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A general theory of optical forces on moving bodies is here developed in terms of generalized 4 × 4 transfer
and scattering matrices. Results are presented for a planar dielectric of arbitrary refractive index placed in an
otherwise empty space and moving parallel and perpendicular to the slab-vacuum interface. In both regimes of
motion the resulting force comprises lateral and normal velocity-dependent components, which may depend in a
subtle way on the Doppler effect and s-p-polarization mixing. For lateral displacements in particular, polarization
mixing, which is here interpreted as an effective magnetoelectric effect due to the reduced symmetry induced
by the motion of the slab, gives rise to a velocity-dependent force contribution that is sensitive to the phase
difference between the two polarization amplitudes. This term gives rise to a rather peculiar optical response on
the moving body, and specific cases are illustrated for incident radiation of arbitrarily directed linear polarization.
The additional force due to polarization mixing may cancel to first order in V/c with the first order Doppler
contribution yielding an overall vanishing of the velocity-dependent component of the force on the body. The
above findings bear some relevance to modern developments of nano-optomechanics and to the problem of the
frictional component of the Casimir force.
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I. INTRODUCTION

Although Minkowski derived the basic equations for
describing the electrodynamics of moving media in 1908 [1],
it is clear that there is still a good deal to be done to understand
the effect of the electromagnetic field on the motion of a
dielectric body. While the Abraham-Minkowskii debate [2–4]
is the most persistent instance of this, a more tractable problem
can be found within the recent controversy surrounding the
existence of a frictional component to the Casimir force [5–10].
Although a quantum phenomenon, much of the initial debate
was concerned with classical radiation pressure. Namely, what
is the electromagnetic force on a dielectric medium in motion?
The concern was with the relative importance of the relativistic
transformation of polarization, versus that of frequency (the
Doppler shift) to the force exerted by the electromagnetic field
on a moving medium [8–10].

A further motivation for the current investigation comes
from the remarkable recent progress in optomechanics (see
Ref. [11]), which uses the motional effects of radiation
pressure to cool mechanical degrees of freedom to sub-Kelvin
temperatures [12–14], and even close to the quantum ground
state [15]. Relevant to this is work on “radiation damping”
[16,17] in highly dispersive systems such as photonic crystals
[18] and atomic multilayers [19]. This paper adds to other
recent work on velocity-dependent forces in optomechanics
[20], generalizing such treatments to an arbitrary direction
of motion. It is also worth mentioning that our findings
may be applicable within the field of metamaterials (see, for
example, Refs. [21–23]), where some aspects of motion can be
mimicked with a suitably engineered magnetoelectric response
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(however, see Ref. [24]), and where optical properties such as
extreme sensitivity to polarization (see Sec. III A) may be
achieved with structured surfaces [25].

Here we focus on the theory of radiation pressure for planar
media in relative motion and show how the motion leads
to velocity-dependent forces that always have two distinct
origins: one contribution coming from the mixing of s and
p polarizations by the motion, and the other more familiar
effect coming from the Doppler-shifted frequency that appears
within the rest frame reflection and transmission coefficients.
We find that whereas the latter effect may be amplified through
an increase in the dispersion of the medium, the former may be
amplified through an increase in the sensitivity of the medium
to the polarization at small angles of incidence. We quantify
the relative importance of these two effects and show situations
where either contribution can be significant.

In Sec. II we outline the general theory of radiation pressure
for planar media, where the response is characterized in terms
of scattering, or transfer matrices. Section III then applies this
to the case of moving media, illustrating that the motion can be
understood in terms of a linear transformation of the scattering
matrix.

II. CALCULATING RADIATION PRESSURE
USING THE TRANSFER MATRIX

Optical forces on a body can be assessed by calculating the
net Lorentz force experienced by the body,

d PM

dt
=

∫
[ρ E + j × B] d3x, (1)

where PM is the momentum of the body, ρ is the charge
density, typically equal to minus the divergence of the
polarization, and j is the current density, which can be written
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as the curl of the magnetization plus the time derivative of the
polarization (cf. Refs. [26,27]). Equivalently we can calculate
the average rate of momentum being lost from the field in
the space outside the body and equate this with minus that
taken up by the medium. The rate of momentum leaving the
electromagnetic field can be written as an integral over the
surface of the energy-momentum tensor [28–30],

T μν =
(

EF cPF

cPF −σ F

)

=
(

ε0
2 (E2+c2 B2) cε0 E × B
cε0 E × B 13EF − ε0[E ⊗ E+c2 B ⊗ B]

)
,

(2)

where EF and PF are the energy and momentum density,
respectively, and σF is the Maxwell stress tensor. In this paper

we choose to work in terms of the energy-momentum tensor,
for it allows the optical force to be straightforwardly written in
terms of the medium reflection and transmission coefficients.
Note that throughout it is assumed that the region outside of
the material has ε ∼ ε0, and μ ∼ μ0, so that we may avoid
possible ambiguities in the form of the energy momentum
tensor within the surrounding space [2,4].

A. The energy-momentum tensor for a plane wave reflecting
from a surface

For a field with a harmonic time dependence Eω(x)e−iωt

and Bω(x)e−iωt , observed over a time period �t , where 1/ω �
�t , we can deal with the time average of (2) over many optical
cycles. Using the fact that only the real values of the fields enter
the energy-momentum tensor, the time average of (2) is

〈T μν〉 = Re

(
ε0
4 [|Eω|2 + c2|Bω|2] ε0c

2 [Eω × B�
ω]

ε0c

2 [Eω × B�
ω] 〈T 00〉13 − ε0

2 [Eω ⊗ E�
ω + c2 Bω ⊗ B�

ω]

)
. (3)

For the specific case of a plane wave reflecting off a surface, as
shown, e.g., on the left-hand side of the planar slab in Fig. 1,
the electric and magnetic fields are

Eω(x) =
∑
{q}

∑
{±}

ê(±)
q α(±)

q eik(±)·x,

Bω(x) = −1

c

∑
{q}

∑
{±}

(−1)q ê(±)
q̄ α(±)

q eik(±)·x, (4)

where the wave vectors

k(±) = ±|kx |x̂ + k‖ k̂‖ (5)

are decomposed as usual in terms of their normal and
in-plane components. For each wave vector there are two
transverse polarization directions labeled by q = 1,2 with

FIG. 1. (Color online) Geometry of the slab interfaces showing
the input (red) field amplitudes α

