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ABSTRACT

Current wavelet-based image coders obtain high performance thanks to the identi�cation and the exploita-
tion of the statistical properties of natural images in the transformed domain. Zerotree-based algorithms,
as \Embedded Zerotree Wavelets" (EZW) and \Set Partitioning In Hierarchical Trees" (SPIHT), o�er high
Rate-Distortion (RD) coding performance and low computational complexity by exploiting statistical depen-
dencies among insigni�cant coeÆcients on hierarchical subband structures. Another possible approach tries to
predict the clusters of signi�cant coeÆcients by means of some form of morphological dilation. An example
of a morphology-based coder is the \Signi�cance-Linked Connected Component Analysis" (SLCCA) that has
shown performance which are comparable to the zerotree-based coders but is not embedded. A new embedded
bit-plane coder is proposed here based on morphological dilation of signi�cant coeÆcients and context based
arithmetic coding. The algorithm is able to exploit both intra-band and inter-band statistical dependencies
among wavelet signi�cant coeÆcients. Moreover, the same approach is used both for two and three-dimensional
wavelet-based image compression. Finally the algorithms are tested on some 2D images and on a medical
volume, by comparing the RD results to those obtained with the state-of-the-art wavelet-based coders.
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1. INTRODUCTION

In the last years the need to store and communicate large amounts of visual data has required the study of
new compression techniques. Nowadays, there exists a rich literature and standardization activities regarding
image coding. Among the best two-dimensional (2D) compression schemes, wavelet based zerotree coding o�ers
high Rate-Distortion (RD) performance with low computational complexity. This system is composed of three
stages: wavelet transform, zerotree-based quantization and entropy coding. The success of the zerotree-based
approach is due to the statistical exploitation of the inter-subband dependency among insigni�cant wavelet
coeÆcients, which is pointed out by the reorganization of coeÆcients in subband tree structures. Examples
of coding techniques that use the zerotree idea are \Embedded Zerotree Wavelet" coding (EZW)1 and \Set
Partitioning In Hierarchical Trees" (SPIHT).2 Moreover EZW and SPIHT coders have been extended to the
third dimension3{5 obtaining satisfactory results in terms of RD and complexity performance for volumetric
data.

In addition to the zerotree idea other statistical dependencies in the wavelet domain can be highlighted.
For example the recent \Embedded Block Coding with Optimized Truncation" (EBCOT)6 algorithm, adopted
in the JPEG2000 standard, combines RD optimization, block coding and context-based arithmetic coding in
an original way, which has demonstrated a good correspondence to the statistical nature of wavelet data.
Such statistically matched behavior is the basis which allows to reach a low-complexity and progressive high-
performance coder. The zerotree idea can also be reformulated in a dual approach in order to de�ne the
possibility to �nd structures of signi�cant coeÆcients in the wavelet domain. Thus, an alternative way, in order
to explore the statistical dependencies among wavelet coeÆcients, can be the prediction of the signi�cance and
the coding of a signi�cance-map by a morphological dilation approach. The basic reason that justify the use
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of a morphology-based approach is the hypothesis of the presence of energy clusters in wavelet subbands.7 A
recently proposed algorithm based on morphological representation of wavelet data, the \Signi�cance-Linked
Connected Component Analysis" (SLCCA),8 has shown compression performance similar to the best zerotree-
based algorithms. However SLCCA does not provide an embedded bit-stream.

We propose here a new embedded bit-plane coder based on morphological dilation of signi�cant coeÆcients
which is able to exploit both intra-band and inter-band statistical dependencies among wavelet signi�cant
coeÆcients. Moreover we extend our algorithm to three-dimensional image compression. The coding results of
the Lena, Barbara and Goldhill images for 2D applications and of the test medical volume CT SKULL3{5 for
3D applications are often sensibly superior to the state-of-the-art compression performance.

The rest of the paper is organized as follow. In Section II the statistical properties of wavelet-transformed
natural images and their exploitation in zerotree-based and morphological algorithms are �rst discussed. In
Section III our Embedded Morphological Dilation Coder EMDC is presented in detail. In Section IV the
entropy coder is described. In Section V an experimental performance evaluation respect to the state-of-the-art
wavelet-based coders is presented. Finally, the conclusions of the paper are in Section VI.

