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ABSTRACT

In this work, we present a Least-Square-Error (LSE), recursive method for generating piecewise-constant approximations of images. The method is
developed using an optimization approach {o minimize 2 cost function. The cost function, proposed here, is based on segmenting the image, recursively, using
Binary Space Partitionings (BSPs) of the image domain. We derive a LSE necessary condition for the optimum piecewise-constant approximation, and use
this condition to develop an algorithm for generating the LSE, BSP-based approximation. The proposed algorithm provides a significant reduction in the
computational expense when compared with a brute force method. As shown in the paper, the LSE algorithm generates efficient segmentations of simple ag
well as complex images. This shows the potential of the LSE approximation approach for image coding applications. Moreover, the BSP-based segmentation
provides a very simple (yet flexible) description of the regions resulting from the pantitioning. This makes the proposed approximation method useful for
performing image affine transformations (e.g., rotation and scaling) which are common in computer graphics applications.

1. INTRODUCTION

Many image processing and computer vision probléms have been approached, in recent years, using segmentation-based
image representation methods. For example, contour-texture segmentation techniques are used in [Kunt] and [Kocher] for
high compression image coding applications. In [Leclerc] the author explains the importance of solving the image
partitioning problem as a first step toward solving the scenme partitioning problem which arises in image understanding
applications. Leclerc solves the image partitioning problem in the framework of the minimum-description-length (MDL)
principle [Rissanen] using a segmentation-based language (contours and regions). The work by Mumford and Shah
[Mumford] approaches boundary detection as a segmentation problem, and provides an excellent framework for this problem
using optimizatior of functionals. A similar functional method defined on a discrete domain was first introduced in [Geman].
The works presented in [Marroquin] and [Besl] are examples of approaching the image segmentation problem with a
regularization solution,

> These and many other segmentation-based image representation and description methods share two common aspects. First,

the desired image is modeled as a piecewise-smooth function. This piecewise-smooth model is usually represented by (1) the

g geometry (e.g., shape or boundary) of the regions resulting from the segmentation, and (2) smooth and continuous functions
(e.g., low order polynomials) representing the interiors of these regions. The second common aspect of segmentation-based
approaches is the requiremeni to segment the image into a minimum number of regions (to achieve efficient representation)
such that the piecewise-smooth approximation (or the reconstructed image from the segmentation-based description) is a
minimum distance from the original image. These two desired features provide the right ingredients for any segmentation-
based description method to be solved as an optimization problem.

Only few of the papers mentioned above approach the image segmentation problem as one of optimization. Good examples
of optimization-based treatment to the problem are [Mumford] and [Leclerc]. Our objective in this paper is o develop,
within the framework of optimization theory, a fast algorithm for constructing a simple segmentation-based description of an
image using a piecewise-constant approximation model (which is a special case of the piecewise-smooth model).

The first step needed for an optimization-based treatment, is the formulation of a cost function (or a functional in variational
analysis). The cost function derived for any segmentation-based image representation approach is dependent on the particular
language selected for describing the geometry and the interiors of the piecewise-smooth approximation model. In our recent
work [Radha 90b] [Radha 91b], we introduced 2 Binary Space Partitioning tree representation of images. We have shown
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that a BSP tree-based description of images provides efficient representation useful for image coding and manipulation
applications. In the next section we explain, briefly, the BSP tree representation of images, and formulate the appropriate cost
function, which is based on the BSP tree description language. In Section 3 we describe how our cost function fits within the
framework of optimal approximation theory, and use this cost function to derive the main results of this work. The main
results are global and local necessary conditions for the piecewise-constant approximation which minimizes our cost
function. Based on these results, we outline in Section 4 an algorithm for constructing a piecewise-constant approximation of
an arbitrary image using the BSP tree representation method. Simaulation resuits are shown in Section 5,

2. LSE-BASED BSP TREE REPRESENTATION OF IMAGES

In [Radha 90b] and [Radha 91b], we described an image representation method based on Binary Space Partitioning (BSP)
[Thibault]. This method provides an efficient representation (useful for image coding), a simple data structure (binary tree),
and a very flexible description of the geometry of the regions resulting from the segmentation. Both the simple data structure
and the flexible geometric description make the BSP approach useful for performing affine transformations (e.g. rotation and
scaling) that are common in computer graphics applications.

