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Abstract

A novel coding technique which proposes the use of symmetry to reduce redundancy in images is presented.
Axes of symmetry are extracted using the Principal Axes of Inertia theory and the technique is extended to
non-symmetric images by the introduction of a Cpefficient of Symmetry. One part of the images is then linearly
predicted with respect to the chosen axis. The method is implemented in a block-based fashion in order to adapt
to local symmetries on the image data. An image representation and a coding strategy is illustrated. and results
are presented on real static images.

1 Introduction

Recent efforts towards reduction of redundancy in images showed the relevance of modeling themn as a combina-
tion of nonstationary visual primitives [1]. This lead to significant improvement in compression. As an example.
segmentation-based or contour-texture-based coding demonstrated superior performnance with respect to classical
waveform coding whose fundamental assumption remains the stationarity of the source.

If contours or areas with uniform textural characteristics seemed adequate to be chosen as primitives, more elaborate
patterns or properties that can be found in natural scenes may be considered for better performance as well.

In this work. we propose a novel technique which suggests the use of svmmetry. The introduction of this geometric
property is dictated by the fact that natural objects often give rise to the human sensation of symmestry. This sense
of symmetry is so strong that most man-made objects are symmetric, and this concept is more general than the
strict mathematical notion [2]. For instance, a picture of a human face is considered highly symmetric. although it
is not symmetric in the mathematical sense.

The outline of the paper is the following. Section 2 explains how to find axes of symmetry in images: section 3
generalizes this technique to non-symmetric iimages and introduces a way to measure the degree of symmetry. In
section 4 a scheme is proposed to build a linear prediction model of one part of the image with respect to an axis
of symmetry. This scheme is then used to code the luminance information of an image by limiting it to the location
of its symmetry axes and a limited amount of the original information. In section 6 coding results are presented on
real static images, while section 7 concludes with an outlook on future improvements.

2 Axes of Symmetry Extraction

Various techniques for exiracting axes of symmetry of objects have been proposed. mainly for pattern recognition
applications {3, 4].

In [3], Freidberg describes a technique which finds the axes of skewed symmetry. In {4], Marola presents an algorithm
which is based on the identification of the centroids of a given object and other related sets of points, followed by a
maximization of a specially defined coefficient of symmetry.

In the following, we propose a simple and efficient technique, which identifies axes of symmetry to the Principal Axes
of Inertia (PAI) of a rigid body [5]. In this section we present a technique for extracting the PAls. This method is

"Currently at Signals & Communications Lab., Dept. of Electronics for Automation, University of Brescia, Italy

1312/ SPIE Vol. 1818 Visual Communications and Image Processing ‘92 0-8194-1018-7/92/$4.00

s
B3
e



then applied to extract symmetry axes on real test images.
Def 2.1 A set of three mutually perpendicular azes, fized with respect to the body, rotating with it and such that the
products of tnertia with respect to them are zero, ere called Principal Azes of Inertia (PAI) of the body.

Def 2.2 A PAI is such that, if a rigid body rotates around i, the direction of the Movement Quantity Momentum
Q) is equal to the direction of the Angular Velocily w.

Q= )w . (1)
ITis the symmetric inertia matrix
~ Irz Iz‘y I:rz
I=| L. I,y I (2)
IZI Izy IIZ
with
Lo = 5 om (v, =2
I!/y = Z mv(:’32u + :20)
Izz :Zmu(rzu*#ygb) (3)
Izy = Iyz = - Emul‘uyv
Iy, = Izz == Emuxvzv

and m, is the mass of point {z,, yy, z,) in 3D space, then the Movement Quantity Momentum §2 can be expressed

as ~ .
=Jv (4)

Using (1) and (4), we obtain the eigenvalue decomposition system of three equations

I-Mw=0. (3)
where I is the identity matrix. In order to have solutions different from the trivial one [ Wr Wy w: ] T — 0 we
impose that :

det(I- A1) =0 (6)

which results in a cubic equation with roots I o3 that are called Principal Momenta of Inertia. Substituting these
solutions in Eq.(5), we obtain the directions of the PAls.

The previously described technique to find the PAls of a rigid body can then be used to detect the PAls of the 3D
object defined by the immage plane and the luminance function, with m, set to 1. These PAIs can then be labelled
as likely axes of symmetry. In fact, it can be demonstrated that. if an object has an axis of symmertry. this axis is
also a PAIL Conversely, if an object does not have a real symmetry, the PAI partitions the body “opthmally™ into
two quasi-symmetric parts. [5] ‘

As an example of application, Fig. 1 shows the results of the PAI extraction to different block partitions of the test
image "Lena” {256 x 256 pixels, 8 bit/pixel).