2. ZEROTREE AND MORPHOLOGICAL CLUSTERING APPROACHES

2.1. Statistical properties of wavelet coeÆcients

Recognizing the statistical properties of wavelet-transformed natural images and building a statistical model
of these data is a fundamental task in the design of a high-performance wavelet-based coder. We resume here
some important features of wavelet-transformed coeÆcients of natural images:

1. spatial-frequency localization;

2. decay of magnitude of wavelet coeÆcients across subbands;

3. magnitude correlation of coeÆcients at same spatial location in consecutive decomposition levels1;

4. magnitude correlation of neighboring coeÆcients within a subband9;

5. clustering of signi�cant coeÆcients (bigger than a certain threshold) within the subbands.7, 8

The �rst property is a feature of the wavelet transform and means that each wavelet coeÆcient refers to a
speci�c area of the original data (i.e. it is spatially localized) and represents information in a certain frequency
range (i.e. it is frequency localized). The other properties are due to the high-order statistical characteristics
of natural images. In fact, the non-stationary nature of an highly correlated image source (natural image)
re
ects on the non-stationary nature of the weakly correlated transformed coeÆcients. This situation has led
to the signi�cant - non signi�cant dichotomy and to the exploitation of high-order statistical properties of the
wavelet coeÆcients both in the quantization and entropy coding steps. The various wavelet-based coders try
to exploit some of the mentioned statistical characteristics in order to obtain good RD performance with low
computational complexity.

2.2. The zerotree approach

Zerotree-based coders, as EZW1 and SPIHT,2 basically exploit the magnitude decay of the wavelet coeÆcients
across the subbands by the use of subband trees collection structure, where the children of a node are the
coeÆcients at the same spatial location in the �ner scale of a subband decomposition. In fact, although in
this kind of structure the linear correlation between a parent and its children is irrelevant, there is a relevant
dependency among their magnitudes. Experiments on natural images showed a correlation between the square
magnitude of a child and its parent between 0.2 and 0.6 with a strong concentration around 0.35.1 Besides,
the magnitude of wavelet coeÆcients typically decays along the parent-children hierarchy.10 So large collection
of coeÆcients, which can be organized in multiresolution trees, are composed of coeÆcients smaller than their
progenitors. This behavior can be described by coding the sub-trees composed of all insigni�cant coeÆcients
with a single symbol (zerotree) or by using similar set-partitioning techniques. Other theoretical justi�cations
of the performance of zerotree-based coders can be found for example in.11
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Figure 1. Signi�cance-map for four-level decomposition. (a) Image Lena. (b) A medical image with indicated two
inter-band clusters.

2.3. The clustering of signi�cant coeÆcients

Even if the zerotree-based algorithms are very eÆcient, they don't exploit an important statistical property of
wavelet-transformed natural images: the clustering of signi�cant coeÆcients. This property can be very useful
for compression purposes because it allows, given a small number of signi�cant coeÆcients, to identify the areas
where the greatest part of signi�cant coeÆcients may be found. The clustering tendency of signi�cant wavelet
coeÆcients is due, as stated above, to the characteristics of natural images. In fact these kind of data are
typically composed of large homogeneous or textured regions delimited by edge discontinuities. Homogeneous
regions mostly consist of low frequency components and so the coeÆcients associated with these areas in the
medium-high frequency subbands typically have low magnitude. Textured regions consist of a mixture of low
and high frequency coeÆcients. Edges are mostly composed of high frequency components and so they generate
a relatively small number of coeÆcients with high magnitude in the medium-high frequency subbands. These
coeÆcients have a spatial distribution which depends on the local direction of the object boundaries in the
original image with respect to the spatial orientation of the high and low-pass subband �lters. The clustering of
signi�cant coeÆcients can be empirically observed in Fig.1{a where the clusters within a wavelet subband mainly
correspond to the edges and secondly to the textured areas in the original image. We can also observe that these
clusters tend to be localized at same spatial positions and �ltering orientations at each decomposition level.7 In
fact, since the clusters are due to spatial edges and textured areas, we expect some energy concentration in these
zones at all scales. For example in the presence of a vertical edge we expect to �nd clusters in all subbands with
horizontal high-pass �ltering and vertical low-pass �ltering. We call inter-band clusters these sets of clusters
which can be linked together through some form of hierarchical collection structures (see Fig.1{b).