The BSP approach partitions the desired image, recursively, by straight lines in a hierarchical manner. First, a line is selected
(based on an appropriate criterion) to partition the whole image into two sub-images. Using the same criterion, two lines are
selected to split the two sub-images resulting from the first partitioning. This procedure is repeated until a terminating
criterion is reached. The outcome of this recursive partitioning is a set of (unpartitioned) convex regions which are referred to
as the cells of the segmented image. A good segmentation is obtained when the pixel values within each cell are
homogeneous. The recursive partitioning generates a binary trec representation of the image known as the Binary Space
FPartitioning tree (BSP tree). The non-leaf nodes of the BSP tree represent the partitioning lines, and the leaves represent the
cells (unpartitioned regions) of the image.

The most critical aspect of the BSP representation approach is the criterion used for selecting the partitioning lines. In our
previous work [Radha 91b], we based the partitioning on the image boundary information (edges). This criterion provides, in
general, very good segmentation. However, the accuracy of this boundary-based BSP tree representation is constrained by
the number of edge points one can detect from the original image. This can be a serious problem for images with week
boundaries and low contrast [Radha 91a] [Radha 91b]. Another criterion for selecting the partitioning lines could be to
minimize some error function.

In this work we develop a Least-Square-Error (LSE) method for generating a BSP-based, piecewise~constant approximation
of images. When partitioning the image by a straight line into two sub-images, we approximate the pixels’ intensities within
these two sub-images by their respective mean values. We use the Square Error (SE) function e(x, y), which is the square of
the difference between the original image /(x, y) and the piecewise-constant approximation m(x, y). As shown in Figure 1,
m(x, y) consists of (1) two constant values corresponding to the two sub-images’ means, and (2) a discontinuity (between the
two constant values) along the partitioning line. For each line & passing through the image domain there is a SE function
e(x,y; h) and a mean function m(x,y; h) (which is the piecewise-constant approximation) associated with that line. By
integrating the SE function e(x,y; h) over the whole image domain, one gets the total square error E(h) resulting from
approximating the two sub-images by their respective mean values.

Therefore, E(h) is the cost function of the recursive, BSP tree representation method. At every step of the BSP recursion, our
objective is to find the (optimum) line A, which minimizes our cost function E(k). We refer to Ay as the LSE line. For
example, if A denotes the set of straight lines that pass through the domain of the desired image /(x, y), then the (first) line
hg selected to partition /(x, y) has to meet the following condition:

hy = mi
0 = i, E)
Using a brute-force method, 44 can be determined by computing the total error E(4) for all possible lines (i.e. for all & € H)

that pass through the image domain. However, this exhaustive search is very computationally intensive. As an example, for
an image of size NxN pixels, the brute-force method requires on the order of N* operations to detect the optimum line.

Using the cost function £(h), in this paper we derive a necessary condition for the optimum partitioning line k4. We refer to
this condition as the LSE fest. Performing the LSE test on every line h that passes through the image domain produces a list
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of LSE candidates which meet the LSE necessary condition. Now &, can be determined by computing the total square error
E(h) only for the lines in the LSE candidate list, and selecting the candidate with the minimum square error. Using the LSE
test when searching for hg in the set of all possible lines A can reduce the amount of computations significantly. For an NxN
image, the amount of computations required to detect A, is on the arder of N* which represents a reduction by a factor of N
when compared with the brute-force method. Even for small images (e.g. N=128) this represents a saving of about two
orders of magnitude. At the end of Section 4, we provide a rough estimate for the computational advantage of using our
proposed LSE algorithm versus employing the brute force method.

