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Branze 38, 25123 Brescia, Italy
5jsoto@io.cfmac.csic.es
6fabio.baronio@unibs.it
∗cshua@seu.edu.cn

Abstract: We investigate the resonant interaction of two optical pulses
of the same group velocity with a pump pulse of different velocity in a
weakly dispersive quadratic medium and report on the complementary
rogue wave dynamics which are unique to such a parametric three-wave
mixing. Analytic rogue wave solutions up to the second order are explicitly
presented and their robustness is confirmed by numerical simulations, in
spite of the onset of modulation instability activated by quantum noise.
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1. Introduction

Recently there has been a surge of significant research activities on rare optical events [1–6]
that are the optical equivalent of oceanic rogue waves, the latter being elusive and intrinsi-
cally hard to monitor due to the risky observational conditions [7, 8]. Optical rogue waves are
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now known to possess the hallmark characteristics of oceanic rogue waves (e.g., seemingly
unpredictable with fantastic amplitude, transient and temporally steep, and following a skewed
L-shaped statistics), but provide a more convenient pathway through which a deep understand-
ing of those otherwise mysterious freaks of the sea is possible, thanks to the rapid progress in
material engineering and the availability of sampling and diagnostic technology for ultrafast
optics [9,10]. Like their hydrodynamic counterparts [11,12], optical rogue waves have become
the fascinating arena for studying and unveiling the origin of different extreme wave dynamics
that can be shared by diverse physical branches, e.g., oceanography, plasma physics, nonlinear
optics, and Bose-Einstein condensation [9, 10].

Three-wave mixing is among the most important fundamental processes in nonlinear op-
tics that occurs in any weakly dispersive medium whose lowest-order nonlinearity is quadratic
in terms of the wave amplitudes [13]. It usually describes parametric processes such as
second-harmonic generation, parametric amplification or oscillation, and frequency conver-
sion [14–16], whereas when extended to nonparametric scenarios, it can apply as well to the
transient stimulated Raman scattering [17], stimulated Brillouin scattering [18], and even the
laser-plasma interaction [19]. As early as 1970s, integrability of the governing equation, also
known as three-wave resonant interaction (TWRI) equation, was established and soliton so-
lutions were identified [13]. These TWRI solitons are coherent localized structures that result
from a dynamic balance between the energy exchange due to the nonlinear interaction and the
convection due to the group-velocity mismatch. They are able to propagate with a common
velocity, despite the fact that the three waves travel with different group velocities before they
are mutually trapped [20, 21]. This property makes such solitons very alluring for potential
applications, since the walk-off caused by group-velocity mismatch, which usually limits the
frequency conversion efficiency, can be circumvented by nonlinear coupling.

More interestingly, in addition to the velocity-locked solitons, the TWRI equation also admits
families of spatiotemporally localized structures on a finite background—rogue waves [22,23].
These exotic rogue wave structures can model the sudden appearance of amplitude peaks in
a basic multicomponent nonlinear wave system, whose dynamics is beyond the reach of the
scalar nonlinear Schrödinger (NLS) equation framework. Also, the intriguing dynamics of
watch-hand-like super-rogue waves were demonstrated to occur in a parametric three-wave
mixing process [24]. These super-rogue waves exhibit a relative robustness against white noise
perturbations together with a non-overlapping distribution property, hence facilitating the forth-
coming experimental observation and diagnostics. Most recently, the rogue wave dynamics in
coherent stimulated scattering were also revealed [25], exhibiting markedly different dark-dark-
bright patterns as well as a finite existence regime that coincides with the regime given by the
baseband modulation instability (MI) theory [26, 27].

In this article, we investigate the nontrivial limiting case of a general three-wave mixing
process that was not penetratingly explored before and report on the novel complementary
rogue wave dynamics unique to this special parametric process. To put it differently, we find
that the two rogue wave components having the same group velocity will be spatiotemporally
balanced in intensity distribution, independently of what complex patterns the rogue waves
will exhibit and whether or not their background heights are equal. This is distinctly different
from the typical rogue wave dynamics occurring in two- or three-wave resonant media [28,
29] or in the two- or three-component Manakov systems [30–32]. We provide general exact
analytic solutions for these complementary rogue waves as well as numerical evidences for
their robustness in spite of the onset of MI activated by quantum noise.
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2. Fundamental and the second-order rogue wave solutions