2.4. The morphological approach

A method for exploiting the clustering of signi�cant coeÆcients is the morphological dilation.7, 8 Before
describing this technique we give a brief review of some aspects of mathematical morphology. A survey of
the application of morphology to multi-dimensional signal processing may be found in.12 We consider a set S
of points in a N-dimensional structure and a structuring element B that de�nes a morphology-based distance.
The morphological dilation of set S by B is the union of all points falling under the structuring element B
when it is centered at each point of S. In our context the set B consists of the already identi�ed signi�cant
coeÆcients and through the morphological dilation we want to �nd new signi�cant coeÆcients. With iterative
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Figure 2. Signi�cance-maps of a four-level decomposition on Lena obtained with three successive thresholds: 32, 16
and 8.

morphological dilation we refer to a sequence of morphological dilations, applied to new signi�cant coeÆcients.
The iteration �nishes when a dilation does not �nd new signi�cant coeÆcients. Moreover, we use the term
inter-band expansion to indicate a sort of morphological dilation performed from parents towards their children
in the tree collection structures. Now we can see how this concepts can be used in signi�cance-map coding.

We consider the wavelet signi�cant coeÆcients with respect to a certain threshold. As seen these coeÆcients
tend to form clusters within the various subbands, linked in inter-band clusters. If we know the position of
a very small number of signi�cant coeÆcients, one for each inter-band cluster, we can identify many other
signi�cant coeÆcients by applying an iterative morphological dilation and an inter-band expansion. This way,
we can map a great number of signi�cant coeÆcients which result to be collected in inter-band clusters. To do
this we have to analyze a relative small number of coeÆcients and explicitly code a single coeÆcient position
for each inter-band cluster.

2.5. Our embedded morphological approach

Our primary objective is to introduce a morphological approach within an embedded framework. Considering
a set of decreasing thresholds (typically the decreasing powers of two), the growing of the clusters of signi�cant
coeÆcients can be observed at the same time (Fig.2). If at each step (i.e. for each threshold) a morphological
dilation and an inter-band expansion is applied to the already signi�cant-marked coeÆcients, the large part of
signi�cant coeÆcients can be predicted, with a high probability, by analyzing a relative little number of the
total of the wavelet coeÆcients. In fact, at each threshold level, it is reasonable to look for new signi�cant
coeÆcients inside the already detected clusters. When these clusters have been processed the attention can be
moved in other regions in order to �nd new clusters or to identify isolated signi�cant coeÆcients. Using this
approach two important e�ects can be obtained:

1. The regions with a higher expected percentage of signi�cant coeÆcient are analyzed �rst. This means that
the signi�cance-map coding bit-stream is statistically ordered by distortion reduction. A sort of implicit
rate-distortion optimization is obtained, without any computational complexity increment or the need to
transmit auxiliary information.

2. The wavelet coeÆcients can be partitioned in two subsets corresponding to regions where there are clusters
of signi�cant coeÆcients and regions where we expect to �nd only a few isolated signi�cant coeÆcients. As
shown in two experiments exposed in7 the entropy of the composite model obtained through this partition
is widely inferior to the global entropy of the wavelet coeÆcients. This fact can be exploited during the
entropy coding step.
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Figure 3. Di�erent phases in signi�cance-map coding of a Lena's subband. In black signi�cantly-marked coeÆcients,
in gray insigni�cant ones within the area considered for inspection. (a) Initial signi�cance-map for a threshold equal to
16. (b) Signi�cance-map after intra-band morphological dilation and inter-band expansion. (c) Signi�cance-map after
additional-morphological dilation. (d) Final signi�cance-map after explicit position coding.

3. EMDC: EMBEDDED MORPHOLOGICAL DILATION CODING

Like in EZW and SPIHT, the proposed progressive algorithm EMDC is a bit-plane coder composed of two
iterative steps: a sorting pass (or signi�cance-map coding) that identi�es signi�cant coeÆcients (i.e. larger than
a given threshold) and codes their position, and a re�nement pass that adds to the precision of the signi�cantly-
marked coeÆcients. Initially the threshold is set to the largest power of two which is smaller than the largest
magnitude of the wavelet coeÆcients. Once a scanning strategy is de�ned, the positions of signi�cant coeÆcients
are coded in the sorting pass, then a re�nement pass follows to complete the bit-plane coding. At this point the
threshold is halved and the scanning restarts. This way an embedded bit-stream is obtained. The coding of the
signi�cance map is a crucial task in this kind of scheme. The main idea we propose for obtaining an eÆcient
coding of the signi�cance-map is to look for new signi�cant coeÆcients near the already signi�cantly-marked
ones within the same subband (intra-band morphological dilation), and among their sons (inter-band expansion)
in the corresponding tree structure. More precisely, the signi�cance-map coding of each subband is subdivided
in four phases: intra-band morphological dilation, inter-band expansion, additional morphological dilation and
explicit position coding.