After detecting the first LSE partitioning line, the same process is repeated on the two resulting sub-images. In other words,
for each sub-image, one has to detect the optimum partitioning line which minimizes the total square error of the piecewise-
constant (mean) approximation of that sub-image. The LSE test is also used when searching for the two partitioning lines of
the two sub-images. The process is repeated recursively until the total or average square error (for approximating a given
region by its pixels’ mean) is smaller than some threshold. When this happens, the region under consideration will not be
partitioned, and it becomes a cell of the BSP-based representation of the original image.

As shown below, a given line y=h(x) is a LSE candidate if the image function along that line (i.e. the function
I(x, y) = I(x, h)) satisfies a simple condition (which is the LSE necessary condition mentioned above). This result is the
main contribution of our work, and will be derived in the next section. Since the LSE test has to be performed on lines that
pass through arbitrary convex regions of the image, it is shown that our result is valid for any convex domain D c R%. We
also show that the LSE test can be applied not only to straight lines but also to more general partitioning curves that satisfy
certain conditions.

3. LSE BINARY PARTITIONING OF CONTINUOUS FUNCTIONS

In this section, we derive a necessary condition for the optimum (in the least-square sense) piecewise-constant approximation
m(x,y) of a given function /(x,y), when m(x,y) consists of two constant values only. We assume that /(x,y) is defined
over a bounded convex region D (C Rz), In other words, D is enclosed within a convex curve c(x,y) = 0 as shown in Figure
2.

We denote Dy and D, to the two subdomains resulting from partitioning D by a continuous curve y = p(x; @), where
o= (a;,03,...,0,) €R"isa vector in n-dimensional space.
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The elements of ¢ represent n independent variables that parameterize the partitioning curve p uniquely. In other words, a
given o defines a unique curve p(x;a). For example, the straight line y = 01 + 5 X is uniquely defined by the two
parameters 01, which represents the y-intercept, and @5, which represents the slope of the line.

Let my and m4 be the constant (with respect to x and y), approximations of /(x,y) over D and D5, respectively.
Although m, and m, are constants with respect to the space vanables (x,y), they (m; and mj) are functions of the
parameter variables (¢¢;,03,. .., Q,). For a given convex contour ¢(x,y) and a class of partitioning curves P satisfying
¥y = p(x) such that p and ¢ intersect in two points only, our objective is to find my (p), m, (p), and p which minimize the
following error (or cost) function:

2 2

Enimai p) = | | [1G9)-mi@)] asay + [ ] [160)-map)] iy ¢

D, (p) D,(p)

It can be easily shown that, for a given p, the m | and m, which minimize E(m,m,; p) can be expressed as follows:
| LiGyaay .

D:(p) {
i = = 2
O T Ty A @

D;(p)

for i=1,2. Therefore, my and m that minimize E are the mean values of /(x,y) over the subdomains D | and D .

It is important to note that the optimum constant values (i.., m and m,) and the subdomains Dy and D, are functions of
the partitioning curve p. Therefore, one can express the error function E as a function of p only (ie., E(p) instead of
E(my.m,; p)). Moreover, since p is uniquely defined by the parameter vector & = (€),Q3,...,Q,), the above
optimization problem is equivalent to finding @ = (0ty,Q5,..., 0,) that minimizes the following square error (cost)
function:

2 2
E@ = [ [ [tey-m@| aty+ || [1cp-me)]| e ®
D (p(x:a)) Dylp(xio))

Before proceeding, it is important to take a closer look at the emor functions ey = [/ (x,y)—m1]2 and
ey = [I(x,y)—m» ]2. Throughout the rest of the paper, we refer to these functions as the error densiry functions because
they measure the amount of error per unit area over Dy and D, respectively. Since each of ¢; and e is a functional of
p(x; ), any change in one or more of the parameter variables (0,05, ..., &t,) will cause both ¢ and e, to change.
This change is quantified by the partial derivatives de;/dq; and de,/d;, where ;e {&y,0,...,Q,}. It can be
shown that the integral of de;/d; and de,/dq; over their respective domains D and D, are always zero. This is an
important result and we state it as a lemma:

¢« Lemma 1

Let [(x,y) be a square integrable function over a domain D CR 2 Let p(x; ) partition D into the two subdomains D
and D4. If € and ey are the error density functions resulting from approximating 1(x,y) by its mean values my and

my over Dy and D 5, respectively, then € and e satisfy the following, for all &;e {01 ,0y, . .., 0, }:
ael ae2
—dydx =0 d —dydx =0 4)
Jij a(l,‘ dy " IDJJ aai dy (

The proof to this lemma is given in [Radha 90a). Alithough we will use Lemma 1 to derive the necessary condition of the
LSE partitioning curve p which divides a convex domain D, the result of this lemma is valid for concave domains also.
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Moreover, this result is valid when D is partitioned into more than two subdomains. However, the more general case is
beyond the scope of this paper.

In the following sub-section we use Lemma 1 to derive a necessary condition for the parameter vector ¢ that minimizes
E(a). As will be shown, one form of this necessary condition is a relationship between the two error density functions
e (x,y; a)and e, (x,y; @) evaluated along the partitioning curve y = p(x; Q).

3.1 The LSE Necessary Condition
To simplify the minimization of the error function E as expressed in equation (3), we restrict D to be a convex domain.
s Theorem 1

Let I(x,y) be a square-integrable, continuous function over a bounded convex domain D CR2. Let P, be a class of
continuous differentiable curves that satisfy y = p(x;Q.). A given p, which is uniquely defined by the parameter vector
o = (0,02, ...,0,), partitions D into the two subdomains D | and D4. If @, = (Uo1,00p,...,0,,) iS @ point
of relative (local) minimum for the error function

2 2
E@ = [ [ [ien-m@] aay+ || [1cyp-mo) 2
D,(p(x;a)) D, (p(x;ia))

then O, must satisfy the following:

| bl () ey(xps ag) dx = [ p (@) e(x.pi @g) dx (5b)
da a

fori = 1’,2 y--es I, where d is the domain of the partitioning curve p(x;Q.,) over the x-axis and within the convex region
D,andp, = ap/da,;.

Theorem 1 shows that the error density functions e; and e, have to meet the above condition along the LSE partitioning
curve. In other words, a knowledge of the error function along a given p can determine if m(x,y; p) is a potential LSE
approximation of /(x,y) or not. Therefore, if e (x,y; @) and e¢;(x,y; @) do not satisfy equation (5b) for a given curve
p(x;a), then we know that this p does not minimize the error function (o). (Due to the lack of space, the proof is omitted
here. A complete proof for the theorem is given in [Radha 90a).)

1t should be clear that a knowledge of the emror density functions € and e, along the partitioning curve p requires a
knowledge of (i) the constant approximations m and m,, and (ii) the original function /(x,y) along p (i.e. /(x,p)). This
leads to a more intersting form of the condition in equation Sb.

e Corollary 1.1

The necessary condition of Theorem 1 is equivalent to the following necessary condition for the partitioning curve
p(x;00) which minimizes the error function E(Qt):

[ bl (@) lmy(ep) + ma(a,)] dx = [ p! (a,) IGxp(xie,)) dx (50)
d d

If one thinks of p;. as a weighting function (or a probability density in x over the domain d) for the original signal /(x,y)
along the partitioniﬁg curve p, then this corollary shows that the average value of /(x,p) has to be equal to the average value
of the two constant approximations /7, and m, when p minimizes the error functional E(p). It is important to note that this
condition (of equal averages) has to be met for all n weighting functions p;_, o;e{0y,0, ..., 0}

Since [m1(a,) + my(d,)] is constant with respect to the space variable x, one can write Eq. 5¢ as follows:
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himi(a,) + my(an)] | pl () dr = [ pl (0,) IGnp(xic,)) dx (5d)
d ' d !