(+)
L and α

(−)
R and the output (blue)

amplitudes α
(−)
L and α

(+)
R . The slab surface normal is along ±x̂ while

the orientation of the two polarizations (1,2) are indicated in the input
amplitudes. The inset shows the unit polarization vectors (6)–(7) and
their relative orientation in terms of the angle defined in (8).

q̄ = (q mod 2) + 1. These polarization vectors are defined as

ê(±)
1 = x̂ × k̂‖ = 1

k‖
[ky ẑ − kz ŷ], s polarization, (6)

normal to the plane of incidence (s polarization), and

ê(±)
2 = k̂

(±) × ê1 = ζ‖ x̂ ∓ ζx k̂‖, p polarization, (7)

parallel to the plane of incidence (p polarization), with the
directional terms

ζx = c|kx |/ω = cos θ, ζ‖ = ck‖/ω = sin θ. (8)

Here α
(±)
1,2 are the electric field complex amplitudes of the

right (+) and left (−) propagating waves, of either s or
p polarization. The summation in (4) is over the modes
propagating to the right (+) and to the left (−) and over the
two polarizations labeled by q. The geometrical details of the
slab and the plane-wave configurations at the two interfaces
on the left and the right are shown in Fig. 1, where the origin
of the x axis is taken at the boundary between the medium and
the free space on the left-hand side of the slab and the y and z

axis lie parallel to the interface.
We proceed to use (3) to calculate the radiation pressure

experienced by the slab from a plane wave reflecting on the
left. Using the form of the fields given in (4), we can write the
general energy-momentum tensor outside a planar surface in
terms of the field amplitudes, α

(±)
1,2 . The time-averaged energy

density from (3) is found to be

〈EF〉 = ε0

2

∑
{q}

⎡
⎣∑

{±}
|α(±)

q |2 + ζ 2
‖ Aqq(x)

⎤
⎦ , (9)

where the terms Aqr (x) = 2 Re(α(+)
q α(−)�

r e2i|kx |x) are inter-
preted as being due to a stationary interference pattern between
incoming and outgoing waves. The time-averaged momentum
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density is similarly

c〈PF〉 = ε0

2

∑
{q}

⎡
⎣∑

{±}
|α(±)

q |2 k̂
(±)

+ ζ‖(Aqq(x)k̂‖ + (−1)qζxAqq̄ (x)ê1)

⎤
⎦ , (10)

where it is clear that there is a momentum flux parallel to the
surface as well as normal to it. The calculation of the 3 × 3
tensor, −〈σF 〉, is slightly more involved, yet noting that

ê1 ⊗ ê1 + ê(±)
2 ⊗ ê(±)

2 − 13 = −k̂
(±) ⊗ k̂

(±)

and

ê1 ⊗ ê1 + 1
2 (ê(−)

2 ⊗ ê(+)
2 + ê(+)

2 ⊗ ê(−)
2 ) − ζ 2

‖ 13

= −k̂‖ ⊗ k̂‖ + ζ 2
x ê1 ⊗ ê1,

one has

−〈σ F〉 = ε0

2

∑
{q}

⎡
⎣∑

{±}
|α(±)

q |2 k̂
(±) ⊗ k̂

(±)

+Aqq (x)
(
k̂‖ ⊗ k̂‖ − ζ 2

x ê1 ⊗ ê1
)

+ (−1)qζxAqq̄(x)(k̂‖ ⊗ ê1 + ê1 ⊗ k̂‖)

⎤
⎦ . (11)

Equations (9)–(11) determine the energy-momentum tensor
for the case of a plane wave reflecting from the planar
surface of a generic medium at rest, taking into account both
polarizations.

The time-averaged energy-momentum tensor given above
allows us to determine the force exerted by the incident
plane wave on the medium, as well as the work done on
it. We consider fields in the rest frame of the medium and
calculate the time-averaged four-momentum lost from the field
per unit time in the space outside of the material. The rate
of change of the four-momentum density Pν

F = (EF/c,PF)
at any point outside of the medium is related to the spatial
divergence of the energy-momentum tensor, T μν , via the
vanishing four-divergence, ∂μT μν = 0, i.e.,

1

c

∂T 0ν

∂t
= ∂Pν

F

∂t
= −∂T iν

∂xi
. (12)

Integrating (12) over the volume of space outside of the
material V , gives us the rate of change of the total four-
momentum P ν in free space,

dP ν
F

dt
= −

∫
V

∂T iν

∂xi
d3x = −

∫
∂V

T iν dSi,

where the three-dimensional divergence theorem has been
applied to obtain the final expression. Due to the global
conservation of four-momentum, whatever is lost in the free
space is taken up by the region of space occupied by the
medium,

dP ν
M

dt
= −dP ν

F

dt
=

∫
∂V

T iν dSi .

Upon averaging over a time interval of many optical cycles
this change of momentum is that taken up by the dielectric
medium (the rate of change of electromagnetic momentum
within this region of space averages to zero over such a
time period). Writing out the components explicitly using the
notation introduced in (2), we have〈

dEM

dt

〉
= c2

∫
∂V

〈PF〉 · dS,〈
d PM

dt

〉
= −

∫
∂V

〈σ F〉 · dS, (13)

where each surface element dS points into the material
(cf. Fig. 1). In general, for an object of finite size in a plane
wave field, there will be reflection from each surface of the
object that will complicate the evaluation of the reflected fields
and of the integrals in (13). We assume throughout the case of
a thin planar slab sufficiently extended over the y-z plane so
that translational symmetry along this plane is preserved and
the total force can be calculated integrating only over the left
and right interfaces parallel to this plane.

With these assumptions, and an application of (10) and
(11) to (13), the components of the time-averaged four-force
experienced by such a medium in its rest frame are〈

dEM

dt

〉
= Aε0cζx

2

∑
{q}

∑
{±}

±(|α(±)
qL |2 − |α(±)

qR |2),

〈
d PM

dt

〉
= Aε0ζx

2

∑
{q}

∑
{±}

±(|α(±)
qL |2 − |α(±)

qR |2)k̂
(±)

, (14)

where A is the integration area (the cross section of the
beam). The subscripts L and R indicate here the electric field
amplitudes (α) on the left (x < 0), and right (x > d) of the slab,
respectively (Fig. 1). Hence, the time-averaged four force on
the slab is determined once the field amplitudes are known
in vacuum. For a given plane wave of frequency ω and wave
vector k,the two results in (14) may be combined to yield the
rather sound relation,〈

d PM

dt

〉
= k

ω

〈
dEM

dt

〉
, (15)

which holds true for either polarization.