The TWRI equation that governs the resonant interaction of two optical pulses of the same
group velocity (V2 =V1 =V ) with a pump pulse of slower/higher velocity V3, perfectly phase-
matched in a weakly dispersive quadratic medium, can be written as [13, 20, 22]

u1t +Vu1x = u∗2u∗3, u2t +Vu2x =−u∗1u∗3, u3t +V3u3x = u∗1u∗2, (1)

where un(x, t) (n= 1,2,3) are slowly varying complex envelopes of the three optical fields, with
t and x being the time and space variables, respectively. In what follows, we assume V3 = 0,
which implies writing Eqs. (1) in a reference frame comoving with the field u3. The subscripts
stand for the partial derivatives and the asterisk denotes the complex conjugation. We emphasize
that the above choice of signs before quadratic terms is indicative of the nonexplosive character
of the interaction which can admit localized solutions [13].

Considering the resonant conditions for the frequencies and momenta, Eqs. (1) allow the
following coupled plane-wave solutions

u10(x, t) = a1 exp [−i(k1x−ω1t)] ,

u20(x, t) = a2 exp [i(k2x−ω2t)] , (2)
u30(x, t) = ia3 exp [i(k1− k2)x− i(ω1−ω2)t] ,

where

a3 =
a1a2

δ
, k1 =

ω1

V
+

a2
2

δV
, k2 =

ω2

V
+

a2
1

δV
, (3)

with an being the respective background heights. For the sake of convenience, we use A = a2
1 +

a2
2, B = a2

1−a2
2, κ = ω1 +ω2, and δ = ω1−ω2. In this paper, we always assume ω1 > ω2, i.e.,

δ > 0, without loss of generality. As indicated in [25], such background fields are intrinsically
unstable and can evolve into the rogue wave or breather structures.

We noted that Eqs. (1) correspond to the limiting or degenerate case of those shown in [25],
so are their rogue wave solutions. Hence, based on those known nondegenerate solutions, we
take the limit V2→V1 =V and obtain the exact fundamental rogue wave solutions

u[1]1 = u10

{
1+

2iδV [δ 2Vt− (δ 2 +A)x]−δ 2AV 2/a2
1

[δ 2Vt− (δ 2 +B)x]2 +4δ 2a2
3x2 +A2V 2/(4a2

3)

}
,

u[1]2 = u20

{
1+

2iδV [δ 2Vt− (δ 2−A)x]−δ 2AV 2/a2
2

[δ 2Vt− (δ 2 +B)x]2 +4δ 2a2
3x2 +A2V 2/(4a2

3)

}
, (4)

u[1]3 = u30

{
1−

4iδ 3V (Vt− x)+A2V 2/a2
3

[δ 2Vt− (δ 2 +B)x]2 +4δ 2a2
3x2 +A2V 2/(4a2

3)

}
.

Noteworthily, the above fundamental rogue wave solutions generalize the solutions (32) in
[25], by lifting any constraints on the background heights a1 and a2. Further, the second-order
rogue wave solutions of Eqs. (1) can be found in the same way, but need more complicated
manipulations. These second-order solutions are given explicitly below:

u[2]1 = u10

{
1− 4ia2R∗1[M4(|R2|2M∗2 −M1)+R0(|R1|2M2 + |R2|2M∗2)]

δ (M2
1 + |R1R2M2|2)

}
,

u[2]2 = u20

{
1−

4ia1R2[M∗3(|R1|2M2 +M1)+R∗0(|R1|2M2 + |R2|2M∗2)]
δ (M2

1 + |R1R2M2|2)

}
, (5)

u[2]3 = u30

{
1− 4iR1R∗2[|R1|2(2+M∗2)+ |R2|2(2−M2)]

M2
1 + |R1R2M2|2

}
,
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where

R0 = γ1 + γ2ξ , R j =
a j

α j
(γ1 + γ2θ j), (here and below j = 1, 2), (6)

S0 =−iγ1ξ ϕ + γ2[qξ −4ia3x/(δV )]+ γ3− iγ4ξ , (7)

S j =
α jS0 + iγ1φ 2[θ j−A/(2δ 2a3)]+ γ2(φ

2ϑ j− iq)− γ4

α j(γ1 + γ2θ j)
, (8)