(In Eq. 5S¢ we have selected 1o insert this constant expression inside the integral to show the analogy between I(x,p) and
“lmy () + ma(ap)])

If /(x,y) represents the z value in R3 (.e., z = I(x,y)), then the function /(x,p) is the 3-D curve resulting from the
intersection of the surface z = I1(x,y) and the infinite sheet y —p(x;a) = 0. By projecting this 3-D curve into the (x,z)
plane, one gets a function that (for a given p and /(x,Y)) depends on x only. Throughout the rest of the paper we will denote
this function by 7, (x) (which is the same as /(x,p)).

Although Eq. 5d expresses the LSE necessary condition in terms of the function /,(x), one needs to perform some
computation on J(x,y) over the whole domain D in order to test if the condition of Corollary 1.1 is met or not. This
computation is needed to evaluate the two values my and 5. In other words, a knowledge of /, (x) is not sufficient to help
us determine if Eq. 5d is satisfied or not. Therefore, we refer to Eq. 5d as the global LSE necessary condition, since a
knowledge (and processing) of the original function /(x,y) over the whole region D under consideration is required to
determine if the LSE condition holds.

In the next subsection we derive, from the global LSE condition, a local necessary condition for the optimum partitioning
curve. As will be shown, one can determine if a given curve p is a LSE candidate by testing the behavior of /(x,y) along
that partitioning curve only, i.e. along /(x,p). We derive the local condition for the special case when the partitioning curve
p is a straight line A.

3.2 A Local Condition for the LSE Partitioning Lines

One way to uniquely define a straight line in the (x,y) plane is by the slope and y-intercept parameterization:
y=h(x)=0; + 0, x. From this line representation, one can derive the necessary conditions for the parameters &y and o,
which minimize the error function E(t), where & in this case consists of &y and @, only. Using Eq. 5d, these two
necessary conditions can be expressed as follows:

[ 1Gh(x)) dx

Valmy(Q) + my(e)] = 4 — (6a)
(x2-x1)

[ x 1(x,h(x)) dx

Almy (@) + my(a)] = (6b)

h(xt-x,%)
where x; and x5 are the two end points of the domain d over the x-axis (see Figure 2).

Since the left hand sides of these two equations are the same, the right hand sides have to be equal. This leads to the
following form of the LSE necessary condition for the optimum partitioning line A:

Y(xa+x1) | Kxh(x) dx = | x I(x.h(x)) dx ™
d d

We refer to Eq. 7 as the local LSE condition for the optimum partitioning line #, since a knowledge of the function /(x,y)
along the line A (i.e., I(x,h)) is sufficient to determine if 4 is a potential LSE line. The local necessary condition of Eq. 7 is
the key element of our proposed algorithm for generating a piecewise constant approximation of an image using the recursive
BSP approach (described in Section 2). This algorithm is explained in detail in Section 4.

Although we have derived the above local condition for the slope and y-intercept (i.e., h(x) = 0| 4+, X) representation of
straight lines, the necessary condition of Eq. 7 is valid for any desired line parameterization. In addition, it is important to
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note that there several ways to test and interpret the condition of Eq. 7. In the following subsection, we take a closer look at
this necessary condition, and define a normalized transform useful for computing Eq. 7.

3.3 The LSE Partitioning Line (LPL) Transform

As explained in the previous subsection, a line # which minimizes the error function E (as expressed in Eq. (3)), has to satisfy
the condition of Eq. 7. This necessary condition can be expressed as follows:

*2
[ 1x = hGa+x1) ] IGh(x) de =0 ®)
I
Using a change of variables: t = x — /2(x3+x),and x, = Y4(x,+x) it can be shown that Eq. (8) is equivalent to the
following expression:

lo

[ tf@y de=0 ©)

where f(t) = I(t+x,,h(t+x.)),and £y = Y%[xy—x1].

If one thinks of f(t) as a weighting function for ¢, then Eq. (9) states that the weighted average of f has to be zero. Since
t = x—"[x,+x;], this is equivalent to having the average value of x (weighted by the image function /(x,k) along the
line #) equals the midpoint x, = % [x; +x; ] between x; and x5.