1. Intra-band morphological dilation: the coeÆcients near the signi�cantly-marked ones are analyzed
through an iterative morphological dilation; this operation is repeated each time a new signi�cant co-
eÆcient is found also during the other three phases. We tested di�erent structuring elements for this
morphological dilation and we obtained best results using a 3x3 square for images and a 3x3x3 cube for
volumes.

2. Inter-band expansion: the sons of the signi�cantly-marked coeÆcients are analyzed.

3. Additional morphological dilation: a morphological dilation is further performed around coeÆcients
analyzed in previous phases and resulted insigni�cant; this operation is repeated until two successive scans
do not lead to the detection of any new signi�cant coeÆcient. Even in this case the structuring element
used is a 3x3 square in 2D and a 3x3x3 cube in 3D.

4. Explicit position coding: the position of remaining signi�cant coeÆcients is explicitly sent.

Intra-band morphological dilation and inter-band expansion allow to explore the already-identi�ed clusters,
the additional morphological dilatation analyze the coeÆcients on the border of clusters and �nally the explicit
position coding allow to �nd new clusters (especially at the start of the coding) and code the position of isolate
signi�cant coeÆcients. The four steps are ordered in term of their eÆciency considering a statistical measure
of distortion reduction per coding bit. For this reason the signi�cance-map is not encoded subband by subband

5



but step by step: �rst the intra-band morphological dilation is performed on each subband, then the inter-band
expansion is performed and so on. With this method the compression ratio at the end of a sorting pass is
substantially unaltered but the performance at intermediate points is superior. *
Fig.3 shows, with an example, how the EMDC algorithm works during the various phases within a subband.

3.1. EMDC data structures

For implementation purposes the signi�cance/insigni�cance information of each wavelet subband (l; i) (where l
is the decomposition level and i the subband number) are stored into two sets of lists:

� the lists of signi�cant coeÆcients (LSCl;i), containing all signi�cantly-marked coeÆcients;

� the lists of insigni�cant coeÆcients (LICl;i), containing the coeÆcients analyzed in the present sorting
pass which resulted insigni�cant. These lists are used for the additional morphological dilation.

Besides, the same information is also stored in a wavelet coeÆcients matrix (WCM) in order to allow an
immediate knowledge of the status of the coeÆcients: signi�cantly-marked ("S"), insigni�cantly-marked ("I")
or not yet analyzed ("NA") in the current sorting pass. Finally we de�ne a data structure to store each subband
status SS(l; i), i.e. the next step that has to be executed in the signi�cance-map coding. Possible values in
this data structure are: morphological dilation("MD"), inter-band expansion ("IE"), additional morphological
dilation ("AMD"), explicit position coding ("EPC"), sorting pass terminated ("SPT") and all coeÆcients are
signi�cant ("ACS").

3.2. EMDC algorithm

The coding algorithm is virtually the same for 2D and 3D image coding. To know if in a subband there are
new (not already marked) signi�cant coeÆcients (with respect to the current 2n threshold) we use the function
Sn(l; i). This function is equal to 0 if all signi�cant coeÆcients in the (l; i) subband are already been found,
while it is equal to 1 if there are signi�cant coeÆcients to �nd. The scanning of the wavelet coeÆcients, if not
re-routed by the morphological operations, is performed by row and the subband scanning is from low to high
resolution.

1. Initialization: MAX = maximum magnitude of wavelet coeÆcients; output n = blog2(MAX)c, set the
threshold to 2n, set all the LSCl;i and LICl;i to empty lists, set all elements of WCM to "NA" and all
subband status to "MD" �.

2. Sorting Pass:

� for each subband (l; i) with status not equal to "ACS" do:

{ if Sn(l; i) = 0 output 0 and set SS(l; i) to "SPT";

{ else output 1 and if LSCl;i in not empty set SS(l; i) to "MD", otherwise if l � 1 and LSCl�1;i is
not empty set SS(l; i) to "IE" and otherwise set SS(l; i) to "EPC".

