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ABSTRACT

In this paper, a method is presented for estimating the parameters of a composite
object consisting of several “primitive” objects that undergo rigid transformations.
The objects are fitted to the features that are extracted from the data images. In
order to simplify the problem, we restrict the analysis to the fitting of simple ellipses
from two-dimensional contour data. The physical relations between the sub-objects are
exploited as constraints on the solution space of the resulting optimization problem.
An important feature of the method is that no attempt is made to establish closed-form
relations. Instead, bounds on the parameters and on the constraints allow adapting
the optimization to the uncertainty in the data and to the knowledge available a prior.
The power of the method is that it can accommodate different primitive curves and
constraints with the same general structure. The (admittedly, important) problem
of segmenting the contour data set into disjunct sets is not treated in this paper.
Application of the method is in the field of human motion estimation where each of
part of the body is modelled by a separate geometric object. The method is illustrated
with results on both artificially generated and real feature data.

1 Introduction

The work presented in this paper is performed in the context of a project on the
analysis of human movement from image sequences. The body is modelled as a set of
Jointed objects that are considered representative for the overall shape and the task is to
estimate the parameters of these objects from features detected in the image sequence.
The objective of this paper is to report on the way we solved the problem of representing
and estimating the rclations between these objects from foature data.



One of the earliest approaches of applying image processing to the estimation of
human body motion is due to O’Rourke and Badler!. More recently physically based
systems were introduced in the image processing world and applied to problems compa-
rable to those stated above?™. A large variety of parametric object models have been
introduced over the last decades, ranging from simple rigid blocks to globally rigid gen-
eralized cylinders® or quadrics with global and local deformations® 8. Comparatively
little attention has been paid to the problem of representing and estimating composite
objects, i.e., objects consisting of two or more connected simple model objects. Due to
the physical nature of the composite object, the parameters of the constituting primitive
objects are not completely free, they are limited by certain relations.

The method presented in this paper differs from the above-cited literature in that no
attempt is made to devise closed-form solutions. Instead, lower and upper bounds on the
model parameters and on their constraining relations allow a smooth integration of the a
priori knowledge that we have and the amount of uncertainty that has to be resolved. This
enables a flexible structure where more complex models are formed from simple objects
by simply adding the appropriate parameters and constraining relations, instead of having
to solve a completely new problem.

The paper is organized as follows. After an initial section on the curve representa-
tion, the method is applied to the estimation of a single curve in Section 3. In Section 4
the method is applied to two articulated curves with known segmentation. Simulation
results on artificially generated data illustrate the efficiency of the method. Results on
real data relevant to the application are presented and discussed in 2 dedicated section,
Section 5. Conclusions are drawn at the end of the paper. Current and future trends and
developments are indicated as well.

2 Curve Representation

There are two main ways of representing curves and surfaces. Curves can be de-
scribed either by an implicit relation between poiats z on the curve and shape parameter
vector p such as f(z,p) = 0 or by an explicit relation between points z on the curve, shape
parameter vector p, and driving parameter vector w, such as z = g(p,w). It is always pos-
sible, by reduction and elimination, to transform an explicit relation into an implicit one
and vice-versa. Here, as we are performing an analysis rather than a synthesis, we prefer
the implicit representation. The driving parameter allows an easy rendering for syathesis
purposes, but in case of analysis a correspondence of the data with the driving parameter
has to be established. This extra load favors the implicit representation, where the driving
parameter is eliminated. The disadvantage of the implicit representation is the reduced
sense of spatial distance. This will be discussed later.

For reasons of simplifying the analysis and without significant loss of geaerality, in
the following the circle is considered as the basic implicit closed curve in two-dimensional s-
pace. This curve undergoes rigid transformations that will be called RST-transformations.
The parameter vector p contains the position, the orientation, and the sizes along the prin-
cipal axes of the curve. Points z on this ellipse are the RST-transformed points y on the
primitive circle:

yri (1)
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with y7y — 1 = 0 (the relation for the implicit circle), and where the rotation matrix R
and the scaling matrix S are defined as
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The origin is displaced by a vector t = (to,2;)7. The total implicit relation that is used
here is obtained by eliminating y from Eq. (1) using the relation for the implicit circle.

