
Vol. 30 no. 4 2014, pages 506–513
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btt704

Gene expression Advance Access publication December 3, 2013

Joint estimation of isoform expression and isoform-specific read

distribution using multisample RNA-Seq data
Chen Suo1,y, Stefano Calza1,2,y, Agus Salim3 and Yudi Pawitan1,*
1Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden, 2Department of
Molecular and Translational Medicine, University of Brescia, Italy and 3Department of Mathematics and Statistics,
La Trobe University, Australia

Associate Editor: Ivo Hofacker

ABSTRACT

Motivation: RNA-sequencing technologies provide a powerful tool for

expression analysis at gene and isoform level, but accurate estimation

of isoform abundance is still a challenge. Standard assumption of

uniform read intensity would yield biased estimates when the read

intensity is in fact non-uniform. The problem is that, without strong

assumptions, the read intensity pattern is not identifiable from data

observed in a single sample.

Results: We develop a joint statistical model that accounts for non-

uniform isoform-specific read distribution and gene isoform expres-

sion estimation. The main challenge is in dealing with the large number

of isoform-specific read distributions, which potentially are as many as

the number of splice variants in the genome. A statistical regularization

via a smoothing penalty is imposed to control the estimation. Also, for

identifiability reasons, the method uses information across samples

from the same region. We develop a fast and robust computational

procedure based on the iterated-weighted least-squares algorithm,

and apply it to simulated data and two real RNA-Seq datasets with

reverse transcription–polymerase chain reaction validation. Empirical

tests show that our model performs better than existing methods in

terms of increasing precision in isoform-level estimation.

Availability and implementation: We have implemented our method

in an R package called Sequgio as a pipeline for fast processing of

RNA-Seq data.

Contact: yudi.pawitan@ki.se

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Alternative use of exons can form a number of combinations

called splice variants, which can be used as templates for produ-

cing related but distinct proteins (Brett et al., 2002). Alternative

splicing has been observed among different tissue types in 90–

95% of human genes (Matlin et al., 2005; Wang et al., 2008) and

greatly diversifies the transcriptome. Many splice variants have

been found to be implicated in a wide range of human diseases

and functional roles (Nagao et al., 2005; Wang et al., 2003).

For this reason, it is important to develop the technologies and

statistical methods to distinguish and quantify different isoforms

of the same gene.
To compute an absolute expression score—in reads per kilo-

base per million reads (RPKM) units—read counts are normal-

ized against the transcript length and the total number of

mappable reads (Mortazavi et al., 2008). Typically, to estimate

isoform abundance, read counts falling into a gene with multiple

isoforms are modeled as a Poisson process with uniform sam-

pling across each transcript (Jiang andWong, 2009). But due to a

number of factors, e.g. the 50 or 30 bias, local nucleotide com-

position effects—such as priming or GC bias—or other technical

biases, read distribution might not be uniform (Howard and

Heber, 2009). Indeed, empirical goodness-of-fit test for the

Poisson model fitted under the uniform assumption shows that

a majority of these models have poor fit. This would lead to bias

in the isoform expression estimates.
Recent methods suggest estimating non-uniform read distribu-

tion from single-isoform genes (Howard and Heber, 2009; Li

et al., 2010; Wu et al., 2010). These methods are rather limited,

where either one distribution is used for all isoforms or a differ-

ent distribution depending on length. In other words, all tran-

scripts of the same length from all genes, regardless of what genes

and whether the genes have single or multiple isoforms, are

assumed to have the same read distribution. This ignores, for

example, the local composition effect of the transcript.

Furthermore, a recent study (Kozarewa et al., 2009) did suggest

that, as the method used for RNA library preparation introduces

some amplification artifacts, the distribution of read coverage

could be isoform-specific. In real data we do find that the distri-

bution for different transcripts that share common length is not

always the same. In addition, we observe that read distribution is

highly correlated across samples. In Supplementary Report,

Supplementary Figures S1 and S2 show typical examples of

non-uniform read distributions with overabundance on the 30

region. Interestingly, across samples, we find similarities in the

shape of the read distributions even between different tissues.
There is evidence that the sample-to-sample similarity in non-

uniform read distributions holds more generally across the

genome; see Supplementary Figure S3 in the Supplementary

Report.
The restriction imposed by the previous methods in estimating

read distribution highlights one main difficulty: once we allow

non-uniformity, in principle each transcript—even from the same
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gene—to have its own specific pattern, would lead to a large
number of distribution patterns, potentially as many as the

number of transcripts. This makes the estimation highly non-

trivial. To account for local composition effect, Hansen et al.