It should be clear from equations (8) and (9) that if the image function [, (x) = I(x,k) is even with respect 1o %4 [x5+x ]
(i.e., symmetric around x.), then / is a potential LSE line. This class of even / , (x)'s (which is one instance of the classes of
functions that satisfy the above conditions) includes the case when the image function is constant along the line k. Moreover,
if I,(x) has a nonnegative, constant value along one half of the interval [x;, x7] (e.g.,, [x1, x.]), and has another
nonnegative, constant value (or even several constant values) along the other half, then the above LSE condition is not
satisfied. These observations lead to the following important (yet intuitive) result.

1f the image function /(x,y) over a given domain D (under consideration) has a éimple step (or a ramp) edge, then the local
LSE condition stated above eliminates all lines crossing the edge from being LSE candidates, and admits all lines parallel to
the edge as being potential candidates for minimizing the error function E.

Based on the LSE local condition, we define the following image transform:
« Definition

The LSE Partitioning Line (LPL) transform, L(h), of a 2-D continuous function I(x,y) over a domain D is defined as
Sfollows:

_[ x I(x,h) dx
Lthy =2 (10)

X3

[ 1x.h) dx

I

where h is a straight line intersecting the boundary of the domain D in two points py and p,, and x| and X, are the x-
coordinates of p| and p, respectively.

From this definition, the LPL Transform (LPLT) measures the average value of x within the domain [x;, x,] weighted by
the function /(x,2). The denominator of the LPLT provides the desired normalization of the weighting function /(x,h).
Moreover, the LPLT transforms the image / over D from a function of the spatial variables (x,y) to a function (L(4)) of the
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straight lines passing through D. It is important to note that the above definition for L(k) is independent of the specific line
parameterization selected for representing h.

4. A RECURSIVE ALGORITHM FOR A LSE PIECEWISE-CONSTANT APPROXIMATION

Our proposed LSE-based algorithm requires two strictly positive thresholds: the average square error threshold T, (which is
needed to terminate the recursive Binary Space Partitioning of the image), and the line criterion threshold T, (which is
needed to select the LSE candidates as explained below).

To detect the LSE line, ideally one should look for all lines satisfying L(k) = x,. In practice, however, if 4 is a LSE line,
L(h) could be very close to x. (but not exactly equals to x.). This explains the need for the line criterion threshold T,
which provides an upper bound for the distance between L(h) and x, as shown in the LSE algorithm outlined below.

Moreover, one needs to quantize the parameter space of h to consider a finite number of straight lines passing through the
domain D. We denote H p to the set of quantized straight lines passing through D, where the number of elements in H p is
proportional to the area of D. For example, if the image size is NxN pixels then the number of lines needed to be considered
is on the order of N2.

In addition to the two thresholds (i.e., T, and T ), the LPL transform L(k), and the set of partitioning lines passing through
D (i.e., Hp), we use the following variables for our proposed LSE algorithm:

D and D, are the two subdomains resulting from partitioning D by 4.
A, and A, are the areas of Dy and D,.

m and m, are the mean values of the image function /(x,y) over D and D 5.

i A

E, and E, are the total square errors resuiting from approximating /(x,y) by m; and m, over D and D, ie.
E = El + E2.

5. S and S, are the average square errors over Dy and D,,ie. S| = E{/Ayand S, = E;/A,.

The LSE algorithm for generating a piecewise-constant approximation of an arbitrary image /(x,y) consists of the following
steps:

1. Set the domain D to the whole image domain, and begin the recursive partitioning.
. Compute L{#)and x.(h)forall he Hp.
III. Generate a set C p (or a list) of the LSE candidate lines that satisfy the following:
Lty - x. (W) < T, (11)
where T, is a small positive number.

IV. Compute the total square error E(h) for all lines he Cp. Select the line s with the minimum value of E(4), and use
h g to partition D into D ; and D .

