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We propose a quantum memory for a single-photon wave packet in a superposition of two different colors,
i.e., two different frequency components, using the electromagnetically induced transparency technique in a
double-A system. We examine a specific configuration in which the two frequency components are able to
exchange energy through a four-wave mixing process as they propagate, so the state of the incident photon
is recovered periodically at certain positions in the medium. We investigate the propagation dynamics as a
function of the relative phase between the coupling beams and the input single-photon frequency components.
Moreover, by considering time-dependent coupling beams, we numerically simulate the storage and retrieval of

a two-frequency-component single-photon qubit.
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I. INTRODUCTION

In recent years optical quantum memories had become the
focus of an important research activity [1-7] for being one
of the main ingredients for quantum information processing
applications. In particular, in quantum information, the long
distance transmission of photons (or flying qubits), which
are the preferred information carriers, is limited by photon
losses. Thus, transporting quantum states of light between
different nodes of a quantum network requires the use of
quantum repeaters [8,9], whose basic components are quantum
memories. Therefore, quantum memories should be capable of
storing arbitrary quantum states of light for an arbitrarily long
time and release them on demand and with high efficiency and
fidelity [1].

Among the different methods for implementing a quantum
memory, the approach based on electromagnetically induced
transparency (EIT) [10-15] is one of the most used, allowing to
store a single photon in solid state systems for times >1 s [15].
This technique consists in slowing down a weak light pulse
coupled to one transition of a A-type three-level system in the
presence of a control field coupled to the other optical allowed
transition. By adiabatically turning off the control field the
light pulse is absorbed and mapped into the coherence between
the ground states. Next, after a desired time which should be
smaller than the decay time of the ground states coherence,
the control field is turned on again and the initial light pulse is
recovered.

For the storage of a general photonic qubit, i.e., a single
photon in an arbitrary superposition of two different com-
ponents, more sophisticated schemes are needed [16-27]. In
quantum communication with photons, the logical qubits can
be encoded in several ways, for example, via polarization, time
bin, path, phase, photon number or even frequency encodings.
In particular, several works have focused on the storage of pho-
tons with two frequency components using the EIT technique
in resonant double-A media [23-31]. Those proposals have
been formulated mainly in the semiclassical regime. However,
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the storage of a two-color quantum entangled state would
be interesting because it would have potential applications in
future quantum information networks, e.g., they could be used
to link systems of different nature [32,33]. One of the main
issues regarding two-color memories, both in quantum and in
classical approaches, is that the existence of a dark state in
resonant double-A systems [34,35] together with the presence
of four-wave mixing processes lead to a pulse matching of
the frequency components [36]. This implies that the two
input frequency modes cannot be independently stored [26].
In particular, only a specific combination of the two modes
can be perfectly absorbed and recovered [24,36,37], whereas
for an arbitrary two-frequency-mode input, part of the light
will propagate transparently and part will be absorbed [24].
Nonetheless, it has been shown that the four-wave mixing
processes arising in double- A media, which make difficult the
implementation of a suitable quantum memory, have inter-
esting applications in frequency conversion of classical probe
beams [36,38], single-photon frequency conversion preserving
the quantum coherence [35], and in the possibility to combine
or redistribute one or two previously stored frequency modes
[23,27,37], even with different relative intensities [24]. An
interesting situation is found when one of the two A systems
of the double-A configuration is far detuned from the one
photon resonance. In this case, considering the continuous
wave regime, it has been shown that the total light intensity
is weakly absorbed during the propagation [38,39], while the
intensity of each mode oscillates sinusoidally with the optical
length, being the energy transferred back and forth between
the two probe beams. Later, a similar result was obtained in the
quantum regime [40], where a single photon coupled initially
to one of the transitions of the double-A system oscillates
during propagation between the two frequency modes, thus
creating a superposition state at certain positions in the medium
with high efficiency.