(2010) adjusted for priming bias, where each read is reweighted

based on its first few bases. If based on seven nucleotides (hep-

tamer), they needed to calculate the proportion of reads starting
with each specific heptamer, i.e. 47 frequencies. So reads begin-

ning with a certain composition of seven nucleotides overrepre-

sented in the heptamer distribution are down-weighted. Li

et al. (2010) modeled the read counts depending on the specific

composition of nucleotides along a gene, and developed a more

complex Poisson linear and non-linear model to estimate the
effect of a certain nucleotide occurring in the kth nucleotides

away from a given position j, by modeling the count of reads

starting at position j. The gene-expression levels and the coeffi-

cients of the effect of surrounding nucleotide are optimized

iteratively.
Cufflinks (Trapnell et al., 2010), one of the mostly commonly

tools used to deal with sequence-specific biases problem in iso-

form expression estimation, assumes uniform read distribution in

its basic model, but provides an ad hoc correction of bias step
(Roberts et al., 2011). It also estimates positional bias, which

measures whether fragments are preferentially located toward

either ends of the transcripts. Unlike the base-level bias correc-

tion method, our idea is to model the isoform-specific read dis-

tribution and expression jointly. The observed sample-to-sample

similarity suggests that combining data from different samples
makes read distribution identifiable. Our approach automatically

allows for the local composition effect without any need for ex-

plicit modeling. Such a joint model is more natural, so we expect

it to lead to better performance. The algorithm of iteratively

estimating isoform expression and read distribution has some

similarity to the idea in a recent published program NURD
(Ma and Zhang, 2013), where a global bias curve for all genes

and a local bias curve for each gene is estimated using non-

parametric models. In this study, we compare the estimation

accuracy of our model against Cufflinks, NURD and the

method under uniform read distribution assumption, using a

set of simulated datasets, and also apply our proposed method
to two real datasets.

In summary, the purpose of this article is to describe a method

for joint estimation of isoform-level expression and isoform-
specific read distribution. Allowing for isoform specificity auto-

matically deals with positional bias and local composition effects,

but it is challenging, as we then have to estimate as many distri-

butions as the number of isoforms in the genome. Regularization

via a smoothing penalty is used to control the estimation of the

read distributions. Primary results show that, our approach pro-
vides substantial improvement on the quality of model fitting

and improves the sensitivity in isoform-level differential expres-

sion analysis, compared with the method based on uniform

assumption, Cufflinks and NURD.

2 METHODS

In previous methods (e.g. Jiang and Wong, 2009), a model is fitted gene

by gene separately. Instead of genes, we consider a more natural model

based on non-overlapping ‘transcriptional units’, each of which is defined

as a union of all overlapping transcripts. A transcriptional unit may

possibly contain several overlapping genes. For example, 410 distinct

genes lie between position 88 022 280 and 88 277580 on mouse chromo-

some 1, including a UDP glucuronosyltransferase 1 family; this family

comprises eight transcripts that are annotated with different gene names

in RefSeq. If a read is mapped to a region of overlapping genes, it is not

possible to decide which gene the read comes from. If the genes are

treated separately, the reads would be doubly counted, resulting in falsely

higher expression level.

2.1 Read-count data and the general model

To facilitate fast computations, we first summarize the number of reads

that align to distinct subregions of a transcriptional unit. Whenever we

say regions or subregions, we refer to exons and junctions. Let yri be the

number of fragments from individual i that fall in region r, i.e. the cor-

responding aligned reads in region r. This counting procedure is obvious

for single-end reads, as we can simply count the number of reads that

align in each region. For paired-end reads, we construct a two-way table

such that the (i, j)th entry records the number of fragments whose first

reads fall in the ith region and second reads in the jth region. Hence, in the

pair-end case, a ‘region’ r is naturally defined by a pair of subregions (i, j).

With this understanding, the same notation yri applies for both single-

and paired-end reads. Hereafter, unless needed for clarity, we simply use

the term ‘region’ for both single- and paired-end data. For a transcrip-

tional unit g with J known isoforms, let �ji be the expression level of

isoform j in individual i. The main statistical problem is to estimate tran-

script abundances �ji’s from the read-count data yri’s.

Because of its complexity, we describe the paired-end case in detail;

as explained later in the text, the single-end case is a special case of

the paired-end. Each paired-end read that aligns inside a transcript is

characterized by the starting point of each read; see Figure 1a. It is

then convenient to represent all read pairs that align inside the transcript

by the shaded area of Figure 1b. For a given transcript, the implied

fragment length associated with a read pair at (x,y) is equal to

‘jðx, yÞ ¼ ðy� xþ kÞ, where k is the read length. Because the fragment

length has a certain distribution, e.g. it is normally distributed with mean

300 bases, it affects what x and y values are possible. We have also noted
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Fig. 1. (a) A schematic illustration of a paired-end read that aligns to a

transcript. The values (100, 200, 350, 500) are chosen as an example of

region boundaries; the read length is 50. The ‘x’ and ‘y’ mark the aligned

starting positions of the reads. (b) A 2D representation of possible aligned

positions of paired-end reads in a transcript, where each read pair is

represented by a point in the shaded area. Width of the strip at the

bottom and the top of the triangle equals to the read length. The

number of pairs that fall in the regions within the shaded area is recorded

as the read-count data
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previously the importance of assuming non-uniform read distribution