V. Ifthe averageerror S > T,,set D = D, and go to step (II). Otherwise, consider D as a BSP cell (unpartitioned
region) and use m | for approximating /(x,y) over D .

VL. If the average error Sy > T,,set D = D, and go to step (II). Otherwise, consider Dy as a BSP cell (unpartitioned
region) and use m for approximating /(x,y) over D 5.

VII. End the recursion.

It is important to note that, in practice and due to computational errors when measuring L(4), the above algorithm does not
always guarantee that the selected lines are the LSE partitionings of their respective domains. However, as shown in the next
section, this LSE-based algorithm provides very satisfactory results when tested on simple as well as complicated images.
(From our experience, a selected line is either exactly or very close to the actual LSE partitioning line.)
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It should be clear that the thresholds T, and T, have a significant impact on the efficiency (measured by the total number of
unpartitioned regions) and the accuracy of the resulting piecewise-constant approximation. The higher 7', the more
partitioning lines are admitted to the set C p. This increases the probability of detecting the actual LSE partitioning lines. On
the other hand, the lower T, the less lines are admitted into C p, and consequently, the faster one can detect the partitioning
lines. Moreover, the lower T ,, the more accurate the approximation. However, the higher T, the less regions result from the
partitioning, and therefore the more efficient the representation.

Before leaving this section, let us provide a rough estimate for the computational advantage of using the proposed LSE
algorithm versus the brute force method for detecting the optimum partitioning line. With the brute force scenario one has to
compute the error function E for all lines in the set H p. For now let assume that H j contains N p discrete lines. Since the
amount of computation required for evaluating E is proportional to the area A py of the domain (under consideration) D, the
computational expense of detecting the optimum partitioning line is on the order of (Np Ap).

Using the LSE algorithm, however, one needs to compute the LPL transform L(h) for all N p lines. Since computing L(A)
is proportional to the length b of the domain D boundary, the expense of computing L (4) for all N lines is on the order of
Np b. Inaddition, one needs to compute the square error E for all N ¢ lines which satisfy the LSE line criterion (i.e., for all
he C p). Therefore, the computational expense of using the LSE algorithm is on the order of Wp b + N Ap). Based on
these numbers, the computational advantage ratio R . can be expressed as follows:

Np A
Rc=0|i oD } (12)

Np b+ N¢ Ap

If the number of LSE candidates (i.e., N ¢) that satisfy the line criterion of equation (11) is very small (which is the case for
most images) such that N p b >> N ¢ A p, the computational advantage R . will be on the order of (A p /b). For an image with
NxN pixels this means that R, = O(N). If N = 256, which is the case for the images shown in the next section, this
represents a computational saving of two orders of magnitudes. For example, using the brute force method, it takes about six
hours (on a Sun-4 machine) to detect only one (the firsty LSE partitioning line for the image shown in Figure 4, whereas using
our LSE-based algorithm, it takes about 45 minutes (on the same machine) to generate the complete piecewise-constant
approximation shown in Figure 7a. (See the next section for more details regarding our simulation results.)

5. SIMULATION RESULTS

The algorithm described is Section 4 was simulated in the C language, and tested on the original images shown in Figures 3,
4, and 5. These images represent simple, low-contrast, and highly-textured types of scenes, respectively. Throughout this
section, we refer to Figures 3, 4, and 5 by the cross, Mona Lisa, and girl images, each with a size of 256x256 pixels. The
main objective of presenting the results of the cross image is to demonstrate how the LSE algorithm works. Due to its
simplicity, one would expect that a good segmentation-based representation of the cross image should generate a perfect
approximation (i.e., zero error) with a minimum number of regions.