3 Non-Symmetric Images and Coefficient of Symmetry

In section 2, we described a technique which finds the PAIs of the object defined by the image plane and the
luminance function. In this section, a Coefficient of Symmetryv is defined. which allows to measure the degree of

symimetry associated to each PAI [4].
Let F be an image with an axis of symmetry and ¢(z,y) its associated lumninance function. If P(z,y) and P(Z, @)
are two points symmetric with respect to a certain axis d (see Fig. 2), we define the quantity 3 > 0 as follows
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Figure 2:

Def 3.1
5 - 2l le(z ) - gtz 9 'dzdy _
[f ¢*(z, y)dzdy -
[] 9t2,y)9(z, §)dzdy N
ff g*(x, y)dady » ,
with

0<3<1 (8)

if 3 =0 the azis is outside F
if B=1F is symmetric
3 s called Coefficient of Symmetry associated to the azis.

By retaining the PAI associated to the highest symmetry measure. a given image will be separated into the two
most quasi-symmetric parts, according to the. coefficient of symmetry measure. Figure 3 shows the graphs of the
Coeficients of Symmetry associated to the PAls evaluated for different block partitions of the original test image

"Lena”.
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Figure 3: Graphs of Coefficients of Symmetry; from left to right: first & second row of 8 x 8 blocks: tirst & second
row of 64 x 64 blocks

4 Linear Prediction

Once a symmetry axis has been found, we propose to build the linear prediction of one part of the image from the
opposite part measured symmetrically from the chosen PAIL In other words. each pixel belonging to one part of the
image is linearly predicted from pixels symmetrically chosen on the other side of the selected PAI.

In general, Linear Prediction 6] is a model in which a signal s, is considered to be the output of a system with sonie
unknown input u, such that the following relation holds:

> 9
Sn:—Zaksn_k+GZb)un,z . . (9)
k=1 1=0

bo =1 (10)

where a;. 1 <k <p, b, 1 <1< g, and the gain G are the patameters of the prediction. Equation (9) states that
the “output™ s, is a linear function of past outputs and present and past inputs. That is, the signal s, is predictable
from linear combinations of past outputs and inputs. ’

The problem is to determine the predictor coeflicients a; and the gain G in some manner. Using an intuitive
least squares approach and assuming that the input u, is totally unknown, the signal s, can be predicted only
approximately from a linearly weighted summation of past samples. Let this approximation of s, be 3, . where

p .
5n :—Zaksn_k (11)
k=1

In the method of least squares the parameters ¢, are obtained as a result of the minimization of the mean or total
error with respect to each of the parameters. In this way, we obtain the following set of equations:

, .
DTk Y sncksaci ==Y sasass, for 1<i<p. (12)
k=1

n n
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The predictor coefficients ax, for 1 < k < p, can be computed by solving a set of p equations with p unknowns,
There exist several standard methods for performing the necessary computations [7, 8]. In our system. we make use
of the method attributed to Durbin [9] which is twice as fast as [7]; a pixel can be obtained as 2 linear combination
of a set of pixels which are in quasi-symmetric position with respect to the chosen PAIL In the following sections,
results are presented using a Linear Prediction of order zero. That is, a pixel is obtained from the one which ig
symmetrically located with respect to the chosen PAI.

5 Coding

The method which has been described in the previous sections was implemented in a block-based fashion in order
to adapt to local symmetries of the image data. In the following, the scheme of a possible coder, together with a
coding strategy specifying the PAls and the lumjnance on one side of the PAls will be described.

Let I(z,y) = Ii(z,y) U... Ul (z,y), Li(z,y) N Ij(z,y) =0, Vi, j, i # j be a partition of the original image, where
Ii(z,y) is a generic subblock of fixed .\ x M size.

Let I;i(z,y) = Li,(z,y) U Li,(z,y), L,(z.y) N1, (z.y) = 0 be a partition of I;(z, y). where I; (z,y) iz the luminance
function on one side of the PAI defined on the i-th block (see Fig. 4a). Using this notation. the proposed coding
scheme is illustrated in Fig. 4b.
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Figure 4: a) generic block and its axis of symmetry; b) encoder block diagram

For each block the technique described in section 2 is applied. which finds the two PAls on the hasis of the luminance
function. Then the Coefficient of Symmetry associated to each PAl is evaluated: according to this measure, the PAl

corresponding to the highest value is selected.
The luminance representation of I, is obtained by coding separately the PAI location and orientation, the lumi-

nance on one side of it. I;, (z, y), and the prediction error with respect to I,.(z, y). using the PAI and [, (z.y) coded

information.
In the following subsections. more details on the luminaunce representation and the coding strategy will be outlined.