(a) Intra-band morphological dilation: for each subband (l; i) with SS(l; i) equal to "MD":

� for each entry in the LSCl;i analyze the adjacent coeÆcients in the same subband: for each
coeÆcient of coordinates x do:

{ if WCM(x) is not equal to "NA" pass to the next coeÆcient;

{ else if the coeÆcient is signi�cant (bigger than 2n): output 1, output its sign, add it to the
end of LSCl;i and set WCM(x) to "S";

{ if it is not signi�cant: output 0, add it to the end of LICl;i and set WCM(x) to "I";

� if Sn(l; i) = 0 then set SS(l; i) to "SPT" and output 0;
�Actually is suÆcient that the subband status are di�erent from "ACS".
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� else output 1 and if l � 1 and LSCl�1;i in not empty set SS(l; i) to "IE", otherwise set SS(l; i)
to "AMD".

(b) Inter-band expansion:for each subband (l; i) with SS(l; i) equal to "IE":

� For each entry in the father-subband LSCl�1;i the four (eight in 3D) sons are analyzed: for each
coeÆcient of coordinates x do:

{ if WCM(x) is not equal to "NA" pass to the next coeÆcient;

{ else if the coeÆcient is signi�cant: output 1, output its sign, add it to the end of LSCl;i, set
WCM(x) to "S" and immediately perform an intra-band dilation (a) on the new coeÆcient
added to LSC;

{ if it is not signi�cant: output 0, add it to the end of LICl;i and set WCM(x) to "I";

� if Sn(l; i) = 0 then set SS(l; i) to "SPT" and output 0;

� else output 1 set SS(l; i) to "AMD".

(c) Additional morphological dilation:for each subband (l; i) with SS(l; i) equal to "AMD":

� For each entry in LICl;i of the subband except those included in this additional morphological
dilation analyze the adjacent coeÆcients in the same subband: for each coeÆcient of coordinates
x do:

{ if WCM(x) is not equal to "NA" pass to the next coeÆcient;

{ if the coeÆcient is signi�cant: output 1, output its sign, add it to the end of LSCl;i, set
WCM(x) to "S" and immediately perform an intra-band dilation (a) on the new signi�cant
coeÆcient;

{ if it is not signi�cant: output 0, add it to the end of LICl;i and set WCM(x) to "S";

� Repeat the additional morphological dilation on the new entry of LICl;i until two successive
scans do not lead to new signi�cant coeÆcients;

� if Sn(l; i) = 0 then set SS(l; i) to "SPT" and output 0;

� else output 1 and set SS(l; i) to "EPC".

(d) Explicit position coding:for each subband (l; i) with SS(l; i) equal to "EPC":

� The position of remaining signi�cant coeÆcients is explicitly sent as a binary number using a
suÆcient number of digits considering the number of not analyzed coeÆcients in the subband;
also in this case the signi�cant coeÆcients are added to LSCl;i and an intra-band dilation(a) is
performed after each position coding;

� A special symbol (for example the position �1) is sent when all signi�cant coeÆcients in the
subband (l; i) have been identi�ed.

3. Re�nement Pass: for each entry in all LSC's, except those included in the last sorting pass, output the
n-th most signi�cant bit;

4. Set the data structures for next sorting pass:

� Empty all LICl;i;

� all elements in WCM equal to "I" are set to "NA";

� if a subband (l; i) has all coeÆcients signi�cantly-marked then SS(l; i) is set to "ACS".

5. Quantization-Step Update: decrement n by 1 (the threshold is halved) and repeat from step 2.

Note that the �rst signi�cant coeÆcient is always coded by an explicit position coding. The algorithm can
be stopped in any moments, at the desired rate or distortion.
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4. ENTROPY CODING IN EMDC

In order to increase the coding eÆciency, the bit-stream produced by the progressive quantization is entropy
coded using a context-based adaptive arithmetic coder, based on.13 For this purpose we consider the EMDC
algorithm as a binary non-stationary symbol source with memory. First we identify seven main contexts in
the structure of EMDC (structural contexts): sign bits, re�nement bits, four contexts for the four phases of
signi�cance-map coding and a context for the output of the Sn(l; i) function. Moreover, inside some structural-
context we locate some sub-contexts (proper contexts) in order to better exploit the statistical relationships
between the wavelet coeÆcients. We use the same set of contexts for 2D and 3D applications.