3 Single Curve Estimation

With the representation of the curve sufficiently simplified, attention is now turned
to the estimation of the position, size, and orientation parameters of such a curve. In
the following, four observations will be made: the necessity of estimating the parameters
simultaneously, the importance of the choice of the error measure and of the optimization
criterion, and the relevance of bounds on the parameters and the constraints.

The first observation is that it will be necessary to estimate all of the parameters
simultaneously. Instead, in the classical approach to estimating ellipsoidal or in general
superquadric shapes, first the center is derived from the centroid of the observations,
then the main orientation from an eigenvector decomposition of the inertia matrix, and
finally the size from some optimization procedure®. The disadvantage of this method
is that errors in any stage of the process are propagated to the next, i.e., the result is
biased. Furthermore, as it will be necessary to be able to put constraints on the admissible
parameter values, we cannot allow to fix one or more of the parameters completely and
then derive the others.

A second observation is the importance of the distance or error measure in the
optimization procedure. Recent publications®™® have addressed this issue, comparing the
so-called In/Out error with radial and orthogonal distance measures. The In/Out error
is the residual obtained by substituting observation z = z; for a given parameter vector
p in the implicit relation f(z,p). This does not constitute a Euclidean distance, but is
fairly straightforward to calculate, and therefore attractive for a computationally rather
intensive method as the one presented here.

A third observation considers the optimization criterion. Given a set of observations
z;,i =1...N, the functional

N
J(p) = > e(ll=ll) (3)
=1
is minimized, where z; is the in/Out error

z = f(zip) (4)

given parameter vector p. A quadratic measure is chosen for p(.) , p(y) = y*, in which
case we obtain a least squares estimate.

A final observation is that it is often necessary to impose bounds on the admissible
parameter values to avoid convergence to a physically non-plausible, but mathematically
correct, minimum. This is due to the fact that the error measure does not put a penalty



Figure 1: Composite curve configuration.

on the curve being incomplete. Simple bounds would be to impose that the center is
somewhere within the swarm of points z;, and that the size parameters range from a
minimum to a maximum value. This is equivalent to putting a bounding box or convex
hull around the data.

At this point, the curve fitting method consists in minimizing the criterion in Eq. (3),
subject to bounds on the parameter vector p, given a set of observations z;, and where
the errors-of-fit z; are nonlinear functions of observations and parameters.

4 Composite Curve Estimation

Now consider the case of fitting two curves to the data with additional constraints
describing the relations between the parameter vectors of the curves. These additional
constraints are often imposed because of physical limitations to the problem. The problem
of how to obtain two distinct point sets related to the curves, the segmentation problem, is
treated in another paper®, here the segmentation is supposed to be known. The constraints
imposed depend on the configuration of the composite model object. Given our intended
application, the additional constraint imposed lere is that the endpoints touch. Referring
to Figure 1 (freely redrawn from Hemami and Chen'?), this would mean that the following



nonlinear constraints on the admissible solutions:
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are bounded to be close to zero. These constraints imply that the implicit curves meet in
point A.
The method now consists in minimizing the functional
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Je) = 3> etz (6)
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for the composite parameter vector p defined as

p = (.5 (™)
subject to lower and upper bounds P;; P, on the parameters
p,< p <p, (8)

and subject to (bounds C; and C, on the) nonlinear constraints C(p) on the parameters
&< C(p) £C, (9)

The vectors p,,i = 1,2 are defined as p, = (T, 67, sTNT and P, = (T g1t sTIhT B
definition, unspemﬁed bounds are at minus (lower bound) or plus (upper bound) mﬁmty

At this time it is useful to elaborate the role of bounds and constraints. Bounds
are defined here as lower or upper limits on the admissible values of the parameters or
the constraints. The constraints (or more correctly, constraint equations) express linear
or nonlinear relations between parameters. The constraint equations are derived from
physical relations and describe the spatial structure of the composite object. The bounds
are determined either by physical constraints (e.g., sizes are positive) or by uncertainty
considerations (e.g., given a previous estimate an uncertainty interval of +25% with respect
to this previous estimate seems reasonable.) In practice both sources of bounds are used.
If, as an example, the sizes of the two curves along the vertical object axes are supposed
to be equal (physical constraint), the corrcspondmg constraint equation would be ¢(p) =
517 = s;77. Now the lower and upper bounds on this constraint determine how much
this constraint has to be enforced. For example, if we want these sizes to be at most
0.5 measurement unit apart, the lower and upper bounds of the corresponding constraint
equation would be set at —0.5 and 0.5, respectively. If there is little a priori knowledge
on the values of the parameters or the quality of the data, these bounds can (and must)
be taken quite wide.