ξ = t−
[

1
V

(
1+

B
δ 2

)
+

2ia3

δV

]
x, (9)

α j =
δ

2A
[B−2iδa3− (−1) jA], θ j = ξ − i

α j
, (10)

ϑ j =
[θ j−3A/(2δ 2a3)](2+ iα jξ )α j− i

3α2
j

, (11)

φ =
2δ 2a3

A2

√
A2−2B2 +4iδBa3, ϕ =

iφ 2A
2δ 2a3

+
2ia3(δ

2−A)
3A

, (12)

q =−iξ ϕ +
φ 2

3
ξ

2− A2φ 2

4δ 4a2
3
− 1

2
, (13)

M1 = |R1|2 + |R2|2 > 0, M2 = S2−S1, (14)
M3 = S1R0−S0−2R0, M4 = S2R0−S0−2R0. (15)

Here γs (s = 1,2,3,4) are four arbitrary complex constants, which are responsible for all rogue
wave structures of second hierarchy, for instance, the composite rogue waves, the rogue wave
triplets [33,34], and their dark cousins. We need to point out that to form the second-order rogue
wave hierarchy, γ2 should not be vanishing, otherwise the solutions (5), after an appropriate
translation along the t and x axes, can be reduced to the fundamental solutions (4). An inspection
of Eqs. (4) and (5) reveals that the rogue wave structures do not depend on the frequency sum
κ , which only appears in the propagation factor. For this reason, we always assume κ = 0 in
our numerical examples given below, unless otherwise mentioned.

3. Novel complementary dynamics and discussions

Let us take a more exhaustive look into the structure of the most simple Peregrine rogue waves
defined by Eqs. (4). It is shown that, while the rogue wave component u3 possesses a peak
amplitude fixedly three times its background height (significant wave height), the first two
components u1 and u2 involve a peak amplitude varying with the relative magnitude of a1 and
a2, given by a1|1−4a2

2/A| and a2|1−4a2
1/A|, respectively. As examples, if a2 = a1, these two

rogue waves will have the same height at the origin as in the far periphery, and thus feature an
intermediate rogue wave structure, for which one can refer to Fig. 4 in [25] for details. However,
if a2 =

√
3a1, while the field u1 takes the bright structure peaking twice as high as the average

background, the field u2 will be a black rogue wave component whose intensity can fall to zero
in the dip center. Of course, if a1 =

√
3a2, the opposite will be true. No matter what situation it

is in, the third field u3 always displays a usual Peregrine soliton structure.
The above conclusions can apply as well to the situation of higher-order rogue waves, by

which one can determine whether they are bright or not. Nonetheless, there could be more to
it. Considering the second-order rogue wave solutions (5), it is obvious that their dynamics are
more complicated than what Peregrine solitons could exhibit, as they depend not only on the
starting plane-wave parameters, but also on four structural parameters γs. To be specific, the
parameter γ2, if nonvanishing, gives rise to a rogue wave skeleton of second order, on which
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the spatiotemporal distribution of patterns could be influenced remarkably by the other three
structural parameters. For instance, an increase of the value of any of these three parameters at
given γ2 will enable the second-order rogue wave to evolve into a triplet pattern which consists
of three fundamental rogue waves [25, 31, 33].

Fig. 1. Fundamental optical rogue waves formed at a1 = 1, a2 = a3 =
√

3, δ = 1, and V = 4.
(A)–(C) surface plots; (a)–(c) the corresponding contour distributions.

Fig. 2. Rogue wave triplets formed under the same initial plane-wave parameters as in
Fig. 1, but with extra structural parameters given by γ1 = 7, γ2 = 1, and γ3 = γ4 = 0. (A)–
(C) surface plots; (a)–(c) the corresponding contour distributions.

More interestingly, it is revealed that the sum of the intensities of the components u1 and u2
will always be conserved and can be given by

|u1|2 + |u2|2 = a2
1 +a2

2 = A, (16)
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independently of what parameters γs we choose for deterministic rogue wave structures and
whether or not their background heights are equal. As a matter of fact, the relation (16) is a
natural consequence of Eqs. (1) which suggest that ( ∂

∂ t +V ∂

∂x )(|u1|2 + |u2|2) = 0. Therefore, if
the field u1 takes a bright Peregrine [3] or a bright triplet [33] structure, the field u2 will take
the corresponding dark counterpart so that Eq. (16) can be fulfilled. In other words, they are
spatiotemporally complementary, hence the name complementary rogue waves.