across the transcript. Thus, the distribution of read pairs over a transcrip-

tional unit can be represented by a 2D point process whose intensity is

determined by the total number of mapped reads, transcript abundances,

local non-uniformity effects and fragment-length density. Specifically,

by adding up the contribution of multiple isoforms, we model the

point-process intensity at (x,y) as

hiðx, yÞ ¼ wi

XJ
j¼1

�jicjðx, yÞfð‘jðx, yÞÞ ,

where wi is conventionally the total number of mapped reads divided by

109, cjðx, yÞ is the transcript-specific non-uniformity effect, ‘jðx, yÞ is the

fragment length implied by the (x,y) position in transcript j and fð�Þ is the

fragment-length density. Now, for each region r, let Rr be the correspond-

ing area defined by the region boundaries in the shaded area of Figure 1;

to be clear, from the figure, the shape ofRr could be a triangle, a rectangle

or a rectangle-minus-triangle. The expected number of read pairs in Rr is

�ri �

Z Z
ðx, yÞ2Rr

hiðx, yÞdxdy

¼wi

XJ
j¼1

�ji

Z Z
ðx, yÞ2Rr

cjðx, yÞfð‘jðx, yÞÞdxdy :

In practice, fð�Þ is either assumed known, e.g. normal with certain mean

and variance, or estimated using only read pairs from single-isoform

transcriptional units. We shall estimate cjðx, yÞ jointly with transcript

abundances �ji’s. To get some simplifications, we assume that

cjðx, yÞ � crj for ðx, yÞ 2 Rr, so the integration is always on a known

function, and the model can be written as

�ri ¼ wi

XJ
j¼1

�jicrj

Z Z
ðx, yÞ2Rr

fð‘jðx, yÞÞdxdy , ð1Þ

� wi

XJ
j¼1

�jicrjLjxrj , ð2Þ

where we define

Lj �
X
r

Z Z
ðx, yÞ2Rr

fð‘jðx, yÞÞdxdy

xrj �
1

Lj

Z Z
ðx, yÞ2Rr

fð‘jðx, yÞÞdxdy :

To interpret these quantities, we can see that if the fragment length is

fixed, then Lj is the total length of transcript j minus the fragment length,

so in general Lj is the effective length of transcript j. Furthermore, xrj can

be interpreted as the proportion of read pairs in region r under uniform

read distribution. By definition
P
r
xrj ¼ 1 for every j. Given a transcript

annotation database, the full collection of Lj’s and xrj’s need to be eval-

uated only once.

For the single-end case, the region r is an interval coinciding with

exons or junctions. In this case, only the first reads are counted, so the

double integrals in (1) reduce to the first integral over x, and xrj is now the

ratio of the length of region r relative to the total, and the same general

model (2) applies.

2.2 Uniform read distribution

Consider firstly the model under uniform read distribution assumption,

so from (2), with crj � 1, we have

�ri ¼ wi

XJ
j¼1

Ljxrj�ji ð3Þ

It is typically assumed also that yri has Poisson distribution with mean �ri.

This simple model (3) has been developed and used in several previous

RNA-Seq studies (Jiang andWong, 2009; Mortazavi et al., 2008) and will

be referred to as the standard method.

2.3 Non-uniform read distribution

For a specific transcriptional unit, we find that read distributions across

samples are similar, as we have seen in Supplementary Figure S1.

Dividing length of a transcriptional unit into bin width of 200 bp, the

read counts in each bin across samples have similar patterns, as shown in

Supplementary Figure S2 in the Supplementary Report. If expression

values are estimated from a single sample, it would not be feasible to

discover and unveil the underlying true read distribution. However, by

combining reads from multiple samples, it is possible to estimate the read

distribution, as multiple observed data points are available to determine

the read intensity of a region.

In this general case, we also start with the assumption that yri is

Poisson with mean �ri in (2). Joint estimation of �ji’s and crj’s will be

done using the maximum likelihood approach. The likelihood function is

given in Section G of the Supplementary Report. First we can see that,

given isoform-specific read intensity crj’s, the isoform expression �ji’s can

be estimated from a linear model:

�ri ¼ wi

X
j

ðcrjLjxrjÞ�ji �
X
j

arj�ji , ð4Þ

where arj � wicrjLjxrj. For identifiability, we set
P

r ðcrjxrjÞ �
P
r
xrj ¼ 1

for every j. With this restriction, it is clear that the assumption of uniform

read distribution implies crj ¼ 1 for all r and j, and the general model (4)

reduces to the standard model (3). Thus, the joint estimation can be

performed iteratively as follows:

A. Given crj, estimate �ji sample by sample using model (4).

B. Given �ji, estimate crj using this model:

�ri ¼ wi

X
j

ðLjxrj�jiÞcrj : ð5Þ

C. Iterate steps A–B until convergence.

The iterative scheme can be recognized as a block Gauss–Seidel

method. The iteration looks simple, but in practice we have to use various

estimation techniques to ensure a robust and fast computational proced-

ure. In step A, given crj to estimate �ri, we use a generalized linear model

with an identity link function. To make the estimation robust to outliers,

we perform iterative-weighted least-squares with robust modification to

deal with potential outliers (Pawitan, 2001; Chapter 6.7). The explicit

steps and the computation of variance of the estimates are given in

Section G of the Supplementary Report.