In this work, we combine the usual EIT-based storage
technique with the four-wave mixing properties of a double- A
system to implement a quantum memory for single photons
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in an arbitrary superposition state of two frequencies. By
solving the evolution equations of the single-photon frequency
components we show that an arbitrary input superposition of
two frequency modes can be recovered at certain positions of
the medium, and that the relative phase between the coupling
fields and the particular form of the input state play a crucial
role in the propagation dynamics of the frequency components.
Later, the storage and retrieval of the frequency superposition
state is shown by the numerical integration of the system
equations.

The paper is organized as follows. In Sec. II we describe
the physical system and derive the equations that govern its
evolution. In Sec. III we analytically solve the propagation
equations of the incident single-photon frequency components
and study several examples using different input superposition
states and control fields parameters. Next, in Sec. IV, nu-
merical integration of the evolution equations of the system
is performed to check the validity of the analytical approach,
and the storage and retrieval of a particular input superposition
state is shown. Finally, we summarize the results of this work
and present the main conclusions in Sec. V.

II. THE MODEL

We consider the physical system sketched in Fig. 1,
where a single-photon wave packet in a superposition of two
different frequency modes, of central frequencies a)gl and
a)gz, and corresponding amplitudes E;l and E;z, propagates
through a system formed by A-type three-level atoms. Both
frequency components interact with the left optical transition
of the three-level atoms with a different detuning, §,; or §,.,
being §,, far from the one photon resonance while 6, is
close to resonance. We assume that the difference between
the detunings is much larger than the spectral widths of
the frequency components, such that there is no overlap
between them. The other optical transition is driven by two
strong coupling beams, of frequencies a)?, and w?z, tuned in
two-photon resonance with the corresponding single photon

1)

FIG. 1. (Color online) Double-A atomic scheme coupled with
single-photon frequency components, E*1 and E 2, and classical
field amplitudes, E.; and E,, satisfying the two- photon resonance
condition. The fields are detuned from the one photon resonance with
corresponding detunings &, and 8,,, with §,; < §,,. All the atoms
are initially in state |1).
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components, thus forming a double-A system. We consider
that initially all the atoms are in the ground state |1). The total
decay rate by spontaneous emission from the excited to the
ground states is y», and the decoherence rate of the ground
states is denoted by y3.

The total Hamiltonian of the system is given by three
contributions, the atomic (H,), the field (Hf), and the
interaction (H;) Hamiltonians:

=1 (1611 + w62 + w3633), (M
Hp = / hw,,&j)p&a,pdw,,, )

Hy =— Z (/‘L12(721)E+ + /L12(721 E
+651Q0 +63nQ0 + He), 3)

where the atomic population and coherence operators are
of the form 6,, = [v)(v] and 64 = |v)(p|", respectively,
where v # p = {1,2,3} and Jj = {1,2} refers to the coherence
generated by the mode »’.. The energy of the atomic state
|v) is given by hw,, h belng the Planck’s constant, wyy is
the electric dipole moment of the |1) — |2) transition, and
al and a a,, are the creation and annihilation field operators,
respectlvely, for a frequency mode w,,. The Rabi frequencies of

the classical beams are denoted by ch = Qe il fertie;

where Q.; = |l Ejl/h, o3 is the dipole moment of the
[3) — |2) transition and E; the corresponding electric field
amplitude. The amplitudes of the quantum field operators read

E[J)rj = fe(])&wl,e

where c is the speed of light in vacuum and ¢

i dw,, 4)

(’)—el‘l[(a)p—

w, j)/ Aw,;l, with € =/ ;’:{’)“2, , & the electric permittivity
in vacuum, w1, = w; — w, the transition frequency between
states |1) and |2), V the quantization volume, and M(w) a
boxcar function of width Aw,;, centered at a)g i We assume
Awp; much larger than the spectral width of the corresponding
frequency component dw,,;, but not enough to overlap with the
other one, i.e., |w22 wgll > Awpj > Swp;.