This representation of bounded constraint equations adds the necessary flexibility
that the closed-form solutions lack. Morecover, adding or deleting constraints is very simple.

The nonlinearly constrained optimization problem stated above is not a trivial one.
The algorithm applied in this paper is described in detail in the excellent documentation
provided with the NAG software library!!. In resume, a sequential quadratic programming

(=]
(SQP) algorithm is applied to the problem, with search directions derived from a quadratic
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Figure 2: Point sets and constrained fitting results.

programming algorithm. Bounds on parameters and constraints are treated separately.
The SQP algorithm leads to an iterative sequence p(‘) with an update a“"’ll”p(*“")
where a(F+11%) is the steplength and p(¥+1¥) js the search direction. This sequence tends,

under certaia conditions, to a solution p~ of the problem, given by the “first-order Kuhn-
Tucker point.”

5 Results

In this section, the method is illustrated with some results obtained with artificial-
ly generated contour points and with contour points obtained from sampling contours
extracted from a real image.

First, in Figure 2, results on artificially generated feature points are shown. In
the leftmost plot of this figure, two distinct point sets are plotted, indicated with the
+-signs. The location error (jitter) is higher for the points belonging to the lower curve
than for those belonging to the upper one. Note that the curves are quite far apart, in
order to better see the effect of the nonlinear constraint. The initial estimates for the
two curves are drawn with dotted lines and the stars indicate the final result obtained.
The nonlinear “touching” constraint was set to quite tight (£0.5). This bound means
that the two endpoints of the two curves are allowed to be at a distance of half a unit
distance (pixel), or about 1 percent. Bounds on the size parameters were set at +50%
of the initial values. In real situations these bounds should of course be derived from an
analysis of the data, which is still a research issue. Here, we only wish to illustrate the
feasibility of the method. In the rightmost plot of the same figure, a three-body structure
is estimated from three distinct point sets. For each of the three two-body relations, two
relations such as in Eq. (5) are added to the total constraiat vector C(p). The final result
is again indicated with the stars. It can be concluded from the results shown in Figure 2
that, despite the large gap and the considerable noise, the constrained fitting yields quite
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Figure 3: Simultaneous constrained segmentation and fitting of point sets.

satisfactory results, although difficult to evaluate and analyze.

Second, in Figure 3, the results obtained from fitting the constrained three-body
model to real contour points are shown. These points were randomly sampled along the
contours extracted from an image of 2 person walking. The contours points are plotted
with the +-signs, the initial estimates with the dotted curves. The final results is plotted
with the o-signs. The result is obtained here using the simultaneous segmentation and
estimation algorithm described in a companion paper?. The nonlinear constraints have
been perfectly satisfied.

6 Conclusions

We have presented 2 new method for estimating the parameters of composite curves.
The curves are represented by implicit relations and the physical limitations between the
objects that constitute the global structure are expressed as nonlinear constraints on the
solution space of the resulting optimization problem.

The most important feature of the algorithmn is that no attempt is made to establish
closed-form solutions to the problem. Instead, lower and upper bounds on the constraints
and on the parameters allow to loosen the constraints if the uncertainty in the data
necessitates so. This also partly overcomes modelling errors very much in the way noise
is added to a Kalman filter in order to give it more stability.

We are currently working on a hierarchical way of propagating from a simple curve
representation to a composite one, the parameter values, the membership coefficients, and

|



the bounds on the linear and nonlirear constraints and on the parameters. This reduces
the problem of being trapped in one of the numerous local minima of the error functional
and also the computational complexity of the method.

Other issues of interest include: a more rigorous way of relating uncertainty in the

data to the values of the bounds on the parameters and the constraints (a “constrained
covariance”), the extension to sequences, and finally using a more robust error functional
would be desirable. With this powerful tool, many disturbing outliers could be effectively
removed.
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