The problem of estimating crj in step B is more complex than the

estimation of �ji in step A, as now we are dealing with many more

parameters. It is possible to estimate read intensity crj for each region

separately. However, intuitively we do not expect read intensity to change

dramatically between adjacent regions. So, to allow the possibility of

smooth transition between neighboring regions, we consider a model

with smoothness penalty. This is done using a generalized linear mixed

model with isoform-specific read intensity as correlated random effects

(Pawitan, 2001; Chapter 18).

Overall, the likelihood estimation with smoothness penalty is equiva-

lent to a constrained optimization problem. The iteration scheme follows

a block Gauss–Seidel method; its convergence is guaranteed in this case

because both the likelihood and the penalty constraint are convex

(Grippo and Sciandrone, 2000). The convexity of the log-likelihood func-

tion has been shown by Wu et al. (2010) and Jiang and Wong (2009).
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The penalty function is based on the Gaussian distribution, so it is

convex. Indeed, we checked that the Hessian matrix of the negative

log-likelihood function is numerically positive definite for every model

fitted. With the real mouse data, computations for 97% of the transcrip-

tional units converge within 10 iterations; the rest have slower conver-

gence, most likely due to low coverage.

2.4 Availability and implementation

The algorithm described is implemented in the R statistical programming

language (http://www.r-project.org/). The package, called Sequgio, is

available in Bioconductor’s library, with a corresponding vignette. It

could be part of an R-based pipeline for measuring differential expression

of isoforms using RNA-Seq datasets. The package allows users to load in

reads mapped by any alignment program, such as Burrows-Wheeler

Alignment tool (BWA) (Li and Durbin, 2009), Tophat (Trapnell et al.,

2009) or Bowtie (Langmead et al., 2009). It is freely available on the web

at http://www.meb.ki.se/�yudpaw.

3 DATASET AND PREPROCESSING
PROCEDURES

3.1 RNA sequencing data—mouse tissues and human

brain tissue

We use RNA sequencing samples published in Mortazavi et al.

(2008) (NCBI Short Read Archive SRA001030). The samples

consist of three mouse tissues: brain, liver and skeletal muscle.
Two replicates of the same tissue-type are sequenced on

the Illumina-Solexa platform. For each sample, there are

�20–30 million reads. Among all the transcripts defined in
UCSC database, 36.0% are from multiple isoform-genes. The

majority of the 3939 multi-isoform genes in mouse have between

two and four isoforms. Specifically, 2629 genes have 2 isoforms,
773 have 3 isoforms, 273 have 4 isoforms, 264 have44 isoforms

and the maximum number of isoforms is 15.
A second RNA-Seq dataset with read length of 50 nt are ob-

tained from the Microarray Quality Control project (MAQC),

Gene Expression Omnibus accession GSE19166 (MAQC consor-
tium et al., 2006). Three technical replicates from Human Brain

Reference of the same sample are sequenced by Illumina. Each

replicate contains �7–8 million reads. A benchmark dataset con-

sisting of 1044 transcripts analyzed by TaqMan quantitative
reverse transcriptase–polymerase chain reaction (qRT–PCR) is

used for evaluating the performance of expression quantification

methods. However, bear in mind that the TaqMan assay is not a
perfect validation tool. First, although the four replicates of

qRT-PCR data are generated from the same batch of Human

Brain Reference RNA, those four replicates and the three repli-
cates for RNA-Seq data are from different aliquots of the same

RNA sample. Comparisons will thus be based on the average

expression estimate of the qRT-PCR replicates and the average
expression estimate of RNA-Seq replicates. Second, it is difficult

to discriminate the expression of distinct isoforms using qRT-

PCR. An annotation with one-to-one match between genes and
isoforms in the PCR experiment is available in Supplementary

Table S2 of the MAQC project (MAQC consortium et al., 2006).

But we find that it might not be reliable, as although the anno-
tation may relate a gene to one of its isoforms, we can tell from

the RNA-Seq and qRT-PCR estimates that it might be the other

isoform or both expressed. So we decide to use the commonly

used UCSC annotation NCBI36/hg18 and summarize isoform-

level expression to gene-level before comparing the estimates

from the different platforms.