Figures 1 and 2 illustrate the complementary dynamics of typical Peregrine-like rogue waves
[see 1(A)–1(C)] and of the rogue wave triplets [see 2(A)–2(C)], respectively, by choosing the
same initial plane-wave parameters for both situations and an extra set of structural parameters
for the latter situation, all of which have been specified in the captions. It is clear that the three
fields un would take the bright, black, and bright structures, respectively, but the first two are
always spatiotemporally balanced according to Eq. (16), independently of whether the three
rogue wave components are Peregrine-like (see Fig. 1) or are of triplet pattern (see Fig. 2).

Fig. 3. Second-order optical rogue waves formed at a1 = a2 = a3 = 1, and δ = 1, for given
structural parameters γ1 =−0.5, γ2 = 1, and γ3 = γ4 = 0. (a)–(c) V = 2; (d)–(f) V = 4. (a),
(b), (d), and (e) show a butterfly-type pattern, while (c) and (f) show a bright structure.

A further study suggests that the role of the parameter V played in the complementary dy-
namics is simple and is just to expand (contract) the spatiotemporal pattern along the x axis as
V increases (decreases). This is not surprising because the parameter V in Eqs. (1) takes the
part of a “width” in the x direction and indeed can be removed by a change of variables. For
illustration, we show in Fig. 3 the evolution dynamics of the second-order rogue waves with
the same background height (see captions for specific parameter values). It is easily seen that
the former two butterfly-type patterns are markedly expanded along the x axis if the value of
V increases from 2 [see 3(a) and 3(b)] to 4 [see 3(d) and 3(e)], while keeping spatiotemporally
complementary all through the evolution. So is the case with the third rogue wave component
u3 which, however, is always bright, as seen in Figs. 3(c) and 3(f).

4. MI and numerical simulations

It is easily concluded from Eqs. (4) and (5) that the complementary rogue waves can exist in
the whole parametric space. As a matter of fact, one can verify this using the recently-proposed
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baseband MI theory for rogue waves [26, 27], which equates the existence regime of rogue
waves with that of nonzero MI gain at arbitrarily low modulation frequency. This can be done
by calculating the MI of the background fields that support the formation of rogue waves [35].
To this end, we add small-amplitude Fourier modes to the plane-wave solutions (2), and express
them as un = un0{1+ pn exp[−iΩ(µt− x)]+ q∗n exp[iΩ(µ∗t− x)]} (n = 1,2,3), where pn and
qn are small amplitudes of the Fourier modes, and the parameters Ω and µ are assumed to be
positive and complex, respectively [24, 25, 27]. A substitution of these perturbed plane-wave
solutions into Eqs. (1) followed by linearization yields the dispersion relation

Ω
2
µ

2− 4µa2
1

µ−V
−
[

µA
δ (µ−V )

−δ

]2

= 0. (17)

Obviously, in the limit of Ω= 0 (i.e., at an arbitrarily low modulation frequency in the baseband
MI [26, 27]), Eq. (17) always permits a pair of complex conjugate roots in the whole regime of
δ (of course excluding δ = 0), confirming our analytic predictions mentioned above.

Fig. 4. Map of the MI gain versus Ω and δ for a1 = 1 and a2 =
√

3: (a) V = 2; (b) V = 4.
(c) illustrates profiles of the growth rate γ versus Ω in (b) for several given values of δ . The
same green cross in (b) and (c) indicates the maximum of the growth rate for given δ = 1,
which occurs at a modulation frequency of about 1.23.

Quartic equation (17) can indeed be exactly solved at an analytic level and hence the growth
rate of the MI, defined by γ = Ω|Im(µ)|, can be readily calculated. Figure 4 shows the MI
gain map in the plane (Ω, δ ) for specific parameters a1 = 1 and a2 =

√
3. It is clear that the

baseband MI could extend over the whole range of δ , since the passband MI that occurs in
coherent stimulated backscattering (refer to Fig. 8 in Ref. [25]) is absent now, as revealed by
Eq. (17). Moreover, as V increases from 2 [see panel (a)] to 4 [see panel (b)], the MI map
contracts significantly, but with the maximum value of gain still unchanged. The latter may
suggest that the MI-induced periodic waves possess fewer wave crests or troughs at V = 4 than
at V = 2. In particular, for given initial parameters as in Fig. 1, the maximum of the growth rate
γ will occur at the modulation frequency Ω' 1.23 [see the green cross in panel (c)].