For all three images, we use a hierarchical method for sampling the
parameter space of the straight lines passing through a given region D.
In other words, for any region D (under consideration at a given step of
the recursive partitioning) the number of lines tested against the LSE
criterion of Eq. 11 is proportional to the area of D. For example, the
number of lines considered for partitioning the whole image (i.e., at the
first step of the recursion) is 2x256x256. As the partitioning progresses,
this number is decreased to as little as four lines only. In addition to its
computational advantage, this hierarchical approach for sampling the
parameter space provides an efficient representation of the partitioning
lines. This efficient representation is very important for image coding
applications as explained in [Radha 90b] (Radha 91b]. (The detailed
description on how to implement the hierarchical sampling of the Figure 3: The cross image.
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straight lines passing through a polygon with an arbitrary shape is
beyond the scope of this paper, and is the subject of a future work
regarding BSP-based image coding.)

Figure 6 shows the piecewise-constant approximation of the cross at
different stages of the LSE recursive algorithm. As seen in the figure, at
every step, the selected LSE line coincides exactly with one of the
straight lines at the boundary of the cross. The final result (shown in
Figure 6) is a perfect approximation of the cross with only 13 regions
(i.e., 13 BSP tree cells). This demonstrates the efficiency of the LSE-
based partitioning when applied on simple images containing strong
edges.

For the Mona Lisa image, we set the line criterion threshold
T, = 0.05, and the average square error threshold T, = 100.
Figures 7a and 7c show an intermediate and the final approximations
with the selected partitioning lines, respectively. The intermediate
image (Figure 7a) represents the piecewise-constant approximation
when T, = 200. Figures 7b and 7d show the corresponding
piecewise-constant approximations without the partitioning lines. As
seen from the figures, the LSE algorithm succeeded in selecting straight
lines that pass through the boundaries of the objects in the image
despite the fact that this image has very low contrasts among its
different regions. This results in an efficient partitioning of the image,
where the total number of polygons (cells) are about 450 and 1000, for
the intermediate and final images, respectively. It is clear also that by
lowering the error threshold, one can obtain more accurate
representation of the original image on the expense of more cells.

ige 4: The Mona Lisa image.

Figure 5: The girl image.

Figure 6: Intermediate and final approximations of the cross image.
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Similar to the Mona Lisa image, we set the line criterion threshold T, to 0.05 for the girl image, and used T, = 100. The
results of applying the LSE algorithm on the girl image are shown in Figure 8. The number of polygons for the intermediate
(Figure 8a) and final (Figure 8c) approximations are about 1000 and 1500, when T, = 200 and 100, respectively. Figureg
8b and 8d show the corresponding piecewise-constant approximations of the girl image without the partitioning lines. Due to
the large textured areas in the girl image, larger number of partitionings where needed to achieve the same level of accuracy
as in the Mona Lisa piecewise-constant approximations (shown in Figure 7). Again, in this case, one can notice that the LSE
algorithm succeeded in producing an efficient partitioning by selecting lines passing through the boundaries (or edges) of the
objects in the image.

6. CONCLUSION AND FUTURE WORK

In this work, we have presented a LSE-based, recursive method for generating piecewise-constant approximations of images.
The method was developed using an optimization approach to minimize a square error (cost) function. We have derived both
a global and local LSE necessary condition for the optimum curve which minimizes this error function.

As shown in the previous section, the proposed LSE algorithm provides an efficient segmentation of simple as well as
complex images. This shows the potential of this approximation approach for image coding applications. In addition, the
proposed algorithm provides a significant reduction in the computational expense for detecting the LSE partitioning lines
when compared with a brute force method.

Currently, we are working on using this LSE-based and a boundary-based (proposed in our previous work [Radha 91b]) BSP
tree representation method to develop an efficient image coding algorithm. Moreover, further improvements can be made to
the L.SE algorithm. For example, a better way to detect the partitioning lines that satisfy the LSE condition (see Eq. 11), is to
look for the zero-crossings of |L(h) ~ X, (M)l in the parameter space rather than using a threshold value (i.e., the line
criterion threshold 7',). This new searching method can eliminate a large number of LSE candidate lines, and therefore, can
improve the speed of the algorithm. We also considering a hybrid approach where both boundary and LSE-based
partitionings are used to generate the piecewise-constant approximation of images. It is our belief that this hybrid approach
will provide a better segmentation than either method applied alone.
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