3.2 Simulation procedure

To study the performance of the proposed method, we con-

duct simulations to compare results of Sequgio with (i) the tran-

scriptional unit- and (ii) the gene-based standard methods,

(iii) Cufflinks (version 2.0.2) with bias correction (Trapnell

et al., 2010) and (iv) NURD (Ma and Zhang, 2013). The basic

model in Cufflinks assumes the uniform read distribution, but

for our comparisons we have used their suggested bias-correction

step to account for non-uniform read distributions. The simula-

tions are based on all transcripts in the reference annotation, and

single-end reads are simulated.

We first consider a model-based simulator. This is useful as

evidence that all the methods have been implemented properly.

To be realistic, the parameters are based on real data and per-

formed as follows: first, the expression value and read distribu-

tion for each of the isoforms are estimated from the RNA-Seq

data in Mortazavi et al. (2008), along with known total number

of reads and length of exons and junctions. The expected number

of reads for every region is then calculated using (4). Then,

counts along the genomic regions in 10 samples are drawn

from the Poisson distribution with the expected read counts as

the mean. The output of each run of the simulation is read-count

data in exons and junctions. We then convert these counts to a

BAM/SAM file format, which is the input format accepted by

Cufflinks and NURD. Read starting points would be randomly

assigned within a region, i.e an exon or a junction, as long as the

sum of reads equal to the simulated count for the region. For

every randomly generated read, a corresponding cigar is gener-

ated and the genome annotation is queried accordingly to collect

the corresponding sequence. We then format the reads to SAM

style according to the assigned mapped positions. To check the

effect of the alignment or mapping step, we further convert

the BAM file to an unaligned FASTA file format and reprocess

the BAM file with an aligner. Converting read counts into BAM

and FASTA is performed using Python and the pysam (https://

code.google.com/p/pysam/) and Bio modules.

We then use a second simulator called RNASeq

ReadSimulator that is fully independent of our model (http://

www.cs.ucr.edu/�liw/rnaseqreadsimulator.html). This simulator

program generates sequencing reads according to certain param-

eters. Crucially, it allows the users to specify the positional bias

at isoform-level such that read distribution would be non-

uniform. We use the observed read distributions and expression

levels in Mortazavi et al. (2008) to capture the realistic patterns

of positional bias and expression distribution. The expression

level of each transcript (in RPKM units) is calculated by normal-

izing against the total number of reads within a sample and the

effective transcript length. The raw simulated data are unmapped

reads in FASTA format, which are then processed through the

pipelines for the different methods.

Among the methods with sequence bias correction, NURD

considers a gene as one unit, whereas the others consider

overlapping genes together. So, to investigate the necessity of

modeling overlapping genes simultaneously, we compare the
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performance of the methods on transcriptional units that contain

multiple genes.
As a measure of closeness, resulting isoform-level expression

estimates (O) are compared with the predetermined true expres-

sion values (E) using an absolute proportion error

e ¼ jO� Ej=E:

This measure of distance gives a clear idea how close the esti-

mates are to the true values. We then calculate the median value

across samples for a transcriptional unit. To summarize the com-

parative procedures, we compare Sequgio, Cufflinks, NURD

and the standard method using simulated reads from four sets

of simulation: (A) mapped reads (turned into BAM and SAM

file for Cufflinks and NURD, respectively), (B) unmapped reads

(FASTA) from model-based simulator, (C) unmapped reads gen-

erated by RNASeqReadSimulator where expression levels are

simulated based on real data and (D) a subset of (C) only contain

transcriptional units formed by more than one gene.

4 RESULTS

4.1 Simulation

For mapped reads from model-based simulator (scenario A), we

find Sequgio, Cufflinks and NURD has an overall correlation

coefficient with true values of 0.96, 0.93 and 0.90, respectively.

For single-isoform transcriptional units, correlation is all 0.99 for

the three algorithms. For multi-isoform transcriptional units,

Sequgio estimates have a correlation of 0.90 with the true

values, compared with 0.85 and 0.78 for Cufflinks and NURD

estimates. These high correlation values are obtained across all

types of the simulated data, indicating the estimation procedures

work as expected.
The advantage of the joint model is expected to be more

obvious when read distribution is deviated severely from uni-

formity. We show this in a simulation study given in Section B

of the Supplementary Report, from which we note that there is

no loss of performance of Sequgio in terms of model fitting when

the read distribution is close to uniform. So, we stratify the tran-

scriptional units to those that moderately and severely deviate

from uniform according to whether a non-uniformity deviance

measure is less or greater than its median value. The deviance

measure is defined as the averaged squared difference between

true read intensity and uniform intensity.
The overall simulation results are summarized in Table 1.

