following way. Consider first the case when

there are still two or more bits to decode. In such a case,

for the first pair of encountered bits, if a 00 (respectively a

11) is observed then clearly this corresponds to an A symbol

followed by a code starting with a 0 (respectively a B symbol

followed by a code starting with a 1). If, instead, a 01 pair

is observed (respectively a 10) then a C must be decoded

(respectively a D). Finally, if there is only one bit left to

decode, say a 0 or a 1, the decoded symbol is respectively an A
or a B. Such coding and decoding operations are summarized

in Table I.

Now, what is the performance of this code? The expected

Encoding

A → 0

B → 1

C → 01

D → 10

Decoding

more bits left one bit left

00 . . . → A + 0 . . .

01 . . . → C . . .

10 . . . → D . . .

11 . . . → B + 1 . . .

0 → A

1 → B

TABLE I
TABLE OF ENCODING AND DECODING OPERATIONS OF THE PROPOSED

ALTERNATIVE CODE FOR THE MARKOV SOURCE OF FIGURE 1.
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number of bits in coding the first n symbols is given by:

E[l(X1X2X3 · · ·Xn)] =

n
∑

i=1

E[l(Xi)]

=
3

2
n

Unexpectedly, the average number of bits used by the code

is strictly smaller than the entropy of the symbols. So, the

performance of this code is better than what would have been

traditionally considered the “optimal” code, that is the classical

code. Let us mention that this code is not only more efficient

on average, but it is at least as efficient as the classic code

for every possible sequence which remains compliant with

the source characteristics. For each source sequence, indeed,

the number of decoded symbols after reading the first m bits

of the alternative code is always larger than or equal to the

number of symbols decoded with the first m bits of the classic

code. Hence, the proposed alternative code is more efficient

than the classic code in all respects. The obtained gain per

symbol obviously goes to zero asymptotically, as imposed by

the Asymptotic Equipartition Property. However, in practical

cases we are usually interested in coding a finite number of

symbols. Thus, this simple example reveals that the problem of

finding an optimal code is not yet well understood for the case

of sources with memory. The obtained results may thus have

interesting consequences not only from a theoretical point of

view, but even for practical purposes in the case of sources

exibiting constraints imposing high order dependencies.

Commenting on the “alternative code”, one may object that

it is not fair to use the knowledge on impossible transitions in

order to design the code. But probably nobody would object

to the design of what we called the “classic code”. Even in

that case, however, the knowledge that some transitions are

impossible was used, in order to construct a state-dependent

“optimal” code.

It is important to point out that we have just shown a fixed

to variable length code for a stationary ergodic source that

maps sequences of n symbols into strings of bits that can

be decoded and such that the average code length is smaller

than the entropy of those n symbols. Furthermore, this holds

for every n, and not for an a priori fixed n. In a sense we could

say that the given code has a negative redundancy. Note that

there is a huge difference between the considered setting and

that of the so called one-to-one codes (see for example [8] for

details). In the case of one-to-one codes, it is assumed that only

one symbol, or a given known amount of symbols, must be

coded, and codes are studied as maps from symbols to binary

strings without considering the decodability of concatenation

of codewords. Under those hypotheses, Wyner [9] first pointed

out that the average codeword length can always be made

lower than the entropy, and different authors have studied

bounds on the expected code length over the years [10], [11].

Here, instead, we have considered a fixed-to-variable length

code used to compress sequences of symbols of whatever

length, concatenating the code for the symbols one by one,

as in the most classic scenario.

III. UNIQUE DECODABILITY FOR CONSTRAINED SOURCES

In this section we briefly survey the literature on unique

decodability and we then propose an adequate treatment of

the particular case of constrained sources defined as follows.

Definition 1: A source X = {X1,X2, . . .} with symbols in

a discrete alphabet X is a constrained source if there exists a

finite sequence of symbols from X that cannot be obtained as

output of the source X .

A. Classic definitions and revisitation

It is interesting to consider how the topic of unique decod-

ability has been historically dealt with in the literature and

how the results on unique decodability are used to deduce

results on the expected length of codes. Taking [6] and [5] as

representative references for what can be viewed as the classic

approach to lossless source coding, we note some common

structures between them in the development of the theory, but

also some interesting differences. The most important fact to

be noticed is the use, in both references with only marginal

differences, of the following chain of deductions:

(a) McMillan’s theorem asserts that all uniquely decodable

codes satisfy Kraft’s inequality;

(b) If a code for a random variable X satisfies Kraft’s

inequality, then E[l(X)] ≥ H(X);
(c) Thus any uniquely decodable code for a random variable

X satisfies E[l(X)] ≥ H(X);
(d) For sources with memory, by considering sequences of n

symbols as super-symbols, we deduce that any uniquely

decodable code satisfies E[l(X1,X2, . . . ,Xn)] ≥
H(X1,X2, . . . ,Xn).