To find the evolution equations of the single-photon
frequency components we adopt the procedure and formalism
from Ref. [41]. The initial state of the system has the form

it = —00) = [ doy £35 (=001, 10.0),11)

+ / doop f2(=00)al (00,11, (5)

where w); € [0, — Aa),,j/2,a)gj + Aw,;/2]. Here we have
used the notation |ny, nz) [v), where np and n, are the number
of photons in modes ° Dl and a)pz, respectively, and v denotes
the atomic state. Tracmg out the atomic part, the first and
second terms in the right-hand side of Eq. (5) correspond to the
initial state of each frequency component of the single photon,

and fy G )( oo) are the envelope functions of the wave packet,

which have a narrow peak at ° ;. We assume that they are spec-
trally separated enough such that their overlap is negligible and
must satisfy [ dwp| f) (—00)|* + [ dwp| f§ (2) )(—o0)]* = 1.

Wp1
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So the photon is initially in an arbitrary superposition of the
two frequency components, and the atoms are all in the ground
state |1). Next, we assume that the general form of the state of
the system at any time is

[V () = Y1) + [¥2(0)) + [¥3(1)), (6)

where the first, the second and the third terms correspond to
the excitation being either in one of the photonic modes, in
the atomic state |2), or in state |3), respectively. Their explicit
forms are

o) = [ oy f0 @, 10.0),11)
+ f dewp fR(0a),10,0),]1), (7)
=Y [b1165,10.0),11) + ba(1)657'10.0),|1)]. (8)
W3(0) = > 8(1)63110,0),11), ©)

[¥2(1))

where the sums are over all the atoms of the medium, b;(t)
and b,(t) are the probability amplitudes of exciting one atom
to the state |2) through modes ', and @9,, respectively, and
g(¢) is the probability amplitude of transferring the population
to state |3) via a two-photon process. Those functions together
with f m(t) and f) 2) ’(1) give a complete description of the
state of the system. fn order to find their evolution, we insert
the general form of the state of the system [Eq. (6)] into the
Schrodinger equation and apply (1,01, (1], (0,1],(1], (0,0, (2],
and (0,01, (3|, obtaining

0,150 = w0, £5)(0) = ZENeb,(ne™ 5 (10)
i3,b;(1) = wab; (1) — g(HQY, — %efda)mfu/)(t)e o

(1)

i9,8(t) = w3g(t) — [(Q) " b1(1) + (%) 'b2(0)]. (12)
where N is the number Qf atoms in our sample. Next,
multiplying Eq. (10) by €'“»%/¢ and integrating over w,;
we obtain the propagation equation for the quantum field
amplitudes

1
(;2% +3z)5j(z,t) =ikpfj(z.1), 13)

where we  have  defined  &j(z,t)e” i 1=2/e)
Mlze fdij f(])(t)eiww-z/c Bi(z,t)=b '(t)eiij(tfz/c) and

M . With these definitions, Egs. (11) and (12) read

Ki2 =

9Bj(z.1) = iApBj(z,1) +i(z,1) +ig(z,NR;, (14)

0,8(z2,1) = i[Q Biz.0) + Loz, — yisg(z1),  (15)
where we have added phenomenologically the ground-states
decoherence y3 in Eq. (15) and the spontaneous emission from
the excited level y, in Eq. (14) through the complex detuning
Ay =8,j — iy2/2,beings,; = Y, — w). Moreover, we have
defined Q.; = Q.;e'?, we have assumed degenerate ground
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and we have chosen the

: _ 0
states, i.e., w; = w3 and W, = Lj,

energy origin at iw; = 0.