4.1. Signi�cance-map coding contexts

As seen in Section II there is a correlation between magnitude of the wavelet coeÆcients at same spatial
and frequency location in consecutive resolution levels and between neighboring coeÆcients within a same
subband. This means that there is also a correlation between the signi�cance value of these coeÆcients. This
correlation can be exploited by the arithmetic coding through the identi�cation of contexts to be associated to
the signi�cance-map structure. In order to consider and exploit the causal dependencies between two consecutive
bit-plane related signi�cance-maps, we propose (see also5) to make use of three signi�cance values, distinguishing
not only between signi�cant and insigni�cant coeÆcients, but also between previously-signi�cant (marked as
signi�cant in a previous sorting pass) and newly-signi�cant ones (marked signi�cant in the current sorting pass).

For the signi�cance-map coding we identify 12 di�erent contexts:

� 7 contexts for intra-band morphological dilation:

{ 1 context for the �rst level (lower resolution) subband;

{ 6 (3x2) contexts for the other subbands depending on the signi�cance value of the father (three
possible values: previously-signi�cant, newly-signi�cant and insigni�cant) and the presence of at
least one signi�cantly-marked coeÆcient among the adjacent ones towards the low-pass �ltering
direction (two possible values, except for the HH subband's coeÆcients which have a unique value);

� 2 contexts for inter-band expansion, depending on the signi�cance value of the father (previously-signi�cant
or newly-signi�cant);

� 1 context for additional morphological dilation;

� 1 context for explicit position coding and 1 context for the output of the Sn(l; i) function: these bits are
not compressed, so these contexts are not adaptive and are set as binary and equiprobable.

4.2. Re�nement bits compression

Re�nement bits may be compressed because the typical subband coeÆcient histogram of each bit-plane interval
is unbalanced towards lower values and so it is more probable that a coeÆcient lies in the inferior half-interval
rather than in the superior one.5 This unbalance is more pronounced for the �rst re�nement bits and decreases
as the re�nement proceeds. For this reason we create two sub-contexts for re�nement bits compression: a
context for the �rst re�nement bit of each coeÆcients and another one for the other re�nement bits. In this
way the re�nement bits are entropy compressed by about 8%, in a bit-rate range from 0.25 to 1.0 bpp.

4.3. Sign bits compression

As stated in6 sign bits may be compressed as well, because adjacent wavelet coeÆcients in mixed lowpass/highpass
subbands (e.g. LH and HL in 2D) exhibit substantial statistical dependencies. In fact, along the low-pass �lter-
ing direction, neighboring coeÆcients exhibit, with a high probability, the same sign; while along the high-pass
�ltering direction they often have opposite signs. For exploiting this statistical evidence we make use of the two
functions l(x) and h(x), that summarize the information about the signi�cantly-marked adjacent coeÆcients
of the coeÆcient x, respectively towards the high-pass and the low-pass directions. These functions assume
value 1 if the majority of adjacent coeÆcients is positive, �1 if it is negative and 0 if a sign predominance is
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not present. 9 (3x3) contexts are thus obtained, depending on the value of the functions l(x) and h(x). We
note that only the sign of coeÆcients in mixed lowpass/highpass subbands are entropy coded. For the other
sign bits we use an additional non-adaptive and equiprobable context. We experimented that sign bits may be
compressed of about 10% for 2D images while in the 3D case the coding gain may even reach 40%.

4.4. Adaptivity of the model

Because of the non-stationarity of the EMDC source we use an adaptive model to obtain better compression
performance. By reducing the number of bits used to store symbol frequencies (that we call frequency-bits),
we can emphasize the adaptivity of the model making the arithmetic coding more reactive with respect to

uctuations in the wavelet coeÆcients statistics. However, we must use a suÆcient number of frequency-bits in
order to obtain an enough accurate approximation of the actual frequencies of the symbols.13 This is especially
true for contexts where the probabilities of the two symbols are very di�erent (in our case the morphological
dilation context presents this feature). So we had to slightly modify the arithmetic coder13 in order to make
possible the use of a di�erent number of frequency-bits for di�erent contexts. To do this, it is suÆcient to insert
a frequency-bits �eld in the context record, and then use, in each context, the proper frequency-bits number.
We tested various combination of frequency-bits obtaining best results using 10 bits in 2D and 15 bits in 3D
for the additional morphological dilation context, and 6 bits for all the other contexts both in 2D and in 3D.