In the above flow of deductions there is an implicit as-

sumption which is not obvious and, in a certain way, not

clearly supported. It is implicitly assumed that the definition of

uniquely decodable code used in McMillan’s theorem is also

appropriate for sources with memory. Of course, by definition

of “definition”, one can freely choose to define “uniquely

decodable code” in any preferred way. However, as shown

by the code of Table I in the previous section, the definition

of uniquely decodable code used in McMillan’s theorem does

not coincide with the intuitive idea of “decodable” for certain

sources with memory. To our knowledge, this ambiguity

has never been reported previously in the literature, and for

this reason it has been erroneously believed that the result

E[l(X1,X2, . . . ,Xn)] ≥ H(X1,X2, . . . ,Xn) holds for every

“practically usable” code. As shown by the Markov source

example presented, this interpretation is incorrect.

In order to better understand the confusion associated to

the meaning of “uniquely decodable code”, it is interesting

to focus on a small difference between the formal definitions

given by the authors in [5] and in [6]. We start by rephrasing

for notational convenience the definition given by Cover and

Thomas in [5].

Definition 2: [5, Sec. 5.1, pp. 79-80] A code is

said to be uniquely decodable if no finite sequence

of code symbols can be obtained in two or more

different ways as a concatenation of codewords.
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Note that this definition is the same used in McMillan’s paper

[3], and it considers a property of the codebook without any

reference to sources. It is however difficult to find a clear

motivation for such a source independent definition. After all,

a code is always designed for a given source, not for a given

alphabet. Indeed, right after giving the formal definitions, the

authors comment

“In other words, any encoded string in a uniquely

decodable code has only one possible source string

producing it.”

So, a reference to sources is introduced. What is not noticed is

that the condition given in the formal definition coincides with

the phrased one only if the source at hand can produce any

possible combination of symbols as output. Conversely, the

two definitions are not equivalent, the first one being stronger,

the second one being instead “more intuitive”.

With respect to formal definitions, Gallager proceeds in a

different way with the following:

Definition 3: [6, Sec. 3.2, pg. 45] “A code is

uniquely decodable if for each source sequence of

finite length, the sequence of code letters corre-

sponding to that source sequence is different from

the sequence of code letters corresponding to any

other source sequence.”

Note that this is a formal definition of unique decodability

of a code with respect to a given source. Gallager states

this definition while discussing memoryless sources1. In that

case, the definition is clearly equivalent to Definition 2 but,

unfortunately, Gallager implicitly uses Definition 2 instead of

Definition 3 when dealing with sources with memory.2

In order to avoid the above discussed ambiguity, we propose

to adopt the following explicit definition.

Definition 4: A code C is said to be uniquely decodable

for the source X if no two different finite sequences of source

symbols producible by X have the same code.

With this definition, not all uniquely decodable codes for

a given source satisfy Kraft’s inequality. So, the chain of

deductions (a)-(d) listed at the beginning of this section cannot

be used for constrained sources, as McMillan’s theorem uses

Definition 2 of unique decodability.

The alternative code of Table I thus immediately gives:

Lemma 1: There exists at least one source X and a uniquely

decodable code for X such that, for every n ≥ 1,

E[l(X1,X2, . . . ,Xn)] < H(X1,X2, . . . ,Xn).

B. Extension of McMillan’s theorem to Markov sources

In Section II, the proposed alternative code demonstrates

that McMillan’s theorem does not apply in general to uniquely

decodable codes for a constrained source X as defined in

Definition 4. In this section a modified version of Kraft’s

1See [6, pg. 45] “We also assume, initially, [...] that successive letters are

independent”
2In fact, in [6], the proof of Theorem 3.5.2, on page 58, is based on

Theorem 3.3.1, on page 50, the proof of which states: “...follows from Kraft’s

inequality, [...] which is valid for any uniquely decodable code”. But Kraft’s
inequality is valid for uniquely decodable codes defined as in Definition 2
and not Definition 3.

inequality is proposed which represents a necessary condition

for the unique decodability of a code for a first order Markov

source.

Let X be a Markov source with alphabet X =
{1, 2, . . . ,m} and transition probability matrix P. Let W =
{w1, w2, . . . , wm} be a set of D-ary codewords for the al-

phabet X and let, li = l(wi) be the length of codeword wi.

McMillan’s original theorem can be stated in the following

way:

Theorem 1 (McMillan, [3]): If the set of codewords W is

uniquely decodable (in the sense of Definition 2) then

m
∑

i=1

D−li ≤ 1.

We propose a modified theorem for considering the unique

decodability for the specific source.

Theorem 2: If the set of codewords W is uniquely decod-

able for the Markov source X , then the matrix Q defined by

Qij =

{

0 if Pij = 0

D−lj if Pij > 0

has spectral radius at most 1.

Proof: The proof is very similar to Karush’s proof of

McMillan’s theorem [12]. Let X (k) be the set of all sequences

of k symbols that can be produced by the source and let L =
[D−l1 ,D−l2 , . . . ,D−lm ]′. For k > 0, define the row vector

V(k) = L′Qk−1.

It is easy to see by induction that the i-th component of V(k)

can be written as

V
(k)
i =

∑

h1,h2,...,hk

D−lh1
−lh2

···−lhk

where the sum runs over all sequences of indices

(h1, h2, . . . , hk) with varying h1, h2, . . . , hk−1 and hk = i
such that (h1, h2, . . . , hk) ∈ X (k). So, calling 1m the vector

composed of m 1’s, we have

L′Qk−11m =
∑

(h1,h2,...,hk)∈X (k)

D−lh1
−lh2

···−lhk .