III. SOLUTIONS OF THE EVOLUTION EQUATIONS

The equations describing the propagation of the single-
photon frequency components in the double-A system can
be solved by using the adiabatic approximation for Eq. (14),
i.e, 9;B8,(z,t) = 0, and changing from temporal to frequency
domain by applying the Fourier transform to our system
equations. Next, inserting Eqs. (14) and (15) into the Fourier
transformed Eq. (13), a linear system of partial differential
equations for the quantum field amplitudes in the frequency
domain, £;(z,w), is obtained. This can be solved, leading to

Eiz.0) =

E’J(O’w) |QCJ |2 <eia)z/v4, 4 2o |QCI| zwz/vbeiaz>
12212 192,12

—%

Q. Q ‘ .
+g](0 w) |Q|2d( iwz/ve _ ezwz/vbeu)tZ)’ (16)

where j,l = {1,2} and j # 1, gj(O,a)) is the boundary con-
dition for the spectral envelope of the frequency component

centered at 0°,, ¢ = —/qz— and

ri’

1 1 K12
r_t, ke 17
W iar (1n

11 R 1Qu P 1Qe (A p1 — Ap)? (18)
v, ¢ IQP? D? ’

with D = Apl|g202|2'|'Ap2|ch|2 and |Q|2 |ch|2
|| In Eq. (16) we have assumed that the decoherence
time of the ground states is much larger than the time needed
to store and retrieve the single photon, thus y;3 >~ 0. Moreover,
we have approximated the exponents as linear functions of w
by Taylor expansion up to first order, and we have considered
the coefficients independent of w, as done in Ref. [40]. With
these approximations, and considering a small decay from the
excited level y2 < (8,111 + 8,219211%)/IRQ1?, the inverse
Fourier transform of the field can be performed analytically.
Then, it can be seen that in general each of the components
of the frequency superposition will split in two different
parts, each one propagating with a different velocity given
by Eqgs. (17) and (18). Assuming [Q.1| = [Q], §,1 =0,
and &,, > y», the velocities for the frequency components
are approximately equal v, >~ v, = v, and hence the inverse
Fourier transform of Eq. (16) can be rewritten as

Ei(z,t) = %[5, (O,t - %)(1 + €ie%)

+€1(Ot—;> (1 — "‘“)}, (19)

where ¢ = ¢;
coupling fields. Note that o« now reduces to o =~
lK12 [42]

To obtaln the intensity of each component of the single-
photon frequency superposition we calculate &;(z,1)E7(z,1)

— ¢ is the phase difference between the
2K12 +

Sp2
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2
& (t - 5) {1+ ¢ + 2 cos[Re(a)z]e ™} +
v

0 < 0 <
51("5)\5/'(%)

where ¢; = ¢; — ¢; is the phase difference between the single-photon frequency components at the input z = 0. In Eq. (20) the
time evolution appears only in the boundary conditions 8?(1‘ — %)= &;(0,r — %). This means that the single-photon wave packet
keeps its shape, but it is drifted in time a quantity 7. = z/v, which depends on the velocity v defined in Eq. (17). Moreover, it can be
seen that, while the single photon propagates, the intensities of the two frequency components exhibit complementary oscillations
with a rate that depends on Re(«). Note that the decaying terms Im(«) in Eq. (20) are due to spontaneous emission from the
excited level. An interesting case is found when one considers a symmetric superposition state at the input, i.e., |£;)(t)| = |5,0 ®)].
In this situation, Eq. (20) takes the form

2 —2Im(a)z
0 Z 1 +e 1
& <t — ;) (f + { cos(¢j; + %‘z)(#

In this case, when ¢ ;; + ¢j; = 0, there is no oscillation between the frequency components during the propagation and the intensity
of each single-photon frequency component is perfectly transmitted, i.e., |£; (Z.D]? = |€?(t — §)|2. This can be interpreted by
considering that, through a four-wave mixing process mediated by the coupling beams, the energy going from the first to the
second component is compensated by the energy transfer from the second component to the first one.