Among units whose non-uniform deviance is less than the

median value, the median proportion errors are 4.0, 12.5, 14.1,

5.0 and 6.9% for Sequgio, the transcriptional unit- and gene-

based standard method, Cufflinks and NURD, respectively,

where Sequgio has the lowest error. For units whose non-uni-

form deviance is larger than the median, the median proportion

errors are 4.6, 5.8, 7.0, 5.5 and 6.6%, and Sequgio estimates are

again the closest to the true values. Differences between methods

are larger in transcripts with the severe non-uniform read distri-

bution, especially when Sequgio is compared against the stand-

ard methods. We observe in particular that the gene-based

standard method performs worst among all the methods. This

is in line with what we expect, as the gene-based method cannot

distinguish reads falling into overlapping genes entirely. In the

following simulations, we will not include the gene-based stand-

ard method.
To analyze simulated data in FASTA format (scenario B), we

first have to map reads to the reference genome by an alignment

program, such as Tophat, before doing any expression estima-

tion. This setting tells us how well the methods deal with various

alignment issues; for example, we find that reads simulated on

the negative strand may end up mapped to the positive strand. In

addition, filtering procedures of mapped reads, such as the

threshold of mapping quality score, may be applied differently

by expression quantification tools. Compared with the results

from reads simulated at the level of unmapped sequences, per-

formance of all estimators is affected to some extent by the

mapping procedure. Cufflinks is the most poorly affected,

whereas Sequgio with joint modeling has a consistently good

performance among the estimators.
Processing data simulated from RNASeqReadSimulator

(scenario C) can be considered as a proper test for Sequgio, as

the simulator is from an independent source and its output are

unmapped reads, so abundance quantification may be affected

by mapping and filtering procedure. Sequgio still maintains high-

quality performance with the median proportion error 56%.

Table 1. Results of comparing Sequgio, Cufflinks, NURD, the transcrip-

tional-unit and gene-based standard method from four simulation

settings

Number of transcriptional units (N) Median proportion error

Moderate Severe

(A) Model-based simulator (BAM) 4082 4081

Sequgio 4.6% 4.0%

Standard 5.8% 12.5%

Gene-based standard 7.0% 14.1%

Cufflinks 5.5% 5.0%

NURD 6.6% 6.9%

(B) Model-based simulator (FASTA) 4082 4081

Sequgio 6.1% 5.7%

Standard 13.5% 14.1%

Cufflinks 27.7% 31.2%

NURD 8.4% 7.8%

(C) RNASeqReadSimulator (FASTA) 4877 4876

Sequgio 5.9% 5.2%

Standard 7.1% 10.5%

Cufflinks 6.7% 6.2%

NURD 6.3% 5.9%

(D) RNASeqReadSimulator (FASTA)

(multigene transcriptional units)

386 159

Sequgio 8.3% 9.2%

Standard 8.8% 10.9%

Cufflinks 12.1% 14.1%

NURD 15.9% 19.0%

Note: Unless otherwise specified, the standard method is fitted for a transcriptional

unit, not gene-based. Within each transcriptional unit, the median proportion error

of expression level for every transcript across all samples is computed. We stratify

transcriptional unit by its read distribution moderately and severely deviated from

uniform.
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When the comparison is restricted to a subset of transcriptional
units that contain multiple genes (scenario D), NURD does not

function as well as in the other scenarios. NURD treats these
genes independently, resulting possible double counting, arbi-

trary assignment or removal of reads. Thus, overall Sequgio per-
forms better than the other methods.

4.2 Sensitivity in differential expression analysis

To investigate how much power one can gain in estimating read

distribution by integrating multiple samples, we perform a simu-
lation study for detecting differential expression levels estimated

by the standard and the Sequgio method. Our model simulates
the number of reads given exon length and read distribution

from a real example, gene Cinp that contains six exons of lengths
between 100 and 1500bp. Two isoforms NM_026048 and

NM_027223, one with 5 exons and the other with 6. We take
data of this gene because its P-value of the goodness-of-fit test

for models fitted using the standard method is around the third
quartile (see Section 4.3). Also it is an illustration of a gene where

read distribution differs between the isoforms, one transcript
with a uniform read distribution and the other not. The

number of samples in each tissue group is set to be six and the
expression fold change � of two tissue types varies from 1 to 1.3.

The simulation is performed following the same procedures as
described for model-based simulator, but for only one gene. The

expression levels between tissues are then compared using t-test
with unequal variances. For each value of �, we generate 100

simulation sets and estimate the power to detect differentially-
expressed (DE) transcripts. Results are shown in Figure 2. In

panel (a), the power analysis shows that using Sequgio we are
able to identify more true DE transcripts. The gain in power can

be as much as 20% at fold-change � � 1:2. Panels (b) and (c)
indicate that the read distributions are estimated well.

