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ABSTRACT

This work proposes a method for blind equalization of

possibly non-minimum phase channels using particular

in�nite impulse response (IIR) �lters. In this context,

the transfer function of the equalizer is represented by

a linear combination of speci�c rational basis functions.

This approach estimates separately the coe�cients of

the linear expansion and the poles of the rational basis

functions by alternating iteratively between an adap-

tive (�xed pole) estimation of the coe�cients and a pole

placement method. The focus of the work is mainly

on the issue of good pole placement (initialization and

updating).

1 INTRODUCTION

Blind equalization deals with the problem of estimat-

ing the unknown input to an unknown possibly non-

minimum phase channel by the sole knowledge of the

noisy channel output. There are many blind equaliza-

tion approaches available for �nite length tapped delay

lines (TDL), e.g. [6]. However it should be noted that

the impulse response of an ideal equalizer can in gen-

eral be IIR. On the other hand, it has been shown that

increasing the length of a TDL equalizer does not nec-

essarily lead to better equalization performance, due to

problems of estimation accuracy [3]. Therefore, blind

equalization methods for IIR �lters have been recently

suggested [2, 8].

Our approach is based on a class of IIR �lters whose

transfer function is a linear combination of rational ba-

sis functions and as such is an IIR generalization of the

TDL equalizers. The aim is to adopt lower order �lters

with good equalization performance. Thus there are two

classes of parameters to be estimated: the weights of

the linear expansion and the poles of the rational basis

functions. The presented approach iterates between an

adaptive (�xed pole) estimation of the weights and a set

of pole placement methods. For the estimation of the

equalizer weights (with �xed pole values), the Super-

Exponential (SE) algorithm of Shalvi and Weinstein [6]

was reformulated [1]. Pole locations are initially esti-

mated by identifying the optimal moving average (MA)

channel model thanks to an exploitations of properties

of the SE method. A procedure for a progressive tuning

of the pole values is then formulated.

The paper is organized as follows. In Section 2, the

equalization problem is formulated. Section 3 presents

the generalization of the SE algorithm. Section 4 de-

scribes the pole estimation methods and the complete

equalization procedure. Finally, simulation results are

presented in Section 5.

2 PROBLEM FORMULATION

Consider the discrete time model represented in Fig-

ure 1. The input sequence a(k) is a zero mean and

independent identically distributed (i.i.d.) sequence of

non-Gaussian random variables. The channel fh(k)g is

stable and does not present zeros on the unit circle. The

output x(k) of the linear time invariant channel fh(k)g is
observed. We want to adjust the linear equalizer fe(k)g
so that its output y(k) be equal to a delayed version (up

to a constant phase shift) of the random signal a(k).

Note that the ideal equalizer is often an IIR system, as

it has to invert the zeros of the channel.
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Figure 1: Channel-equalizer cascade

In our approach, the equalizer fe(k)g is a causal stable
possibly IIR �lter (all poles lay within the unit circle)

having the following transfer function:

E(z) =

LX
k=0

eB(k)Bk(z) =

1X
k=0

e(k)z�k; (1)

where the terms Bk(z), k = 0; 1; :::; L, are rational sta-

ble linearly indipendent functions which can have poles

in di�erent locations of the unit circle. A particular

well known case is the TDL equalizer, whose poles are



all equal to zero and therefore Bk(z) = z
�k. Notice

that the equalizer coe�cients are represented here by

feB(k)g, while the coe�cients of its impulse response

are fe(k)g.
In our experiments we adopted the set of discrete-time

functions fbn(k)g k; n 2 N0 having a Z transform

Bn(z) =

p
1� jpnj2

1� pnz
�1

n�1Y
j=0

z
�1 � p

�

j

1� pjz
�1

(2)

where (�)� denotes conjugation, and jpnj < 1 ; 8n;.
Those are orthonormal on the unit circle and are called

Kautz functions [5].