Analogously, we find the relative phase between the two frequency components using

of, %
(-3)

+ i sin[Re(a)z]e ™)

using Eq. (19):

2
& (t - %)' {1+ e ™M@= _ 2 cos[Re(ar)z]e ™"}

1
1€z, ) = Z[

+ 2Re< e'iei®i{] — e Am@z 4 2; sin[Re(a)z]eIm(“)Z}>], (20)

_ e—ZIm(a)z

1€z, = ) — sin(¢j; + <ﬂjz)Sin[Re(Ot)Z]e_I“‘(“)ZD. (21)

0 Z 1 + e—ZIm(ot)z .. 1
& (t — ;) ‘ { cos(pj; — qﬁjl)f + i sin(pj; — ¢jr)e M@" cos[Re(ot)Z]}

Ei(z.0E (z,1) = (

|£0(c — )" — |&2(c - 2)[° L= e 2m@z |£9(r — )P 4 £t — £) 2>ei¢ﬂ.
2 2 2

(22)

From this expression, we observe that in general the phase difference of the coupling beams. For instance, the different

between the two components, arg [£;(z,¢)E/*(z,t)], will oscil- line styles in Fig. 2 correspond to different initial intensities of
late in a more involved way than the intensity [Eq. (20)]. In

particular, we observe that only when the imaginary part of 1 ; ;

the outermost parentheses in Eq. (22) vanishes the phase will (a) P A

be independent of z.

In what follows, by evaluating the analytical expressions —
obtained in Eqs. (20) and (22), we discuss different propagation —=
examples of the two frequency components; see Figs. 2 and 3.

We change to a reference frame fixed at the peak of the single-
photon pulse (¢, = z/v), so we need only to show the variation
on the spatial dimension z. In Figs. 2(a) and 3(a) we plot the
normalized intensity of each of the two frequency components,

€ (z,t0)I?
2| + &
whereas in Figs. 2(b) and 3(b), the relative phase between them,
®i(z) = arg [€;(z,1)E] (z,1.)], (24)

. ) e
o 2
N o ", —
0.8 s, R a,
S, & ",
N, &7 "
s \,

I(z) = (23)

D12(2) (rad)

. . . —T Il Il
is shpwn. In all the figures the different line styles correj,spond 0.00 0.02 0.04 0.06 0.08 0.10
to different sets of parameters (see the caption), while the oL
black and gray lines both in Figs. 2(a) and 3(a) correspond
. . O 0
to the intensity of the frequency components @, and @ FIG. 2. (a) Normalized intensities of the single photon frequency

respectively. We have taken Im(a) = 0, a fact that is well components /; (black) and I, (gray), and (b) the relative phase
justified from the assumption 8, > y» made in Eq. (19).  between them forRe(ar) = 27r/L, with L = 0.1 (a.u.) being the length
These figures are useful to show that the behavior of the two of the medium, and Im(«) = 0. Solid lines: 7,(0) = 0.99, ¢, = 0,
components during the propagation depends completely on @12 = 7 /4; dashed lines: I;(0) = 0.85, ¢y, = 0, ¢1p = 7/4; dotted
the specific state at the entrance of the medium and the phase lines: 1;(0) = 0.70, ¢12 = 0, 12 = /4.
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0.8 F s

=~ 04 f

0.2 + s

(I>12(Z) (rad)
o

- 1 1 1 I

0.00 0.02 0.04 0.06 0.08 0.10
z/L

FIG. 3. (a) Normalized intensities of the single-photon frequency
components /; (black) and I, (gray), and (b) the relative phase
between them for Re(a) = 27 /L, with L = 0.1 (a.u.) being the length
of the medium, and Im(a) = 0. Solid lines: 1,(0) = 0.5, ¢;» =0,
@1, = 1/3; dashed lines: 7;(0) = 0.5, ¢1» = 7/2, @1, = 7/3; dotted
lines: 1,(0) = 0.5, ¢12 = 0, 91 = 0.

the frequency components, while the relative phases between
the frequency components and coupling beams are fixed. We
observe that the different initial superposition states lead to
intensity oscillations with different amplitudes and shifted by
different amounts. Further examples are shown in Fig. 3, where
the input intensities are equal for the two frequency modes, and
the relative phases between them and between the coupling
beams are changed. We observe in Fig. 3(a) that opposite
behaviors for the intensity of a given mode are obtained just
by properly changing the relative phase of the coupling beams
(solid and dashed lines). Moreover, note that the case shown
with dotted lines, i.e., 1,1(0) = 1,,(0) and ¢1» = @12 =0,
corresponds to the situation discussed after Eq. (21), in which
the photon state does not evolve during propagation.