4.3 Real RNA-Seq datasets

To test the performance of our method on real data, we analyze
the publicly available mouse tissue dataset (Mortazavi et al.,

2008). For each gene whose expression is modeled by the stand-
ard method, we compute a goodness-of-fit statistic across regions

to test the hypothesis that the assumption of uniform read dis-
tribution is adequate. The P-values from the goodness-of-fit test

are used to access the model fitting. After correcting for multiple
testing, 68.5% of the models have a P-value50.05, indicating

that a majority is poorly fitted using the standard method.
Overall, �2 statistics are reduced for 70.3% of the models, indi-

cating that Sequgio improves model fitting substantially. In
Section D of the Supplementary Report, we show the reduction

in �2 statistics in detail for a gene with a median P-value from the
goodness-of-fit test. We also calculate the average absolute devi-

ation from uniform read intensity within every transitional unit
in the mouse tissue data. The median value across units is 0.214,

which can be interpreted as that the average estimated read in-
tensity deviates 21.4% from uniformity.

We next report the differential expression analysis of the tis-
sues, and compare the gene-level versus the isoform-level differ-

ential expression. Overall the gene expression is equal to the sum
of isoform abundance. Differential expression is defined using

fold changes (FCs) and false discovery rate from moderated

Welch t-test (Demissie et al., 2008). Specifically, DE genes are

those with FC43, either over- or underexpressed, and false dis-

covery rate50.01. Expression values are analyzed on logðxþ 1Þ

scale because of the zeros in the data. Transcripts with vari-

ance50.001 are removed. Only genes with multiple isoforms

are considered. Table 2 summarizes results of the differential

expression analysis. Comparing brain and liver tissues, 18.7%

of the 30 140 tested transcripts shows differential expression.

Among genes with DE isoforms, 20.4% does not show gene-

level differential expression pattern, indicating that testing on

isoform-level is necessary. Overall, 246 transcripts show strong

differential expression between brain and liver tissues with an

FC410 and an average expression value4100 in at least one

of the tissues.

To further examine the genes identified as DE between tissue

types, we look at a known tissue-specific gene Mecp2. Mutations

in Mecp2 are the essential cause of the Rett syndrome, a neuro-

developmental disorder of the brain (Amir et al., 1999). It is

involved with brain development and neuron function. In one

of Mecp2’s isoforms ENSMUST00000123362, the estimated

average expressions using Sequgio for the brain, liver and

muscle tissues are 5.78(0.0003), 0.63(0.0014) and 0.00(0.008),

respectively, with standard error indicated in the parenthesis.

Using the standard method, the estimated expressions are

3.96(0.002), 0.94(0.001) and 1.69(0.006), respectively. The stand-

ard error of expression levels is small. So, the difference between

the expression is larger in Sequgio’s estimates.

4.4 Validation with mouse RT-PCR data

We compare results derived by our method with RT-PCR quan-

tification as in Zheng and Chen (2009), where RT-PCR is per-

formed to assay transcripts’ relative expression levels in the three

mouse tissues. For each transcript, a relative expression ratio is

computed between brain and muscle, and between brain and

liver. For all seven genes annotated with the Alternative

Splicing and Transcript Diversity (ASTD, http://www.ebi.ac.

uk/astd/) and Ensembl (http://www.ensembl.org/index.html)

databases, four transcripts can be matched or partially matched

to a gene in the UCSC annotation that we are using. Isoform

expression values are computed using our method in the three

mouse tissue RNA-Seq data obtained from Mortazavi et al.

(2008). We find that in all comparisons except for transcript

(a) (b) (c)

Fig. 2. Figure on the left, (a) power as a function of �, the mean differ-

ence between groups. (b and c) True and estimated read distribution for

two isoforms
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ENSMUST00000057185 (Pcdh1) in brain/liver and transcript

ENSMUST00000115609 (Comt), they show the same direction

of distinct expression patterns (Supplementary Table S2,

Supplementary Report).
Not all of our results are in agreement with RT-PCR, al-

though the discrepancies could be due to errors in annotation

database and variability in isoform structures. For example, one

of the amplified transcript ENSMUST00000115599 (Pcdh1) is

no longer in the Ensembl database and has not been mapped

to any new identifier. Our result of the expression estimation,

although annotated to the other transcript of the same gene, is

closely matched with the expression of ENSMUST00000115599.

Results produced from our method may be improved with

a more consolidated and accurate annotation database. In

addition, we note that the relative expression ratio of

ENSMUST00000115609 is consistent with the result delivered

by Zheng and Chen (2009) based on the sequencing data, i.e.

differential expression pattern is barely detectable in brain/liver

and it is positive direction in brain/muscle.