B. 4 × 4 transfer and scattering matrices

In general, the relations between the amplitudes, α
(±)
q L/R

in (14) may be obtained by employing transfer or scattering
matrix methods (e.g., Refs. [30–32]), which we now use,
along with the input fields, to determine the radiation pressure
experienced by a general dielectric slab. The transfer matrix
approach is ideally suited for the consideration of media
inhomogeneous in one direction only (here taken along x)
as the medium can be split up into as many layers as accuracy
demands, and the transfer matrices of each of these layers
applied one after the other to obtain the matrix associated with
the whole slab. We will be using a 4 × 4 transfer matrix theory
as is commonly applied to anisotropic media (e.g., Ref. [33]).
This is because even if a medium is isotropic in its rest frame,
when set in motion its symmetry is lowered.
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1. The transfer matrix

A typical 4 × 4 transfer matrix, T , connects the field on
the left of a slab (x < 0) to the field on the right (x > d; see
Fig. 1) and is such that(

α1R

α2R

)
=

(
T 11 T 12

T 21 T 22

) (
α1L

α2L

)
, (16)

where the field amplitudes have been written in terms of

αqL/R =
(

α
(+)
qL/R

α
(−)
qL/R

)
,

and the transfer matrix has been compactly written as

T =
(

T 11 T 12

T 21 T 22

)
=

⎛
⎜⎝

t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44

⎞
⎟⎠ (17)

with each submatrix T qr relating amplitudes with polarization
r on the left-hand side of the medium, to amplitudes with
polarization q on the right-hand side.

The elements of T in (17) are not all independent but in
general depend on specific symmetries that the medium may
posses. Most importantly, symmetries that hold in the medium
rest frame may be lifted when the medium is set in motion;
three specific cases of this are shown below.

When the plane of incidence is a mirror symmetry plane,
then s and p polarizations do not mix, i.e., are decoupled and
the off diagonal submatrices of (17) will vanish, T 12 = T 21 =
0, reducing the transfer matrix in (16) to the direct sum:

T = T 11 ⊕ T 22 =
(

T 11 0
0 T 22

)
.

This is, e.g., the usual case for an isotropic medium at rest,
for which a 2 × 2 transfer matrix can instead be used, but no
longer applies in general when the medium is set into motion.
The plane of incidence remains, in fact, a plane of mirror
symmetry for a medium moving along x, but not for a medium
moving along y (unless kz = 0) in which case the polarizations
mix with nonvanishing of-diagonal elements in (17), as will
be discussed below. Meanwhile for a magnetoelectric medium
at rest, the constitutive relations take the form D = ε · E +
η · B and H = μ−1 · B + ζ · E [29,34,35] and, in general,
all entries in (17) are nonzero. We may therefore refer to the
polarization mixing induced by motion as to a magnetoelectric
effect [9,29].

The time reversal for a plane wave is obtained by changing
k‖ into −k‖ and α(±)

q into (α(∓)
q )�. When time reversal

symmetry applies, e.g., for a lossless nonmagnetized medium
at rest, the transfer matrix should be the same when waves are
interchanged in this way, i.e., left-going waves viewed with
time running in reverse should be reflected and transmitted
as if they were right-going incident waves with time running
forwards, provided that changing the sign of ky and kz is also
immaterial as for an isotropic medium. Performing such a
transformation on the transfer matrix leads to(

σ x T �
11σ x σ x T �

12σ x

σ x T �
21σ x σ x T �

22σ x

)
−k̂‖

=
(

T 11 T 12

T 21 T 22

)
k̂‖

, (18)

where σ x is the usual Pauli matrix (σ 2
x = 12). Therefore,

(18) shows that time reversal symmetry requires that the
submatrices of T transform as T ij (k̂‖) = σ x T �

ij (−k̂‖)σ x . For
example,

T11 =
(

t11 t12

t21 t22

)
k̂‖

=
(

t�22 t�21
t�12 t�11

)
−k̂‖

.

For a moving medium, time reversal symmetry does not apply
as it would require the velocity of the medium to change sign.

If the median plane of a slab is a plane of mirror symmetry,
an input of a given amplitude produces the same reflected and
transmitted amplitudes whether incident from the right or the
left of the slab, and we refer to this as left-right symmetry.
Noting that T transfers amplitudes on the left of the slab to the
right, and that T−1 transfers amplitudes from right to left, this
condition is equivalent to(

T 11 T 12

T 21 T 22

)
=

(
σ x 0
0 −σ x

)(
T̃ 11 T̃ 12

T̃ 21 T̃ 22

)(
σ x 0
0 −σ x

)
,

(19)

where the T̃ ij are the submatrices of the inverse, T−1. The σ x

matrices are present to interchange left and right propagating
waves, as we should in examining the mirror-symmetric
situation. The reason for the minus sign in one of these
matrices (−σ x) in (19) is more subtle: It is present due to the
definition of p polarization (7) (see Fig. 1). If the polarization
of the incoming p-polarized wave on the right-hand side of the
slab points away from the surface then that on the left-hand
side points into the surface. Therefore in examining the
mirror symmetric situation we should multiply the p-polarized
amplitudes by −1.

In general, the conditions for left-right symmetry arising
from (19) are complicated as they require the calculation of
the inverse of a 4 × 4 matrix. However, in the case of media for
which T = T 11 ⊕ T 22, the condition becomes rather compact.
In this case it requires the elements of T 11 to obey

T 11 =
(

t11 t12

t21 t22

)
= 1

det(T 11)

(
t11 −t21

−t12 t22

)
(20)

with an identical relation also holding for the matrix T 22. For
this particular case, the T ii matrices must be antisymmetric
and have a determinant equal to one (when such a medium
is also time reversible, t22 = t�11, and t21 = t�12 = −t12). For
radiation passing from vacuum into a such a medium and then
back into vacuum (as considered here), this determinant will
always equal unity. We finally note that when a medium is
moving along x̂, left-right symmetry is lifted, while it still
applies if the motion is perpendicular to x̂.

