
Heuristics to Increase Observability
in Spectrum-based Fault Localization

Claudio Landi1 and Arjan van Gemund2 and Marina Zanella3

Abstract. The high abstraction level of Spectrum-based Fault Lo-
calization (SFL) reasoning, on the one hand, offers the advantage of a
model-free approach to diagnosis, while, on the other, reduces the in-
herently limited testability of many hardware and software systems.
Thus, along with substantial complexity gains, SFL exhibits limited
diagnostic performance, compared to Model-Based Diagnosis. This
paper describes two algorithms (Lion and Tiger) that exploit low cost
heuristics to determine the best location to insert additional test ora-
cles (monitors, probes, invariants) so as to increase the observability
within the systems. Experiments show that even simple algorithms
can considerably improve SFL’s diagnostic accuracy.

1 AMBIGUITY REDUCTION

In SFL [1, 5] the following is given:

• A finite set C = {c1, . . . , cj , . . . , cM} of M components of
which Mf are faulted.

• A finite set T = {t1, . . . , ti, . . . , tN} of N tests with binary out-
comes O = (o1, . . . , oi, . . . , oN), where oi = 1 if test ti failed,
and oi = 0 otherwise.

• A N ×M (test) coverage matrix, A = [aij], where aij = 1 if test
ti involves component cj , and 0 otherwise.

The health of cj is denoted hj ∈ R, where hj = 1 represents full
health, hj = 0 represents faulted in all circumstances, while 0 <
hj < 1 represents the case where cj returns a failure in fraction
hj of the cases. The result of SFL is a component ranking R =<
cr(1), . . . , cr(j), . . . , cr(M) >, ordered non-increasingly in terms of
the likelihood Pr(cj) that cj is at fault. For the purpose of this paper
we equate Pr(cj) to the Ochiai [2] similarity coefficient sj ,

sj =
n11(j)√

(n11(j) + n01(j))(n11(j) + n10(j))

where npq(j) is given by npq(j) = |{i : aij = p ∧ oi = q}|.
The diagnostic utility (accuracy, performance) of R is measured

in terms of the identification cost Cd, which models the verification
effort of a diagnostician, going down the ranking R searching for the
actual faults (true positives). In particular, we measure the identifica-
tion effort wasted on false positives (i.e., excluding the components
found to be faulted) in order to obtain a metric that is independent
of Mf . Let r denote the index in R of the faulted component with
the lowest likelihood. Then the identification cost for all Mf faults

1 University of Brescia, Italy, email: claudio.landi24@gmail.com
2 Delft University of Technology, The Netherlands, email:

a.j.c.vangemund@gmail.com
3 University of Brescia, Italy, email: marina.zanella@unibs.it

equals r and the wasted cost is r −Mf . We will consider a normal-
ized value Cd = (r − Mf)/(M − Mf) which ranges from 0 to 1
(0 indicates no identification effort, i.e., all faulted components are
ranked at the top, whereas 1 indicates maximum identification effort,
i.e., all faulted components are at the bottom of the list).

Consider the circuit topology shown on the left of Fig. 1.

��

��

��

��

�

��

��
��

��

��

��

�

��

��

��

Figure 1. Example system (left) extended with monitor (right)

In SFL, each primary output observation is interpreted as one test.
Thus one input vector (x) represents two tests, one involving c1, c2,
and c3 (the cone of y1), and one involving c1, c2, and c4 (the cone of
y2). Two test oracles readily monitor y1 and y2. Assume that c1 is at
fault, and that we observe y1 correct 4 (pass), and y2 incorrect (fail).
In terms of A and O we have

1 1 1 0 +
1 1 0 1 -

where ’+’ and ’-’ denote pass and fail, respectively, to distinguish
O from A in the figure. The associated similarity coefficients for
c1, . . . , c4 are 0.71, 0.71, 0, 1, respectively. In terms of diagnostic
performance, Cd = 0.5 since, after inspecting c4 (and finding out
that it is normal), half of the times the diagnostician will hit on c1.
SFL’s disappointing diagnostic performance (Cd = 0.5, no better
than random) is due to the ambiguity group (c1, c2), that have equal
columns in A and therefore end up in the ranking with equal similar-
ity coefficient. Suppose that, as shown on the right of Fig. 1, in order
to improve the diagnosis, we choose the output of c1 to place the
new monitor so as to break the ambiguity group. If we run x again
we now obtain

1 1 1 0 +
1 1 0 1 -
1 0 0 0 -

The output of c1 (y3) turns out to be incorrect. The associated simi-
larity coefficients for c1, . . . , c4 are now 0.82, 0.50, 0, 0.71, respec-
tively. Consequently, c1 is now ranked on top and Cd = 0, i.e., per-
fect diagnostic performance.
4 Note that a fault has not to manifest itself at the component’s output, nor

propagate to a system output.

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-1053

1053

2 ALGORITHMS

Both algorithms for oracle placement sketched in the following are
based on a simple, myopic heuristic, their space complexity is neg-
ligible compared with that of the coverage matrix, and they are in-
tended to be called successively, until sufficient diagnosability is
reached. The actual algorithms can be found in [4].