3 GENERALIZED SUPER-EXPONENTIAL

METHOD

The solution the aforementioned equalization problem

implies the optimal estimation of the poles and the co-

e�cients of the basis expansion. As such, the problem

clearly presents multimodal error surfaces and it is dif-

�cult to �nd the global optimum. As we said, the pro-

posed procedure estimates separately the equalizer coef-

�cients (i.e. the weights of the basis functions) and the

poles (i.e. the parameters characterizing the shape of

the basis functions) by alternating iteratively between

an adaptive (�xed pole) estimation of the coe�cients

and a pole placement method. Therefore, once the pole

values have been �xed, the equalization problem be-

comes linear in the parameters, as it is in the case of

classical TDL equalizers, and therefore TDL algorithms

can be adopted with some modi�cations. We will show

that this approach prevents the risk of instability and

presents a good convergence behaviour (Section 5). To

the end of coe�cient adjustment, we derived a general-

ized version of the SE method [1], that we shortly de-

scribe in the following paragraphes.

We recall that, the Shalvi-Weinstein algorithm [6], ex-

pressed in the domain of fs(k)g coe�cients, consists in

the following two-step iterative procedure:

g(k) = s(k)p(s�(k))q ;

s(k) =
1

k g k
g(k); (3)

where k � k denotes the euclidean norm, g is the vector of

the g(k) and p, q are positive integers such that p+q > 2.

Let us introduce some notation adopted for our formu-

lation. The coe�cients of the overall channel-equalizer

cascade system impulse response fs(k)g are given, in

matrix notation, by

s = He; (4)

where H is the channel convolutional matrix with

H(ij) = h(i � j) and e is the vector of the equalizer

impulse response coe�cients. Then, we have to express

the relation between equalizer coe�cients feB(k)g and

equalizer impulse response coe�cients fe(k)g. Given a

set of poles fpig, let us indicate the in�nite dimensional

vector of the impulse response for the generalized basis

of order j:

bj :=
�
bj(0) bj(1) � � �

�T
; (5)

with (�)T transpose operator. Hence the equalizer im-

pulse response may be expressed as

e = BeB; (6)

where B is the 1� (L + 1) matrix

B :=
�
b0 b1 � � � bL

�
: (7)

In [1], we showed that the algorithm in (3)) can be

approximated in the domain of the coe�cients feB(k)g
as follows:

e0B =
�
(HB)

+
HB

�
�1

(HB)
+
g;

eB =
e0Bq

e0+B (HB)
+
HBe

0

B

; (8)

where (�)+ is the transpose conjugate operator.

We demonstrated in [1], that the algorithm, reformu-

lated in terms of the equalizer input and output cumu-

lants and for p = 2 and q = 1, turns out to be:

e0B =
�
RBx

�
�1

c
yBx
3;1 ; eB =

�aq
e0+B R

Bxe0B

e0B ; (9)

where �a is the standard deviation of the input signal

a(k), RBx(nm) is the (L+1)�(L+1) matrix whose elements

are

C
Bx
2 (m;n) := R

Bx
(nm)

= cum(xn(k);x
�

m(k)) (10)

and c
yBx
3;1 is the L + 1 vector whose elements are

C
yBx
3

(n) := c
yBx

3;1(n)
= cum(y(k) : 2; y�(k);x�n(k)) : (11)

We haveindicated the intermediate basis outputs as

xn(k), i.e.,

xn(k) := x(k) � bn(k) =
X
l

bn(l)x(k � l) (12)

with bn(k) generic basis sequence of order n. For nota-

tional convenience,

cum(x(k) : p; � � � ) := cum(x(k); � � � ;x(k)| {z }
p times

; � � � ):

Note that if the terms x(k � n) substitute the terms

xn(k), the GSE algorithm turns out to be the SE algo-

rithm.

As in the SE case, this fact implies the conver-

gence close to the optimal minimum mean square error

(MMSE) solution for the Generalized Super-Exponen-

tial (GSE) method, once the poles have been �xed.



4 POLE SELECTION PROCEDURES

The GSE algorithmmust be adopted jointly with a suit-

able pole estimation method. Since an equalizer trans-

fer function is an approximation in the MMSE sense

and with a certain delay of the channel inverse system,

the poles could be initially placed in correspondence of

the biggest channel zeros within the unit circle. (the

proposed equalizer is a causal and stable �lter). The

pole values may be then initialized, with an identi�ca-

tion of the MA channel model. Such a MA identi�ca-

tion can be achieved at low additional computational

cost by exploiting some SE method properties, once the

convergence has been reached [1]. Thus our equaliza-

tion procedure consists in preliminary SE iterations for

initializing pole values (i.e. GSE iterations with null

poles), then followed by GSE iterations.