Reindexing the sum with respect to the total length r = lh1
+

lh2
+ · · · + lhk

and calling N(r) the number of sequences of

X (k) which are mapped in a length r code, we have

L′Qk−11m =

klmax
∑

r=1

N(r)D−r

where lmax is the maximum of the values li, i = 1, 2, . . . ,m.

Since the code is uniquely decodable for the source X , there

are at most Dr source-compatible sequences with a code of

length r, that is, N(r) ≤ Dr. Hence, for every k > 0

L′Qk−11m ≤

klmax
∑

r=1

DrD−r = klmax (2)

Now, note that the irreducible matrix Q is also nonnegative.

Thus, by the Perron-Frobenius theorem (see [13] for details),
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its spectral radius ρ(Q) is also an eigenvalue, with algebraic

multiplicity 1 and with positive associated left eigenvector.

Suppose now ρ(Q) > 1. Since L and 1m are both positive,

it is easy to deduce that the term on the left hand side of

equation (2) asymptotically grows as ρ(Q)k−1 when k goes

to infinity. On the contrary, the right hand side term only grows

linearly with k and, for large enough k, equation (2) cannot

hold. We conclude that ρ(Q) ≤ 1.

IV. SOME ADDITIONAL REMARKS

Remark 1 (Theorem 2 generalizes Theorem 1): In the case

of unconstrained Markov sources, Theorem 2 is equivalent to

Theorem 1. Indeed, the Markov source being not constrained

means that its transition probability matrix P has all strictly

positive entries. This implies that the matrix Q defined in

Theorem 2 has all equal rows. The spectral radius of such

a matrix equals the sum of the elements in every row, which

is
∑

j D−lj , reducing thus to the classic Kraft’s inequality.

Remark 2 (Non sufficiency of the condition): Kraft’s

inequality is both a necessary and sufficient condition for

the existence of a uniquely decodable code (in the sense of

Definition 2) with codeword lengths li. Theorem 2, instead,

only gives a necessary condition on the lengths li for the

unique decodability of a code for a given source. It is easy to

show that condition stated in the theorem is not a sufficient

condition for the existence of a uniquely decodable code for

a source with codeword lengths li. Finding a necessary and

sufficient condition seems to be a much harder problem.

Remark 3 (Extended Sardinas-Patterson test): With

respect to the previous remark, we point out that it is however

possible to test a given code for decodability for a given

source by devising a generalization of the Sardinas-Patterson

test [14] to deal with constrained sources (see [15]).

Remark 4 (A more general form of Theorem 2): Theorem

2 was formulated for the case of Markov chains “in the

Moore form”, as considered for example in [5]. In other

words, we have modeled information sources as Markov

chains by assigning an output source symbol to every state.

In order to deal with more general sources we can consider

Markov sources in the “Mealy form”, where output symbols

are not associated to states but to transitions between states

(which corresponds to the Markov source model used by

Shannon in [2] or, for example, by Gallager in [6]). Theorem

2 can be extended to this type of Markov sources as follows

(see [15]).

Theorem 3: Let X be a finite state source, with possible

states S1, S2, . . . , Sq and with output symbols in the alphabet

X = {1, 2, . . . ,m}. Let W = {w1, . . . , wm} be a set of

codewords for the symbols in X with lengths l1, l2, . . . , lm.

Let Oi,j be the subsets of X of possible symbols output by

the source when transiting from state Si to state Sj , Oij being

the empty set if transition from Si to Sj is impossible. If the

code is uniquely decodable for the source X , then the matrix

Q defined by

Qij =
∑

h∈Oi,j

D−lh

has spectral radius at most 1.

Remark 5 (Shannon’s insight):

An historical analysis reveals that both McMillan’s theorem

and the proposed generalized one in the form of Theorem 3

are mathematically equivalent to a formulation obtained by

Shannon already in [2, Part I, Sec. 1] for the evaluation of

the capacity of discrete noiseless channels. In particular, in

[2] Shannon established that the capacity of an unconstrained

noiseless channel with symbol durations t1, t2, . . . , tm is given

by the value log X0, where X0 is the largest real solution of

the difference equation

X−t1 + X−t2 + · · · + X−tm = 1.

It is not difficult to show that McMillan’s theorem is equivalent

to the obvious statement that the capacity of a D-ary channel

is at most log D.

Furthermore, Shannon generalized the capacity formula to

the case of noiseless finite state channels, by stating the

following [2, Th. 1]:

Theorem 4 (Shannon, [2]): Let b
(s)
ij be the duration

of the sth symbol which is allowable in state i and

leads to state j. Then the channel capacity C is equal

to log W0 where W0 is the largest real root of the

determinant equation:
∣

∣

∣

∣

∣

∑

s

W−b
(s)
ij − δij

∣

∣

∣

∣

∣

= 0.

As for the unconstrained case, it is possible to show that

Theorem 3 is equivalent to the statement that every finite state

D-ary channel has capacity at most log D.
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