Algorithm 1 is intended for a static, design for SFL-diagnosability
context, where a system topology and associated test suite are avail-
able (i.e., a coverage matrix A), but where the tests are not yet exe-
cuted (or executable). Its rationale is to search for the largest ambi-
guity group (AG) in A: if one exists, it adds a monitor at a location
that minimizes its size. Parameter P ⊆ C denotes the subset of com-
ponents whose output is (already) monitored by a test oracle. Func-
tion GETLARGESTAG returns the largest AG, denoted C′, from the
components selected as parameter (initially C). If there exist several
largest AGs, one of them is randomly chosen. Function UPDATEA
adds the new rows to A that are generated by those tests in the test
suite that exercise c. Lion selects the component c′ that minimizes
A’s new AG size (s), and adds it to P . Note that each time a monitor
is added, it is possible that other AGs are also split, which produces a
further ambiguity decrease. The algorithm returns the updated A and
P , which can be used when Lion is recursively applied. The ambigu-
ity size is typically used as termination criterion.

GETLARGESTAG takes O(M2 · N) operations. The search for
component c′ costs O(M) (size of C′) times the sum of the costs of
both the matrix update (O(N) partial row copies) and the identifica-
tion of the largest AG (O(M2 ·N)), which totals O(N ·M3).

Algorithm 1 LION

function LION(A,P)
C′ ← GETLARGESTAG(A,C)
if |C ′| = 1 then

return NULL
end if
s = |C′|
for each c ∈ C′, c �∈ P do

A′ ← UPDATEA(A, c)
C′′ ← GETLARGESTAG(A′, C′)
if |C′′| < s then

s ← |C′′|
c′ ← c

end if
end for
A′ ← UPDATEA(A, c′)
P ′ ← P ∪ {c′}
return (A′, P ′)

end function

Algorithm 2 is intended for a dynamic operational context where
the outcomes of run-time tests are available. Such outcomes are ex-
ploited so as to assist SFL in minimizing the ambiguity of R (in
probabilistic sense). To this end, Tiger selects the component having
the highest likelihood among those whose output is not monitored
yet. Function SFL computes ranking R given coverage matrix A and
test outcomes O. After the new component c is selected for monitor-
ing, Tiger recomputes the matrix, retests the system (function TEST),
and returns the new A,P,O to allow recursive application. The rank-
ing index of the component selected for monitoring and/or the size
of the largest subset of components that have the same value of the
similarity coefficient can be used as termination criterion.

The time complexity of Tiger is entirely determined by the SFL
algorithm (O(M(N + logM)), the matrix update (O(N ·M)), and

executing the test suite (amounting to O(N ·M)).

Algorithm 2 TIGER

function TIGER(A,P,O)
R ← SFL(A,O)
R′ ← R \ P
if |R′| = 0 then

return NULL
end if
c ← r′1
A′ ← UPDATEA(A, c)
O′ ← TEST(T)
P ′ ← P ∪ {c}
return (A′, P ′, O′)

end function

3 EXPERIMENTS

The algorithms have been tested by using a simulator based on a real
situations awareness system developed at Thales Naval Systems. The
original DAG topology of the system was modified to include some
more components and random execution paths (tests) to make the di-
agnosis task more challenging. The system comprises M = 74 com-
ponents. There are 10 test suites available, each providing N = 33
distinct execution paths. The diagnostic performance of Lion and
Tiger are measured in terms of the metric Cd, obtained from inject-
ing Mf faults, running the tests and performing diagnosis, while in-
creasing the number of monitors as subsequently computed by either
Lion or Tiger. In order to provide a reference, the performances of
the algorithms are compared to those of Random monitor placement
(upper bound on Cd) as well as Brute-Force placement (lower bound
on Cd), enumerating over all M − |P | added monitors.

Each of the 10 test suites is executed, and the Cd results are av-
eraged over the 10 test suites. Within each test suite the Cd results
are averaged over random fault injections, executing each test mul-
tiple times to sample from the random faulty component health (h).
In total, per test suite the number of tests executed is 450 per moni-
tor placement. Due to the complexity of brute-force computation, the
experiments have been restricted to single fault injections (Mf = 1).
Experiments offer evidence that, even with its low-cost heuristic,
Tiger is capable of approaching optimum brute-force placement,
roughly within a factor close to 3 in terms of monitors required. Lion
performs less, as it does not exploit the test outcomes. Nevertheless,
Lion performs far better than random placement, as the AG size in A
is a good predictor of diagnostic performance.

In the future, time efficiency and quality of results achieved by
SFL when assisted by either Lion or Tiger should be compared with
those relevant to a Model-Based Diagnosis solver that, as SFL, can
diagnose multiple persistent and intermittent faults [3].

REFERENCES

[1] R. Abreu and A.J.C. van Gemund, ‘Diagnosing intermittent faults using
maximum likelihood estimation’, Artificial Intelligence, (2010).

[2] R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, ‘On the accuracy
of spectrum-based fault localization’, in Proceedings TAIC-PART’07,
(2007).

[3] J. de Kleer, ‘Diagnosing multiple persistent and intermittent faults’, in
Proceedings IJCAI’09, (2009).

[4] C. Landi. Algoritmi per la riduzione dell’ambiguità di diagnosi topo-
logiche, Università degli Studi di Brescia, Italy 2012. MSc thesis.

[5] A.J.C. van Gemund, S. Gupta, and R. Abreu, ‘The ANTARES approach
to automatic systems diagnosis’, in Proceedings DX’11, (2011).

C. Landi et al. / Heuristics to Increase Observability in Spectrum-Based Fault Localization1054