5.1 Luminance Representation

The problem at hand is the following: we are looking for a representation of I(z,y) which approximartes the given
gray values and describes them in a compact form allowing efficient data compression.

In other words, )
Iz y) ~ Iz, y) (13)

where
I(Ial/)=al¢’1(1~y)+"'+an€0n(lsy) . (14)
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The functions ¢;(z,y) are called the Basis Functional Set, which for the task of approximation must be complete,

according to the Weierstrass Approzimation Theorem.
One possible choice is to use the Polynomial Basis Functions [10]:

pi(z,y) = Oy for k@) +IGE) <n. (15)
A polynomial representation has, at least, the following advantages:

1. Images predominantly consist of slowly varying surfaces which are well represented by polynomials.

2. Polvnomials correspond to very simple mathematical expressions.

In order to find the coefficients of the approximation, it is necessary to define an error minimization criterion. The
most commonly used is the one attributed to Gauss (1795) which minimizes the L, - norm:

d(I»f)=ZZ[I(x‘y)—f(z,y)}2- (16)

The solution to this problem involves a pseudo-inverse formulation and can directly be obtained. The minimization
of d(I,I) leads to the so called system of Normal Equations:

N ’
> an YD on(znv)eg(z,y) =YY Kz, y)p(z,y), ¢=1,2.-N (17)
n=1 T Y z Yy

the geometric interpretation of which is illustrated in Fig. 5.

Xz}

Figure 35:

In most cases. when the number of pixels is greater than the dimension of the Basis Functional Set. an elegant
solution to the problem is given by the Gauss-Jordan Algorithm. which distributes the fitting error to minimize the

squared error.
In Fig. 6, the reconstructed version of the test image ”"Lena” is shown for different block dimensions when using a

2-dimenstional second order polynomial function:

9(z,y) = ao + 01T + a2y + azz’ + aqy’ +aszy (18)

5.2 Coding Strategy

In this subsection, a coding strategy specifying the selected PAls and the luminance on one side of the PAIs is

defined.
The information to be coded are the coeficients of the polynomial approximation, together with two parameters

specifying the PAT location and orientation.
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Figure 6: Second-order Polynomial Approximation a) original image b) Approximation on 8 x 8 blocks ¢) Approxi-
mation on 64 x 64 blocks

5.2.1 Quantization of Coefficients

A transform allows to map the original pixel domain in a transformation domain. However. a transform alone does
not result in any data compression. Only in connection with a quantization of the transformed coefficients reduction
in the amount of information is obtained.

Originally. the polynomial approximation is computed using a floating point format for all values; any quantizatiou
of the coefficients leads to an increase in the reconstruction error. The simplest and most common form of quantizer
that could be used is the zero-memory quantizer {11]. Its output value is determined by the quantizer only from
one corresponding input sample, independently of the values taken on by earlier (or later) samples applied to the
quantizer input. Rigorously speaking.

Def 5.1 A zero-memory N-poini quantizer Q 1s defined by N+1 decision levels zg,-+-,zn and N output points
Yyo- oy~ If an input sample z; € R, = {z,_1.2:}. the quantizer produces y; € R; (see Fig. 7b).

In general. uniform quantization is not the most effective way to achieve optimal performance. The reason is that
quantization with minimum square error (optimurm quantization) depends on the probability density function of the
coefficients to be quantized. Both the decision and the representation levels should then be optimized {12}, with
computationally expensive methods. A simplification consists in assuming a uniform distribution of the coefficients
within the quantization intervals [13]). The representation levels are centered inside the intervals, and the quantization
intervals are adapted to the probability density function. To decide on possible quantization schemes we need to
investigate the amplitude distribution of the coefficients [14]. Figure 7a shows the highly peaked distribution of the
coeficient amplitudes for the test image "Lena™, 8§ x 8 blocks.

For a given number of quantization intervals, taking into account the input probability density, nonuniform spacing
of the decision levels can yield lower quantizing noise and less sensitivity to variations in input signal statistics. An
effective technique for studying nonuniform quantization, used in [13]. is to model the quantizer as a memoryless
nonlinearity F(z), the ”compressor”, followed by a uniform quantizer, as shown in Fig. 8a. The effect is to allocate
more quantized levels to the high probability lower amplitudes, and fewer levels to the less frequently occurring

1318/ SPIE Vol. 1818 Visual Communications and Image Processing ‘92



2
&
$

VL1

S DASANIABS TN R

R

Figure 7: a) Distribution of the coeflicient amplitudes; b) Input-output characteristic of a quantizer

higher amplitudes.
The coding strategy applied in the proposed system is the following. In the range which contains 90% of the data.