5. EXPERIMENTAL RESULTS

5.1. 2D Performance

In the case of 2D coding we tested the EMDC algorithm on the Lena, Barbara and Goldhill images. We used a
�ve-level wavelet decomposition with 9/7-tap �lters.14 We compared our coder with respect to the SPIHT2 and
EBCOT6 embedded codersy and the morphological coder SLCAA.8 As shown in Tab.1 the EMDC algorithm
obtains the best performance in almost all cases. In Fig.4 the RD performance of our algorithm compared to
SPIHT and EBCOT on the Goldhill image is shown. In Fig.5 some pictorial coding results are shown for the
Lena image at various bit-rates.

5.2. 3D Performance

For 3D applications we tested the EMDC algorithm on the 256x256x128 medical test volume CT SKULL and
compared the coding results with respect to others state-of-art coders.3{5 We used a 3D separable four-level
decomposition wavelet transform with di�erent combination of biorthogonal �lters which have been selected in
each spatial direction between the 9/7-tap and the 10/18-tap15 ones. Our results are sensibly superior to those
shown by other coders both in terms of mean PSNR on the whole volume, worst slice PSNR and in terms of
mean slice based PSNR 
uctuations16 among near slices. The results are summarized in Tab.2. With mean
PSNR 
uctuation we refer to the mean value of the maximum slice based PSNR di�erence calculated for a
sliding window of 10 slices. In Fig.6 the PSNR calculated on each slice along the z direction is shown for two
di�erent target rates: 0.1 and 0.5 bpp. In Fig.7 some pictorial coding results are shown for the worst slice
(nr.72) of the CT SKULL volumetric data-set, at various bit-rates.

6. CONCLUSIONS

In this paper a new embedded bit-plane coder, called Embedded Morphological Dilation Coder (EMDC), has
been proposed. This algorithm is based on a morphological dilation of signi�cant coeÆcients which exploits inter-
band and intra-band statistical dependencies among signi�cant coeÆcients and their tendency to form clusters.
Some features of the proposed morphological approach, which allow to improve the coding performance, can be
highlighted: the sorting pass bit-stream of each bit-plane has been structured in order to obtain a good rate-
distortion characteristic and an embedded bit-stream; moreover, the wavelet coeÆcients have been subdivided in
two regions with very di�erent signi�cant coeÆcients frequencies, in order to obtain a highly eÆcient context-
based arithmetic coding. The EMDC algorithm has been tested both for 2D and 3D applications showing
performance that are often sensibly superior with respect to the state-of-the-art embedded coders.

yWe consider here the almost-embedded version called "Generic" in the original paper.
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Table 1: PSNR results on 2D images, measured in dB.

Image Rate(b/p) SPIHT2 SLCCA8 EBCOT6 2D-EMDC

0.25 34.11 34.28 34.16 34.50
Lena 0.50 37.21 37.35 37.29 37.57

1.00 40.41 40.47 40.48 40.50
0.25 27.58 28.18 28.40 28.42

Barbara 0.50 31.39 31.89 32.29 32.16
1.00 36.41 36.69 37.11 37.35
0.25 30.56 30.60 30.59 30.75

Goldhill 0.50 33.13 33.26 33.25 33.45
1.00 36.55 36.66 36.59 36.97
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Figure 4: 2D coding results on the Goldhill image.

Figure 5. Coding results for Lena. (a) Original image. (b) Compressed image at 0.5 bpp. (c) Compressed image at
0.25 bpp.
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Table 2: Mean PSNR, worst slice PSNR and mean PSNR 
uctuation on the 128 slices volume CT SKULL.

Rate EZW3 3DSPIHT4 I3DSPIHT5 3D-EMDC 3D-EMDC
(b/p) (9/7+10/18) (10/18 taps)

' 32:5 33.99 34.07 35.38 35.38
0.1 29.8 29.2 30.98 32.31 32.62

' 2:5 ' 6:0 2.28 2.25 2.04
' 42 42.89 43.67 44.77 44.56

0.5 39.5 37.5 41.64 42.88 42.87
' 2:5 ' 4:0 2.39 2.09 1.99
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Figure 6. Coding results for CT SKULL with 10/18 �lters: slice based PSNR for 0.5 and 0.1 bpp along the z direction.

Figure 7. Coding results for the CT SKULL volume. (a) Original slice n.72. (b) Slice n.72 of the compressed volume
at 0.5 bpp. (c) Slice n.72 of the compressed volume at 0.1 bpp.
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