2. The scattering matrix

Although undoubtedly useful for calculations, there is a
slight awkwardness in the application of the transfer matrix to
an experimental situation. In general the known quantities are
the “input” field amplitudes, α(+)

qL and α
(−)
qR , rather than either of

the quantities αqL/R (see Fig. 1). A scattering matrix S rather
than transfer matrix relates input and output,(

α1 (OUT)

α2 (OUT)

)
=

(
S11 S12

S21 S22

) (
α1 (IN)

α2 (IN)

)
, (21)
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where

S =
(

S11 S12

S21 S22

)
=

⎛
⎜⎜⎝

T11 R̄11 T12 R̄12

R11 T̄11 R12 T̄12

T21 R̄21 T22 R̄22

R21 T̄21 R22 T̄22

⎞
⎟⎟⎠ (22)

with Rqr (R̄qr ), Tqr (T̄qr ) representing reflection and transmis-
sion coefficients for q-polarized waves, given an r-polarized
wave impinging from the left (right), and where

αq (IN) =
(

α
(+)
qL

α
(−)
qR

)
(23)

and

αq (OUT) =
(

α
(+)
qR

α
(−)
qL

)
. (24)

Direct evaluation of the scattering matrix for a generic slab is in
general rather involved. One would then proceed, first finding
the transfer matrix for the whole slab, and then converting this
into a scattering matrix for the calculation of the force, via
(14).

The relationship between the elements of the scattering
matrix (22) and the transfer matrix can be found through
expanding the matrix equation (16) in terms of the 16 elements
of (17), and writing the output field amplitudes (24) in terms
of the input amplitudes and the tij . This gives

S = (π (−) + π (+) · T ) · (π (+) + π (−) · T )−1,

where we have introduced two matrices, π (+) = diag(1,0,1,0)
and π (-) = diag(0,1,0,1). Explicitly evaluating the compo-
nents of the S matrix we have

S = 1

(t22t44 − t24t42)

⎛
⎜⎜⎜⎝

M33 (t12t44 − t14t42) −M31 (t22t14 − t12t24)

(t24t41 − t44t21) t44 (t24t43 − t44t23) −t24

−M13 (t32t44 − t34t42) M11 (t22t34 − t32t24)

(t42t21 − t22t41) −t42 (t42t23 − t22t43) t22

⎞
⎟⎟⎟⎠ , (25)

where Mij is the minor (i,j ) of T , e.g.,

M13 =
∣∣∣∣∣∣
t21 t22 t24

t31 t32 t34

t41 t42 t44

∣∣∣∣∣∣ .
Note that, as expected, when the magnetoelectric effect is not
present, the scattering matrix also reduces to a direct sum,
S = S11 ⊕ S22, with the comparatively simple form,

S11 = 1

t22

(
1 t12

−t21 1

)
, S22 = 1

t44

(
1 t34

−t43 1

)
,

where we have assumed that det(T 11) = det(T 22) = 1. From
(25) it is clear that in the general case there is quite an intricate
relationship between the scattering and transfer matrices.
We also note that in the case of systems with a resonance
in reflection or transmission (e.g., a Fabry-Perot cavity),
the resonant frequency is generally determined by t22t44 =
t24t42, rather than the usual separate conditions for the two
polarizations, t22 = 0 and t44 = 0. In addition, if the medium
is left-right symmetric, one has t21 = −t12 and t43 = −t34, so
that R11 = R̄11 = t12/t22; T11 = T̄11 = 1/t22; R22 = R̄22 =
t34/t44; and T22 = T̄22 = 1/t44. Due to the restrictions of the
previous section (t12 = −t�12), time reversibility has the further
consequence that R�

qqTqq + T �
qqRqq = 0.

Finally, in terms of the scattering matrix elements defined
in (21) the four-force (14) can be rewritten as〈

dEM

dt

〉
= Aε0ζxc

2
α
†
(IN) · (14 − S†S) · α(IN),

〈
d PM

dt

〉
= Aε0ζx

2
α
†
(IN) ·

(
(R − S†RS) ζx x̂

(14 − S†S) ζ‖ k̂‖

)
· α(IN), (26)

where the matrices in the second equation operate on the
input amplitudes outside of the vector, and R = σ z ⊕ σ z, with
σ z the usual Pauli matrix. Hence, once we have determined
the transfer matrix for any given planar slab we have, via
(25) and (26), thereby determined the four-force, for any given
input field. In (26) only the input field amplitudes enter, which
is the main advantage of (26) over (14). When the slab is
lossless, the scattering matrix is unitary, S†S = 14, and any
lateral force on the slab will vanish.

For the simplest case of incidence from the left (α(-)
q R = 0),

onto a reciprocal, nonmagneto-electric medium, Eq. (26) can
be expanded, using the notation of (22), to give the usual
result (e.g., within Ref. [36] these expressions appear for a
single polarization in the force experienced by a transparent
dielectric slab):〈

dEM

dt

〉
= Aε0cζx

2

∑
{q}

|α(+)
qL |2(1 − |Rqq |2 − |Tqq |2),

〈
d PM

dt

〉
= Aε0ζx

2

∑
{q}

|α(+)
qL |2

×
(

[1 + |Rqq |2 − |Tqq |2] ζx x̂
[1 − |Rqq |2 − |Tqq |2] ζ‖ k̂‖

)
. (27)

It is clear that the lateral force is simply proportional to the
absorption |Aqq |2 = (1 − |Rqq |2 − |Tqq |2), while the normal
force contains, besides the contribution of the absorption,
a term proportional to twice the reflectivity, i.e., 2|Rqq |2 +
|Aqq |2 = (1 + |Rqq |2 − |Tqq |2), as reflection entails the ex-
change of twice the momentum in the direction normal to the
surface.
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FIG. 2. (Color online) For certain angles of incidence, a laterally
moving medium mixes polarizations in transmission and reflection.
For instance, an s-polarized input will generate p-polarized reflected
and transmitted amplitudes so long as kz 
= 0. In all cases the Doppler
shift makes the reflection and transmission coefficients dependent
upon ky in such a way that, for example, Rqr (ky) 
= Rqr (−ky).

To conclude this section we note that in the above we have
not yet assumed that the dielectric is in motion. We shall find in
the following section that for certain regimes, the motion of the
medium induces a coupling between the s and p polarizations.
However, the above conclusions hold for any media that couple
polarizations, moving or otherwise.

III. MOVING MEDIA AND RADIATION PRESSURE

In the following we use the formalism of Sec. II to study
radiation pressure forces on a moving slab, and we will
specifically examine two regimes of motion, namely, when the
slab moves parallel (A) and perpendicular (B) to the interface.

A. Motion in the y-z plane

When an incident plane wave of a frequency ω reflects from
a surface that moves in the plane orthogonal to the surface
normal, the reflected plane wave also has frequency ω, and the
field is monochromatic in both rest frame and laboratory frame.
Therefore we may apply the result (26) directly. Without loss of
generality, we take the motion to be along ŷ to be representative
of the general motion in the y-z plane (see Fig. 2).