the coefficients are linearly quantized. The peaked shape of the histogram is exploited by variable length coding
(Huffmann Coding in our case). Outside the interval, nonuniform quantization, achieved by using a compander.
takes into account the dynamic range of the data without introducing an excessive nurmber of representation levels.
The quantization scheme is shown in Fig. 8b.
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Figure 8: a) Companding model of nonuniform quantization; b) Quantization scheme

5.2.2 Coding of the PAIs
A set of image points (z, y), which lie on a straight line, can be defined by a relation f, such that
f[(m,c],(x.y)]:y—mr—n:ﬂ. (19)

where m and ¢ are two parameters, the slope and intercept, which describe the straight line.
In [16], it is suggested that straight lines might better be parameterized by the length p. and orientation 8 of the
normal vector to the line from the image origin (see Fig. 9a), where

p=2zcosh + ycosh (20)

This representation has advantages over the (m, ¢) parameterization which has a singularity for lines with large slopes.
that is, for m — co. Another parameterization [17) of straight lines consists of a pairing of the two coordinates (s, s2)
where the line intersects the border of the block boundaries (see Fig. 9b). These points are given by their distance
along the perimeter of the block, where the distance.is measured counterclockwise along the block starting at the
origin. It is clear that, for a block of size Zmazr X Ymaz, the values of p and 8 are bounded by

—R<p<R and 0<éb<r (21)
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Figure 9: a) p-0 line representation: b) Zmaz X Ymaz block perimeter intersection line representation

where

R= /220 + Yhaz (22)

The histograms of § and p for the test image "Lena”. 8 x 8 blocks, are shown in Fig. 10 when the origin of the
coordinates coincides with the center of each block. In this case, a uniform quantization, confined to the region
-5<6< 3, —% <p< 122-, of the two line parameters (p,6) has been used.
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Figure 10: a) histogram of 8; b) histogram of p

6 Results

In this section. results of the described coding technique are presented.

According to (18) and to Fig. 8b. the values of the parameters specifying the quantization strategy are the following.
ao is uniform quantized without companding, because of 1ts almost uniform probability distribution and its wide
dynamic tange. As far as the coefficients @y, .... as, the values of 1" are shown in Table 1. Outside the interval [-1777.
the following companding curve was used:

VIl 4 pzi /1)

F(zi) = In(1+ ) u=235. (23

In Fig. 11, the performance of the system on the test image "Lena”. 8§ x 8§ blocks, is shown, where 130 and 100
quantization levels have been used for coding the coefficients (Fig.1ib. Fig.1lc respectively). In both cases. 10U
quantization levels have been used for the uniform quantization of p and 6. Huffman coding has been used to code
the quantization information, obtaining a compression rate of 10:1 and 13:1 respectively (Fig.11b, Fig.11c), without
coding of the prediction error (see section 4).

It should be pointed out.that, both the polvnomial approximation and quantization contribute, though to different
extents, to the degradation of the reconstructed image. The values of PSNR (Peak Signal-to-Noise Ratio) evaluated
for the two reconstructed images considered before and for a non-quantized image are shown in Table 2.
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Coeflicients | V value
14.34
8.46
1.62
[ 3.63
| 2.82

OV | O 8] =

Table 1: The values of V for the coefficients a;.---,as

Figure 11: Symmetry-based image coding results a) original image b) reconstructed image. compression ratio=10:1
¢) reconstructed image, compression ratio=15:1

Reconstructed Image PSNR value
non-quantized 27.10
quantized, comp. ratio==10:1 25.41
quantized, comp. ratio=15:1 24.49

Table 2: The values of PSNR for differently reconstructed images
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7 Conclusions

In this work, we presented a novel technique which suggests the use of symmetry to reduce the redundancy in
images. Among the several techniques which have been proposed to extract axes of symmetry of objects, we propose
to use the Principal Axes of Inertia (PAI) of a rigid body. The results were used to separate an image domain into
two quasi symmetric parts with the definition of a Coefficient of Symmetry. The method was unplemented in a
block-based fashion in order to adapt to local symmetries on the image data. An image representation and coding
strategy was defined. The luminance function on one side of the PAI is approximated by means of a second order
bidimensional polynomial function. The PAls are parameterized by their spatial position and orientation. As far
as the coding strategy is concerned, the wide dynamic range of the coefficients of the polynomial approximation is
reduced by means of a nonuniform companding; the companded coeflicients, together with the line parameters. are

then uniformly quantized.
Coding by symmetries 1s a novel and open area of research; several aspects of the proposed system and its possible

extensions are currently under investigation. In particular, a more sophisticated coding strategy is under investigation
and will soon be presented [18]. The extension of this technique for a symmetry-based image segmentation svstein
will be the object of future research.
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