4.5 Validation with RT-PCR data in human brain tissue

We begin by examining the expression estimates from Sequgio;

see Figure 3. The correlation of the average expression estimate

and the average results of qRT-PCR analysis was 0.82. This is

largely in line with the result from Cufflinks, which shows a

correlation of 0.84 after bias correction. As we have pointed

out in the simulation study, correlation may not be a good stat-

istic for comparing the performance of the two algorithms. The

�2 statistic would be better, but, as the expression values from the

qRT-PCR experiment are not the true absolute expression, we

are not able to calculate the statistic here. Indeed, we can see a

systematic deviation from the line of identity in the scatter plot in

Figure 3. Also, we examine the expression on the log scale, in-

stead of on the original scale as shown by Roberts et al. (2011) in

their supplementary report. This is because the correlation coef-

ficient can be severely affected by outliers, which are common in

the original expression estimates; see Supplementary Figure 6S in

the Supplementary Report. The difference on scale explains why

the correlation we obtain is different from in previous studies

(Glaus et al., 2012; Roberts et al., 2011).

5 DISCUSSION

In this article, we introduce a novel method using RNA-Seq data

from multiple samples to estimate the isoforms expression,

taking into account non-uniform read distribution. Through

simulations that model read-count data from non-uniform dis-

tribution, we demonstrate that our method improves accuracy in

the expression quantification. When read distribution deviates

dramatically from uniform, there is a striking improvement in

accuracy of the expression estimation. Furthermore, our method

can be easily adapted for use with any next-generation sequen-

cing technology and mapping program.
Sequgio uses a fundamentally distinct method to estimate read

distribution. First of all, it does not assume any relationship be-

tween sequencing bias and relative position of a certain nucleo-

tide in a fragment. It uses an explicit and transparent model with

isoform-specific read intensity to simultaneously correct different

sources of bias. Second, Sequgio is able to estimate isoform-

specific read distribution as long as count-level data are available

for a single transcriptional unit. In contrast, to produce nucleo-

tide-specific bias weights, Cufflinks requires the nucleotide-level

information of all genes. The same global nucleotide distribution

is then used for all fragments. But estimation of nucleotide bias

weights might be sensitive to which and how many single-

isoform genes are taken into calculation.

The main assumption of the joint model is that non-uniform

read distributions can be identified using information across

samples, given that the read distribution is consistent across sam-

ples. In section A of the Supplementary Report, we have pre-

sented evidence that the sample-to-sample similarity holds

generally in the genome even between different tissues. In prac-

tice, we recommend users to follow the procedure to check the

consistency especially when pooling information from two bio-

logical groups, e.g. diseased versus healthy. If not consistent, the

estimation should be done separately. In the application to

human brain tissue data, although only three samples are avail-

able, we see Sequgio performs fairly well based on the correlation

with Cufflinks’ and RT-PCR estimates. When there are 510

samples, we would recommend using them all in estimation.

On the other hand, if a large number of samples are available

and the computational system is limited, it would be useful to

consider a two-staged procedure: (i) in the first stage the read

(a) (b)

Fig. 3. (a) Estimates from Sequgio are plotted against the expression

levels obtained by RT-PCR. (b) Estimates from Cufflinks are plotted

against the expression levels obtained by RT-PCR. Expressions values

are on the log scale

Table 2. Results of differential expression analysis between tissues

Comparison (A) versus (B) Br

versus L

Br

versus M

L

versus M

Transcripts DE (1) 18.7% 15.1% 5.4%

Non-DE at gene level among (1) 20.4% 13.8% 12.0%

Transcripts FC410 and highly DE 246 187 201

Transcripts upregulated in (A) 127 122 126

Note: The first row lists the percentage of DE isoforms. But genes with DE isoforms

can be non-DE at gene level. Percentage is summarized in the second row. Last two

rows show the number of transcripts with both FC410 and highly expressed; the

number of transcripts upregulated in tissue (A). Br, L and M stands for brain, liver

and muscle.
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intensities are estimated from a subsample, and (ii) in the second

stage these intensities are fixed, so only expression levels need to

be estimated.

Gold standards for transcript-level expression are difficult to

obtain experimentally. Improvement by our method is shown

mostly by empirical means via the goodness-of-fit �2 statistics.

We also rely on simulations and limited isoform-level RT-PCR

data to assess the accuracy of our results. In the simulations, we

consider both a non-uniform distribution and a slight deviation

from uniformity, and all parameter values are those we estimate

from the real data, so they are a fair testing procedure.
One limitation of many current methods including our own is

that all isoforms for a gene are assumed to be known. Because of

the huge amount of information from different isoform-level an-

notation database and complex structure of transcriptome, the

current annotation is incomplete. We suspect this might partially

cause discrepancies in the RT-PCR validation. Most biological

annotation databases may be updated almost every week. Some

databases will be closed and merged with others, e.g ASTD are

integrated in Ensembl database. There is a need to develop a

reliable and comprehensive mega annotation database. But it is

worth emphasizing that with the RNA-Seq mouse tissue data

used in this article, mapped counts and �18 000 genes identified

are comparable with results from those studies that use the same

dataset (Jiang and Wong, 2009; Mortazavi et al., 2008).
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