In the rest frame of the medium, we apply (26)

〈
dE′

M

dt ′

〉
= A′ε0ζ

′
xc

2
α

′†
(IN) · (14 − S′†S′) · α′

(IN),〈
d P ′

M

dt ′

〉
= A′ε0ζ

′
x

2
α

′†
(IN) ·

(
(R − S′†RS′) ζ ′

x x̂
(14 − S′†S′) ζ ′

‖ k̂
′
‖

)
· α′

(IN),

(28)

where the primed matrices, S′, contain reflection and trans-
mission coefficients evaluated at the rest frame frequency and
wave vector.

The field amplitudes with different polarizations trans-
form between laterally moving frames as follows (see

Appendix A 2):

α′
(IN) =

(
ω′

ω

)
M · α(IN), (29)

where

M = 1√
1 + V 2

y η2

c2

(
12

Vyη

c
σ z

−Vyη

c
σ z 12

)

has off-diagonal terms directly proportional to the mixing
parameter

η = |kx |kz

k2
‖ − ωVyky/c2

. (30)

The matrix M is unitary, and the magnitude of the field
intensity, α†α, is therefore only modified by the Doppler
shift through the factor, (ω′/ω)2. Using (29), and Lorentz
transforming (28) to the laboratory frame, we arrive at the
four-force experienced by a material in lateral motion,〈

dEM

dt

〉
= Aε0cζx

2
α
†
(IN)(14 − S̃

†
S̃)α(IN),

〈
d PM

dt

〉
= Aε0ζx

2
α
†
(IN)

(
(R − S̃

†
RS̃) ζx x̂

(14 − S̃
†
S̃) ζ‖ k̂‖

)
α(IN), (31)

where A = A′/γ , and

S̃ = M†S′ M. (32)

The significance of (31) is that the four-force experienced
by a laterally moving medium can be completely described by
a unitary transformation of the rest frame scattering matrix S′.
The physics of radiation pressure on laterally moving media is
entirely wrapped up in the dependence of the elements of S′ on
the Lorentz transformed frequency and wave vector, generally
referred here as to Doppler shift, and in the magnetoelectric
effect induced by the unitary transformation M. Notice that
when the angle of incidence is such that either kx or kz

equal zero, then η = 0, so that S̃ = S′, and the only effect
distinguishing the laterally moving medium from a stationary
one is related to the Doppler shift [37].

Using the notation of (21), the unitary transformation of
the scattering matrix given in (32) for a nonmagnetoelectric
medium where S′

12 = S′
21 = 0 is

S̃ =

⎛
⎜⎜⎜⎝

S′
11+

η2V 2
y

c2 σ z S′
22σ z

1+ V 2
y η2

c2

Vyη

c

(S′
11σ z−σ z S′

22)
1+ V 2

y η2

c2

Vyη

c

(σ z S′
11−S′

22σ z)
1+ V 2

y η2

c2

S′
22+

η2V 2
y

c2 σ z S′
11σ z

1+ V 2
y η2

c2

⎞
⎟⎟⎟⎠ . (33)

There are several interesting features of (33). First, the
diagonal submatrices, S̃11 & S̃22 are only modified by
the transformation (32) via terms that are second order in the
velocity, and such terms are typically negligible. Second, the
of-diagonal terms linear in the velocity, S̃12 and S̃21, are related
by S̃21 = σ z S̃12σ z. Therefore, the mixed polarization reflec-
tion coefficients are related by a minus sign (R̃21 = −R̃12),
while the corresponding transmission coefficents are equal
(T̃21 = T̃12). Assuming a rest frame scattering matrix which
is left-right symmetric, an examination of the of-diagonal
matrices in (33) shows that R̃21 = − ¯̃R21, R̃12 = − ¯̃R12,
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T̃21 = − ¯̃T21, and T̃12 = − ¯̃T12, which means that left-right
symmetry still holds in this case as expected (recall the minus
sign within the definition of the polarization shown in Fig. 1).

With the help of (33) we may now write out the four-force
(31) for the simplest case of a plane wave incident on the slab
from the left:

〈
dEM

dt

〉
= Aε0cζx

2
(
1 + V 2

y η2

c2

) ∑
{q}

(1 − |R′
qq |2 − |T ′

qq |2)

∣∣∣∣α(+)
qL + (−1)q̄

Vyη

c
α

(+)
q̄L

∣∣∣∣
2

,

〈
d PM

dt

〉
= Aε0ζx

2
(
1 + V 2

y η2

c2

) ∑
{q}

(
(1 + |R′

qq |2 − |T ′
qq |2) ζx x̂

(1 − |R′
qq |2 − |T ′

qq |2) ζ‖ k̂‖

) ∣∣∣∣α(+)
qL + (−1)q̄

Vyη

c
α

(+)
q̄L

∣∣∣∣
2

. (34)

Comparing (34) with (27), it is clear that the lateral motion affects the four-force (as discussed for the scattering matrix) through
mixing the field amplitudes with different polarizations, and through Doppler shifting the frequency and wave vector within the
reflection and transmission coefficients themselves.

It is instructive to limit our considerations to situations of practical interest, i.e., for relatively small velocities. Upon expanding
(34) to first order in Vy/c, the reflection and transmission coefficients are expanded as R′

qq ∼ Rqq − Vyky∂Rqq/∂ω. One then
has for the rate of work done and normal force〈

dEM

dt

〉
∼ Aε0cζx

2

∑
{q}

[
(1 − |Rqq |2 − |Tqq |2)|α(+)

qL |2 + 2VykyRe

(
R�

qq

∂Rqq

∂ω
+ T �

qq

∂Tqq

∂ω

)
|α(+)

qL |2

− (−1)q̄
2Vyη

c
(|Rqq |2 + |Tqq |2)Re(α(+)

qL α
�(+)
q̄L )

]
, (35)

〈
d PM⊥

dt

〉
∼ Aε0ζ

2
x

2

∑
{q}

[
(1 + |Rqq |2 − |Tqq |2)|α(+)

qL |2 − 2VykyRe

(
R�

qq

∂Rqq

∂ω
− T �

qq

∂Tqq

∂ω

)
|α(+)

qL |2

+ (−1)q̄
2Vyη

c
(|Rqq |2 − |Tqq |2)Re(α(+)

qL α
�(+)
q̄L )

]
. (36)

In this limit we have η = |kx |kz/k2
‖ . The lateral force, propor-

tional to the loss term in the round bracket on the right-hand
side of (34), may be cast in the simple form

〈
d PM‖

dt

〉
= k‖

ω

〈
dEM

dt

〉
. (37)

Notice that within both (35) and (36) there are two velocity-
dependent terms. One represents the change in the reflection
and transmission coefficients due to the Doppler-shifted
frequency response, while the other and less familiar one is
an interference term arising from the fact that the four-force
is sensitive to the phase difference between the two complex
polarization amplitudes α

(+)
1L and α

(+)
2L .