As a general conclusion from Figs. 2 and 3, we observe that
the more different the intensities of the frequency components,
the largest the variation in their relative phase, and vice
versa. We also observe that the relative phase oscillates
around the value ¢;;. Moreover, the most remarkable fact
is that the frequency of the oscillation, both in the intensity
[Eq. (23)] and in the phase [Eq. (24)] is determined only by
Re(or) 2 —2k12/8 2. This means that by properly choosing the
coupling parameter «, and the detuning §,,, one can recover
at the output of the medium, z = L, the initially injected state
with an ideally perfect fidelity, i.e., £;(L,t) = é';)(t —t.) for
Re(a)L = 27n, withn € Z.

IV. NUMERICAL ANALYSIS

In this section we demonstrate the validity of the
approximations made in the analytical approach by numer-
ically integrating Eqgs. (13)—(15). Moreover, we show the
possibility of storing and retrieving a single photon in an
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FIG. 4. (Color online) Normalized intensities of the single pulse
frequency components, /; (a) and I, (b), as a function of normalized
position and time, and (c) the phase between the frequency compo-
nents at the pulse peak as a function of normalized position. The
parameters correspond to the case represented with dotted lines in
Fig. 2.

arbitrary superposition state of two frequency components
using time-dependent coupling fields. To simulate the pulse
propagation in time and space, a bidimensional grid for each
variable is created with a spacing in the z dimension small
enough to ensure the convergence of the results. The steps for
the numerical protocol are the following: First, the temporal
evolution of the medium variables is obtained from the incident
(z = 0) field components, which are assumed to have Gaussian
profiles of temporal width T = 25 ns and centered atf, = 3.57,
using a Runge-Kutta integrating method. Next, the field at the
adjacent spatial point is determined with a finite difference
method, using the preceding obtained values. Finally the
previous steps are repeatedly performed until the whole grid
is filled. For the medium we take a length of L = 0.1 m,
vt = 0.16, Y137 = 1.6 x 107>, and k1>t L ~ 500, while the
detunings are 8,17 = 0 and 8,57 = 160.

On the one hand, an example of the propagation of the
two single-photon frequency components is shown in Fig. 4,
where the normalized intensity of both components, /; (a)
and I, (b), is shown as a function of position and time
for constant coupling Rabi frequencies |§cj It = |Qult = 18,
and a phase between them of ¢, = 0. The peak amplitudes
of the frequency components for the injected single photon
are |EX(t.)|t = 1.3 x 1073 and |E)(t.)| = +/0.3/0.7|ED(2.),
with a relative phase ¢, = 7w /4 between them. Note that
those parameters correspond to the case represented in Fig. 2
with dotted lines. As we observe, the intensities for the
two frequency components exhibit complementary oscillations
with a spatial period of ~0.125L. Moreover, the displacement
of the peak allows to estimate a propagation velocity of
~10° m/s. Using the model derived in the previous section, the
values obtained for the oscillation period and the velocity are
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FIG. 5. (Color online) Temporal profile of the coupling beams (a)
and normalized intensities of the single pulse frequency components,
I, (b)and I, (c), as a function of normalized position and time. The pa-
rameters correspond to the case represented with dotted lines in Fig. 3.

~0.1L and ~4.5 x 10%m/s, respectively. Thus, the numerical
simulations are in agreement with the analytical results. The
phase between the components at the peak of the pulse, ® j;(z),
is plotted in Fig. 4(c) as a function of z. We observe that the
behavior of the phase is in good agreement with the analytical
result [see dotted line in Fig. 2(b)].