However from experimental evidences, it has been

noted that the poles should be progressively updated

in order to improve equalization performance. For such

purpose, we propose a method based on a MA to AR

conversion of the equalizer truncated impulse response.

4.1 Pole initialization

At convergence of the algorithm formulated in (3), g �

�(kd), the SE solution approximates the optimal MMSE

solution, that is

eSE � eMMSE = (Rx)
�1
cax
2
; (13)

where Rx is the covariance matrix of the received se-

quence x(k) and cax
2

is the (L+1) dimensional crosscor-

relation vector between channel input and output. It is

easy to show that

cax2 = �
2

a

�
h
�(kd) h

�(kd � 1) � � � h
�(kd � L);

�T
(14)

where h(k) are the channel impulse response coe�cients.

Therefore the channel and thus its zeros can be esti-

mated from the cross-cumulant vector c
yBx
3;1 at conver-

gence of the GSE method with null poles (i.e. the SE

algorithm), because (13) implies that

c
yBx
3;1 � K � cax

2
; (15)

where K is a constant depending on channel input cu-

mulants. After some SE iterations (i.e. GSE with zero

value poles), the pole values will be initialized as the

zeros of the polynomial associated with the elements of

c
yx
3;1 placed in reverse order. Note that (15) is no more

valid for the GSE algorithm with non zero poles. Hence

this procedure cannot be adopted for pole updating.

4.2 Pole tuning

The basic idea behind this approach is that poles rep-

resent the "time constants" of the equalizer impulse re-

sponse. Hence more appropriate pole values may be

calculation

Equalizer
impulse response

B

i

conversion
FIR to IIREqualization

algorithm
{data}
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{p }

Figure 2: Method for pole tuning

estimated by studying the truncated equalizer impulse

response and identifying its "time constants". This pro-

cess can be seen like a MA to auto-regressive (AR)

model conversion (Figure 2).

In [9], a MA to AR conversion algorithm, suitable

for the aforementioned purposes, is described. It is de-

rived from the Steiglitz-McBride algorithm for system

identi�cation [7]. Given a MA system f , this procedure

minimizes the cost function

J =k f � f̂
p1;p2;��� ;pn

k2

where f̂
p1;p2;��� ;pn

is an AR approximating system.

Complete equalization procedure

The proposed algorithms can be adopted as follows.

First, some iterations of the SE method are performed

in order to estimate the initial values for the equalizer

poles. Then, having �xed a set of poles, channel equal-

ization is performed by means of the GSE method.

For improving the equalization performance by ad-

justing pole values, the procedure described in Section

4.2 can be adopted. This new pole assignment must

be alternated with the blind GSE coe�cient estimation

approach till a convergence criterion is reached.

5 SIMULATIONS

In the �rst experiment, it is shown how the pole updat-

ing algorithm (Figure 3) can improve the performance

after the pole initialization (Figure 4). 100 sequences of

600 samples of a 2PAM signal and a 13 coe�cient equal-

izer with 3 poles have been simulated. The 'o's represent

the true channel zeros. The channel output was cor-

rupted by additive white Gaussian noise (SNR=15dB).

In the second experiment, a sequence of 1200 samples

of a 16-QAM random sequence was transmitted through

a radio channel whose magnitude and phase are repre-

sented Figure 5. The equalizer has 15 coe�cients and

4 poles di�erent from zero. In Figure 6, the resulting

MSE in terms of SNR (continuous line), averaged over

100 Monte Carlo trials, is compared with the one of a

15 tap TDL equalizer (dotted line).
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Figure 3: Results of the pole initialization procedure
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Figure 4: Results of the pole updating procedure

From Figure 6, it can be noted that our method al-

lows an improvement of equalization performance with-

out increasing the number of equalizer taps. This fact

is important since it has been shown that a longer TDL

equalizer cannot necessarily outperform a shorter one

[3, 6].

6 CONCLUSION

This work proposes a blind equalization method based

on IIR generalization of the TDL equalizers. The pro-

posed approach adopts a HOS based coe�cients ad-

justment procedure, derived from the Shalvi-Weinstein

method. The above method is combined with a recur-

sive two step algorithm for pole estimation. Simula-

tion results have shown the performance of the whole

equalization approach, evidentiating improvement with

respect to FIR blind equalizers.
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