This polarization-dependent contribution is illustrated in
Fig. 3 for a linear (electric) polarization as a function
of the angle of incidence, where k(+) = (ω/c)[cos(θ )x̂ +
sin(θ )(cos(φ) ŷ + sin(φ) ẑ)], and Re[α(+)

qL α
�(+)
q̄L ] = 1. The

polarization-dependent contribution to the force vanishes to
first order in Vy/c for circular polarization. In Fig. 3(b) we
illustrate an instance where the contribution to the optical
force due to polarization mixing may be enhanced. In this
case we reduce the permittivity to a value less than 1 and
thereby make the medium sensitive to the difference between
s and p polarizations for angles where η = cot(θ ) sin(φ) is
large. However, this method is certainly not unique, and
it is likely that a greater enhancement would be possible

with something like the polarization sensitive mirrors of
Ref. [25].

Figure 3 is shown for a situation where we neglect the
effects of dispersion. However, from the above results we
can anticipate how the force would vary as a function
of frequency for, e.g., a metallic mirror. For rest frame
frequencies above the plasma frequency, ε takes positive values
such that we have a velocity-dependent contribution to the
force that is of order Vy/c multiplied by a coefficient of
order unity. This coefficients tends to zero as the frequency
tends to infinity. Far below the plasma frequency the metal
effectively acts as a perfect conductor, and the contribution
of polarization mixing to the force also tends to zero.
Around the plasma frequency we have the real part of
epsilon tending to zero and hence the previously mentioned
delicate behavior of the force around normal incidence. The
magnitude of this force close to normal incidence is in this
case determined by the imaginary part of epsilon at the plasma
frequency.

This is a peculiar effect indeed and does not appear to have
been noticed before [38]. When the phase difference is equal
to an integer multiplied by π this contribution is maximized
(either positive or negative), while a π/2 phase difference
causes this velocity dependent contribution to vanish. Further-
more, under special circumstances the interference term and
that due to the Doppler shift may cancel out so as to yield a
velocity-independent force. For a lossless medium this could
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FIG. 3. (Color online) Contribution to the normal force (36) from
the mixing of polarizations due to the motion of the medium. Here we
plot the quantity, 〈dP̃

(PM)
M /dt〉 = ζ 2

x

∑
q 2(−1)q̄η(|Rqq |2 − |Tqq |2).

This represents the contribution to the normal force due to polarization
mixing when α

(+)
1L = α

(+)
2L , normalized in units of the incident momen-

tum flux times Vy/c. In panel (a) we plot 〈dP
(PM)
M /dt〉 as a function of

θ for various φ. In the main plot the radiation is incident onto a slab
of thickness d = 10c/ω with ε = 6.0 + 0.01i and μ = 1.0. The inset
shows the case when the thickness is d = 40c/ω. Panel (b) illustrates
the increase in magnitude of 〈dP

(PM)
M /dt〉 when the refractive index

drops below unity: ε = 0.1 + 0.01i and μ = 1.0, where the medium
becomes sensitive to the difference between s and p polarization at
small angles of incidence [in this regime η = cot(θ ) sin(φ) is large].
Within both plots we used the reflection and transmission coefficients
for a slab of dielectric of arbitrary thickness as can be found in
Ref. [39].

occur, e.g., when α
(+)
1 L = α

(+)
2 L, and ckyRe[R�

qq∂Rqq/∂ω] =
(−1)q̄η|Rqq |2.

The above findings have a relevance to the recent con-
troversy regarding the existence of a drag component to the
Casimir force, discussed in the introduction. First, if the field
has an ill-defined phase (e.g., a thermal field or the quantum
vacuum), then the first order effect of polarization mixing
should average to zero, while the Doppler shift will not; cf.
Ref. [9]. Second, the contribution of polarization mixing to the
force vanishes when the medium has a degenerate response

FIG. 4. (Color online) A slab in motion along the x axis does
not mix polarizations, but mixes frequencies. Incidence from the left,
when Vx > 0 yields a reflected amplitude at a frequency, ω(−) <

ω, while incidence from the right yields a reflected amplitude at
ω(+) > ω, which breaks reciprocity.

to the two polarizations, whereas the contribution due to the
Doppler shift does not. Finally, it is worth pointing out that
the lateral force due to first-order polarization mixing and that
due to the Doppler shift have a different dependence upon
the direction of incidence and so would not be expected to
cancel in a general situation. From (35) and (37) it can be
seen that the velocity-dependent force in the ŷ direction has a
contribution odd in ky coming from the term proportional to η,
and even in ky from the term proportional to the derivatives of
the reflection and transmission coefficients. An isotropic field
will therefore, through the effect of the Doppler shift alone,
exert a lateral force on a body that is in motion, so long as that
body can absorb photons. This is related to the phenomenon
of universal drag that was highlighted a few years ago [26],
where a dielectric in a thermal field was generally found to
experience a frictional force that is linear in the imaginary part
of the dielectric susceptibility.

B. Motion along the x axis

When a plane wave is incident onto a surface that moves
with velocity V = Vx x̂ parallel to the surface normal, we
cannot in general use a monochromatic transfer or scattering
matrix to determine relationships between field amplitudes.
A plane wave of given frequency in the laboratory frame is
reflected with a different frequency. In the slab rest frame the
amplitudes of waves moving to the left (α(-)

qR) and moving to the

right (α(+)
qL ) suffer distinct Doppler shifts. Therefore for plane

waves of fixed frequency ω in the laboratory frame impinging
on both sides of the slab, there are eight rather than four
output amplitudes at three different frequencies (ω,ω(+),ω(-)).
The result (26) no longer applies and must be modified
(see Fig. 4).