Further, we performed extensive numerical simulations to study the evolution dynamics of
complementary rogue waves, based on the standard split-step Fourier method [24,25,29]. Prac-
tically, of most concern to general soliton community is the stability of these rogue waves with
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Fig. 5. Simulation results intended for the fundamental rogue waves using the same initial
plane-wave parameters as in Fig. 1. Left column: unperturbed; Right column: perturbed by
a white noise of the intensity ε = 10−8.

respect to background broadband noise sources (e.g., quantum noise) [36, 37]. In fact, recent
work showed that the Fermi-Pasta-Ulam recurrence of Akhmediev breather solutions of the
scalar NLS equation may eventually break down in the presence of competing spontaneous
noise-activated MI [36]. For this purpose, we perturbed the initial deterministic rogue wave
profiles by small amounts of white noise, and inspected whether the rogue wave generation is
still observed in the presence of the MI activated by such quantum noise.

As in [24, 25], we multiplied the real and imaginary parts of all three field components un
at sufficient negative times by a factor [1+ εri(x)] (i = 1, . . . ,6), respectively, where ri are six
uncorrelated random functions uniformly distributed in the interval [−1, 1] and ε is a small
parameter defining the noise level. Figure 5 shows the numerical results intended for the fun-
damental rogue waves, either unperturbed (i.e., letting ε = 0) or perturbed by a small amount
of white noise for which we choose ε = 10−8. It is clear that without any perturbations (see left
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column), our numerical simulations produce almost identical results as shown in Figs. 1(a)–
1(c), hence giving evidence that the RW solution is robust against numerical integration noise
accumulation. On the other hand, in the right column, we showed that all three rogue wave
components, under tiny perturbations, can still propagate very neatly for a rather long time,
till eventually the MI of background fields grows up. Moreover, one can infer from the first
figure in the right column that the period of the MI-induced periodic wave is around 18/3.5,
corresponding to a modulation frequency of 7π/18' 1.22, almost the same as calculated from
our MI analysis, which has been indicated by the green cross in Fig. 4(c). Obviously, this good
consistency confirms again the soundness of our numerical results.

Finally, we would like to suggest an experimental setup in the context of nonlinear optics for
observation of such complementary rogue waves. In fact, nonlinear optics has recently unveiled
deterministic bright [3] and dark [38] rogue waves. For the current issue under consideration,
we may launch three phase-matched carrier waves of about 10-ps pulse duration, which can
mimic quasi-continuous wave signals, in a periodically poled lithium niobate (PPLN) crystal
of appropriate poling period to trigger a temporal type-II second harmonic interaction where
u1 and u2 share the same group velocity. With this experimental setup and by virtue of fast
pulse measuring techniques [39], we anticipate that MI evidence and the related complementary
rogue wave dynamics could be observed with peak field intensities of hundreds MW/cm2.

There is also a possibility to realize complementary rogue waves in a dual-mode optical fiber
where a forward stimulated Brillouin scattering can occur [40]. In this case, the group velocity
of the pump and Stokes optical waves can be nearly identical, while in comparison, the velocity
of the acoustic wave is close to zero, resulting in an intermodal coupling governed by Eqs. (1).
Under these circumstances, the complementary rogue wave dynamics would occur and one
could observe in optical fibers two-color optical rogue waves of bright-dark type, thanks to the
coupling with the acoustic wave and the relatively long interaction length.

5. Conclusions

In conclusion, we studied the resonant interaction of two optical pulses of the same group
velocity with a pump pulse of different velocity in a weakly dispersive quadratic medium.
Novel complementary rogue wave dynamics were unveiled for such a special parametric three-
wave mixing, based on the exact explicit analytic solutions up to the second order. Numerical
simulations confirmed that these complementary rogue waves are stable enough to develop, in
spite of the onset of MI activated by quantum noise. It foreshadows the possibility to observe
such unique rogue wave phenomena in quadratic crystals or other nonparametric processes that
can be governed by Eqs. (1). In this prospect, we proposed a realistic experimental frame for
demonstration of such complementary rogue wave dynamics.
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