On the other hand, Fig. 5 shows a particular example of the
storage and retrieval process, using temporal profiles of the
coupling beams of the form

§’Ej(z) = 92” {2 — tanh[o (¢t — #;)] + tanh[o(t — 12)]}, (25)
with |Q.1]7 = |Qe|t = 18,0 = 0.5, 1y = 2t.and 1, = 61,
[see Fig. 5(a)], and a phase difference between the coupling
fields of ¢, = 0. In Figs. 5(b) and 5(c) the normalized
intensity of frequency components /; and I, respectively, is
shown as a function of position and time. In the example we
have taken equal amplitudes for the two components of the
input state, |E2(t.)|t = |E(7.)]T = 1.3 x 1073, and an initial
phase difference ¢, = 0 between them, in such a way that the
chosen parameters correspond to the situation with constant
coupling fields represented with dotted lines in Fig. 3. Figure 5
shows an example of how the superposition state can be stored
and recovered by appropriately varying in time the coupling
fields. Here the storage time corresponds approximately to
t, — t; = 0.35 us, and it could be extended in principle to times
of the order of 1/y;3 (~ 1.5 ms for the parameters considered).
The behavior of the intensities for each component coincides
with the predictions of the theoretical model. We have checked
that the total pulse area is almost conserved although the pulse
spreads during propagation. The phase between the frequency
components (not shown in the figure) keeps an approximately
constant value of ®;(z) = 0 during the whole storage and
retrieval process, as expected from the dotted line in Fig. 3(b).
To characterize the memory performance, the efficiency of
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the storage and the retrieval processes, and the fidelity of the
recovered superposition state have been calculated. On the one
hand, we define the performance efficiency as 7 = napsfret»
with the absorption naps and retrieval nge, efficiencies being

o 1 d NELDP F SR
Abs SR + |8 ar
JpUEL DR +1E(L.Ddr

’f/z[yso(tﬂ + }go(t)\ Jdt

MRet =

where the interval #o = 0, t; = 307 is the integration time.
Computing these expressions with the data obtained in the
simulation shown in Fig. 5, the absorption and retrieval effi-
ciencies are naps = 99.78% and nrer = 91.21%, respectively.
Thus, the total efficiency is n = 91.01%. On the other hand,
the conditional fidelity is defined as F,. = |(in||¥ou)|>, Wwhere
we take as input and output states

S8

in) = 1,0 1
|¥in) ’f/2[|5°<t>| ey ]dt| ),11)
(gl ’f/2|50(t)|d 0. (8)
f’f”[if"(r)l +leaar
f; |E(L,)) dt
Wou) = 27 11.0), 11)

L D& D + &P ] di

i) ff |E(L,1)|? dt

+ : -
L HlEL. D> + ISz(L H)|*1dt
respectively, with (gplz)E o arg[&(O,t)E;‘(O,t)]dt and
(1) = [/, arg [E1(L,DEF(L,D)d1. Therefore, the calcu-

lated conditional fidelity for the case shown in Fig. 5 is
F. =99.69%.

0,1),11),  (29)

V. CONCLUSIONS

In this work we have studied the propagation of a single
photon, in an arbitrary superposition of two different frequency
components, through a double-A medium. In this particular
configuration the intensities of the two frequency components
exhibit complementary periodic oscillations as they propagate.
These propagation effects have been used in combination
with the light storage technique based on EIT to implement a
quantum memory for frequency encoded single photon qubits.
We have studied analytically the dependence of the relative
phase between the coupling fields and the input qubit state
in the propagation dynamics. Moreover we have shown that,
at certain positions in the medium, the initial single photon,
which can be in any desired frequency superposition state of
the two frequency components, is recovered. The numerical
results, obtained by numerically integrating the evolution
equations of the system, are in good agreement with the
analytical solutions and thus the validity of the analytical
approach has been confirmed. Finally, the storage and retrieval
of a single photon state in an arbitrary superposition of two
frequency components has been shown numerically by turning
off and on the coupling fields during the propagation of the
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single photon. For the specific choice of parameters we adopt
here, the results demonstrate an efficient quantum memory
for high-fidelity storage and retrieval of a frequency encoded
single-photon qubit.
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