To apply (26) to a slab in motion along x̂, we note that, due to
the time averaging of Sec. II that leads to (3), the two different
input frequencies observed in rest frame of the slab contribute
additively to the energy-momentum tensor, and hence the force
[28]. Therefore, we sum the force due to incidence from the
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right and left of the slab separately:〈
dE′

M

dt ′

〉
= A′ε0c

2
α

′†
(IN)

⎡
⎣∑

{±}
ζ ′(±)
x π (±)(14 − S′†S′)π (±)

⎤
⎦α′

(IN),

〈
d P ′

M

dt ′

〉
= A′ε0

2
α

′†
(IN)

⎡
⎣∑

{±}
ζ ′(±)
x

(
π (±)(R − S′†RS′)π (±) ζ ′(±)

x x̂
π (±)(14 − S′†S′)π (±) ζ

′(±)
‖ k̂‖

)⎤
⎦α′

(IN). (38)

The components of the rest frame scattering matrix S′ are evaluated at the two different rest frame frequencies, ω′(±) =
γ (ω ∓ Vx |kx |) depending on whether they are associated with incidence from the left (+) or from the right (−). For the reflection
coefficients of r-polarized wave impinging from the left one has, e.g., R′

qr = Rqr (ω′(+)) and R̄′
qr = R̄qr (ω′(−)) for waves

impinging from the right.
A Lorentz transformation of (38) into the laboratory frame gives the dependence of the observed four-force on the velocity of

the medium. The rate of change of energy and normal force on the medium are given by (A′ = A)〈
dEM

dt

〉
= Aε0c

2
α

′†
IN

∑
{±}

ζ ′(±)
x π (±)

[ (
14 + ζ ′(±)

x

Vx

c
R

)
− S′†

(
14 + ζ ′(±)

x

Vx

c
R

)
S′

]
π (±)α′

IN, (39)

〈
d P⊥M

dt

〉
= Aε0

2
α

′†
IN

∑
{±}

ζ ′(±)
x π (±)

[(
Rζ ′(±)

x + Vx

c
14

)
− S′†

(
Rζ ′(±)

x + Vx

c
14

)
S′

]
π (±)α′

IN, (40)

and the lateral force is given by the same expression as in the rest frame (38). All that remains is to write all quantities in terms
of those in the laboratory frame. The directional terms ζ , in particular, transform as

ζ ′(±)
x = c|k′(±)

x |
ω′(±)

= c

(
|kx | ∓ Vx

c2 ω

ω ∓ Vx |kx |

)
= cos(θ ′(±)), ζ

′(±)
‖ = ck′

‖
ω′(±)

= ck‖
γ (ω ∓ Vx |kx |) = sin(θ ′(±)).

In this case the field amplitudes of different polarization do not mix between reference frames and are related by the diagonal
matrix (see Appendix A 1):

α′
q = γ

(
12 − Vx |kx |

ω
σ z

)
αq .

As in the previous section we examine the simpler case of incidence from the left onto a medium where S′
12 = S′

21 = 0, so
that (39) and (40) become〈

dEM

dt

〉
= Aε0c

2

(
cω′k′

x

ω2

)∑
{q}

|α(+)
q L|2

[
1 − |R′

qq |2 − |T ′
qq |2 + Vxk

′
x

ω′ (1 + |R′
qq |2 − |T ′

qq |2)

]
,

〈
d PM

dt

〉
= Aε0

2

(
cω′k′

x

ω2

) ∑
{q}

|α(+)
q L|2

([
ck′

x

ω′ (1 + |R′
qq |2 − |T ′

qq |2) + Vx

c
(1 − |R′

qq |2 − |T ′
qq |2)

]
x̂

ck‖
γω′ (1 − |R′

qq |2 − |T ′
qq |2) k̂‖

)
, (41)

where the superscript (+) on the rest frame quantities has been omitted. The velocity dependence of the force in (41) has
contributions coming from the rest frame loss term, 1 − |R′

qq |2 − |T ′
qq |2, the dispersion of the reflection coefficients, and a

prefactor of cω′k′
x/ω

2, that is, <1 for Vx > 0, and >1 for Vx < 0. It is important to note that the force (41) comprises a lateral
component that depends on the loss term 1 − |R′

qq |2 − |T ′
qq |2. For a slab moving along x̂, however, such a loss term is clearly

not the only contribution to the rate of loss of energy from the field, and, at variance with the case of a laterally moving slab, the
lateral force component in (41) cannot be cast in the simple form (37).

Retaining only terms linear in Vx/c in (41) and using the notation of Sec. III A, the rate of change of energy and normal force
on the slab is〈

dEM

dt

〉
∼ Aε0c

2

∑
{q}

[
ζx(1 − |Rqq |2 − |Tqq |2) + 2ζxVxkxRe

(
Rqq

∂R�
qq

∂ω
+ Tqq

∂T �
qq

∂ω

)

− Vx

c

(
1 − (

1 + 2ζ 2
x

)|Rqq |2 − |Tqq |2
)]|α(+)

qL|2, (42)

〈
d P‖
dt

〉
∼ Aε0ζ‖ k̂‖

2

∑
{q}

[
(1 − |Rqq |2 − |Tqq |2)

(
ζx − Vx

c

)
+ 2ζxVxkxRe

(
Rqq

∂R�
qq

∂ω
+ Tqq

∂T �
qq

∂ω

)]
|α(+)

qL|2, (43)
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〈
d P⊥
dt

〉
∼ Aε0ζx x̂

2

∑
{q}

[
ζx(1 + |Rqq |2 − |Tqq |2) − 2ζxVxkxRe

(
Rqq

∂R�
qq

∂ω
− Tqq

∂T �
qq

∂ω

)
− Vx

c
(1 + 3|Rqq |2 − |Tqq |2)

]
|α(+)

qL|2.

(44)

There are several comments to be made about (42)–(44).
First, there are no interference terms between s and p

polarizations due to the motion, as there were in (35) and (36),
and so the phase of the incident field is irrelevant to the
optical force. Second, we have the term proportional to
−(1 + 3|Rqq |2 − |Tqq |2) in the normal component of the
force. This quantity is always negative, and so the term acts
like a friction against the acceleration of the material by
the field. Indeed, for normal incidence onto a dispersionless,
lossless medium, this contribution becomes −4Vx |Rqq |2/c,
which is the radiation friction (or damping) term investigated
within Refs. [16,17]. The contribution of the dispersion of
the reflection and transmission coefficients within (42)–(44)
is not fundamentally different from that found for lateral
motion and allows for a damping or amplification of the
center of mass motion depending upon sign of the gradients of
the reflection and transmission coefficients [40]. This effect
becomes particularly conspicuous for a stratified medium
made of ultracold atoms set to move inside an optical lattice
[19,41,42]. Note that, unlike the case of lateral motion where
the polarization mixing parameter η depends on the plane of
incidence, here the role of the plane of incidence of the field
is not fundamentally altered from a medium at rest.

IV. CONCLUSIONS

We have developed a general theory of radiation pressure
for planar media in terms of a 4 × 4 scattering matrix, which
allows for coupling between the s and p polarizations in
transmission through and reflection from a medium. Applying
this theory to the problem of the radiation pressure experienced
by a planar medium in motion, it was found that for lateral
motion (see Fig. 2) the effective scattering matrix of the
medium is such that polarizations are coupled [see (33)], and
something akin to the 4 × 4 scattering matrix description is
unavoidable. This has unusual consequences for the optical
four-force, which then has a velocity dependence that changes
according to the phase difference between the amplitudes
of the two different polarizations [see (35)–(37)]. Indeed,
in the general case (31) the dependence of the force on the
rest frame field amplitudes is quite involved. Meanwhile, for
motion parallel to the surface normal there is no mixing of the
polarizations, and to the lowest order in V/c our formalism
recovers the known results for moving surfaces [16,17,19]. It
is indeed possible to apply this formalism to the general case
of a medium in motion in an arbitrary direction, for we can
consider this as a combination of motion normal and parallel
to the plane of incidence.

One clear advantage of this formalism is its relative
simplicity. Work on the problem of quantum friction often
encounters very cumbersome formulas on which there seems
to be no general agreement. The fact that lateral motion can

be thought of as having two effects: a unitary transformation
of the transfer or scattering matrix, and a Doppler shift of the
frequency within the reflection and transmission coefficients is
therefore advantageous, and it should be possible to apply this
formalism to the problem in a straightforward way through a
generalization of Ref. [30]. Furthermore, the 4 × 4 formalism
we have developed may also be useful for calculations of
vacuum forces in the case of anisotropic media [43,44].
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APPENDIX: THE LORENTZ TRANSFORMATION
OF POLARIZATION

Here we examine how polarization transforms between
reference frames. We consider motion of two kinds: either
parallel to the surface normal (motion along x̂), or orthogonal
to the surface normal (motion along ŷ).

1. Motion along x̂

When a planar medium moves in a direction parallel to
the surface normal, then after scattering from the medium,
the fields (4) will no longer be monochromatic. However, the
phase factors within (4) will take the same value in any inertial
reference frame. Therefore after applying the transformation

E′
x = Ex, E′

y = γ (Ey − VxBz), E′
z = γ (Ez + VxBy),

(A1)

we obtain the equations

ê
′(±)
2x α

′(±)
2 = ê

(±)
2x α

(±)
2 (A2)

and

ê
′(±)
1y α

′(±)
1 + ê

′(±)
2y α

′(±)
2

= γ

[ (
ê

(±)
1y − Vx

c
ê

(±)
2z

)
α

(±)
1 +

(
ê

(±)
2y + Vx

c
ê

(±)
1z

)
α

(±)
2

]
(A3)

with the third of (A1) holding identically, given
(A2)–(A3). We then insert the components of the po-
larization unit vectors which from (6) and (7) are ê

(±)
2x =

ck‖/ω, ˆe1z
(±) = ky/k‖; ê

(±)
2z = ∓c|kx |kz/ωk‖, ê

(±)
1y = −kz/k‖,
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and ê
(±)
2y = ∓c|kx |ky/ωk‖. For (A2) this gives

α
′(±)
2 =

(
ω(±)

ω

)
α

(±)
2 , (A4)

where ω(±) = γ (ω ∓ V |kx |). Note that we do not consider
the case where kx changes sign between reference frames,
although this is interesting. Inserting (A4) into (A3) along
with the components of the unit polarization vectors, we find

α
′(±)
1 =

(
ω(±)

ω

)
α

(±)
1 . (A5)

The field amplitudes consequently transform as

α′
q = γ

(
12 − Vx |kx |

ω
σ z

)
αq (A6)

between transversely moving inertial frames. In this case the
polarization of the wave does not change between frames,
the amplitude being either increased or decreased according
to the ratio of the rest frame and the laboratory frame
frequency.

2. Motion along ŷ

In the case of a medium moving laterally as in Fig. 2, the
frequency ω is conserved. Applying the transformation

E′
x = γ (Ex + VyBz), E′

y = Ey, E′
z = γ (Ez − VyBx)

(A7)

to (4) along with the equivalent primed quantities leads to the
equations

ê
′(±)
2x α

′(±)
2 = γ

[
α

(±)
2

(
ê

(±)
2x − Vy

c
ê

(±)
1z

)
+ Vy

c
ê

(±)
2z α

(±)
1

]
(A8)

and

ê
′(±)
1y α

′(±)
1 + ê

′(±)
2y α

′(±)
2 = ê

(±)
1y α

(±)
1 + ê

(±)
2y α

(±)
2 . (A9)

The third equation in (A7) holds identically when we apply
(A8)–(A9). We insert the components of the unit polarization
vectors given in Appendix A 1. In the case of (A8) this
gives

α
′(±)
2 = γω′

ωk‖k′
‖

[
α

(±)
2

(
k2
‖ − Vykyω

c2

)
∓ Vy

c
|kx |kzα

(±)
1

]
.

Defining η = |kx |kz/(k2
‖ − Vykyω/c2) and noting that

√
1 + V 2

y η2/c2 = k‖k′
‖

γ (k2
‖ − Vykyω/c2)

,

we find the transformation formula for the p-polarized
amplitudes

α
′(±)
2 =

(
ω′

ω

)⎛
⎝α

(±)
2 ∓ Vyη

c
α

(±)
1√

1 + V 2
y η2/c2

⎞
⎠ . (A10)

Inserting (A10) and the components of the unit vectors into
(A9) then gives the transformation formula for s-polarized
amplitudes:

α
′(±)
1 =

(
ω′

ω

)⎛
⎝α

(±)
1 ± Vyη

c
α

(±)
2√

1 + V 2
y η2/c2

⎞
⎠ . (A11)

In matrix notation, (A10) and (A11) become

α′ =
(

ω′

ω

)
M · α, (A12)

where

M = 1√
1 + V 2

y η2/c2

(
12

Vyη

c
σ z

−Vyη

c
σ z 12

)
. (A13)

This unitary matrix, M describes the transformation of
the polarization of a plane wave between laterally moving
reference frames.
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