Line polar Grassmann codes of orthogonal type

Ilaria Cardinali ${ }^{\text {a }}$, Luca Giuzzi ${ }^{\text {b,* }}$, Krishna V. Kaipa ${ }^{\text {c }}$, Antonio Pasini ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Information Engineering and Mathematics, University of Siena, Via Roma 56, I-53100, Siena, Italy
b DICATAM - Section of Mathematics, University of Brescia, Via Branze 53, I-25123, Brescia, Italy
${ }^{c}$ Department of Mathematics, IISER Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India

A R T I C L E I N F O

Article history:

Received 8 September 2014
Received in revised form 23
September 2015
Communicated by I.M. Duursma

$M S C$:

51A50; 51E22; 51A45

Abstract

Polar Grassmann codes of orthogonal type have been introduced in [1]. They are punctured versions of the Grassmann code arising from the projective system defined by the Plücker embedding of a polar Grassmannian of orthogonal type. In the present paper we fully determine the minimum distance of line polar Grassmann codes of orthogonal type for q odd.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Codes $\mathcal{C}_{m, k}$ arising from the Plücker embedding of the k-Grassmannians of m-dimensional vector spaces have been widely investigated since their first introduction in [10,11]. They are a remarkable generalization of Reed-Muller codes of the first order and their monomial automorphism groups and minimum weights are well understood, see [4-6,8].

In [1], the first two authors of the present paper introduced some new codes $\mathcal{P}_{n, k}$ arising from embeddings of orthogonal Grassmannians $\Delta_{n, k}$. These codes correspond to the projective system determined by the Plücker embedding of the Grassmannian $\Delta_{n, k}$ representing all totally singular k-spaces with respect to some non-degenerate quadratic form η defined on a vector space $V(2 n+1, q)$ of dimension $2 n+1$ over a finite field \mathbb{F}_{q}. An orthogonal Grassmann code $\mathcal{P}_{n, k}$ can be obtained from the ordinary Grassmann code $\mathcal{C}_{2 n+1, k}$ by just deleting all the columns corresponding to k-spaces which are non-singular with respect to η; it is thus a punctured version of $\mathcal{C}_{2 n+1, k}$. For q odd, the dimension of $\mathcal{P}_{n, k}$ is the same as that of $\mathcal{G}_{2 n+1, k}$, see [1]. The minimum distance $d_{\text {min }}$ of $\mathcal{P}_{n, k}$ is always bounded away from 1. Actually, it has been shown in [1] that for q odd, $d_{\text {min }} \geq q^{k(n-k)+1}+q^{k(n-k)}-q$. By itself, this proves that the redundancy of these codes is somehow better than that of $\mathcal{C}_{2 n+1, k}$.

[^0]In the present paper we prove the following theorem, fully determining all the parameters for the case of line orthogonal Grassmann codes (that is orthogonal polar Grassmann codes with $k=2$) for q odd.

Main Theorem. For q odd, the minimum distance $d_{\min }$ of the orthogonal Grassmann code $\mathcal{P}_{n, 2}$ is

$$
d_{\min }=q^{4 n-5}-q^{3 n-4} .
$$

Furthermore, for $n>2$ all words of minimum weight are projectively equivalent; for $n=2$ there are two different classes of projectively equivalent minimum weight codewords.

Hence, we have the following.
Corollary 1.1. For q odd, line polar Grassmann codes of orthogonal type are $\left[N, K, d_{\text {min }}\right]$-projective codes with

$$
N=\frac{\left(q^{2 n-2}-1\right)\left(q^{2 n}-1\right)}{\left(q^{2}-1\right)(q-1)}, \quad K=\binom{2 n+1}{2}, \quad d_{\min }=q^{4 n-5}-q^{3 n-4} .
$$

1.1. Organization of the paper

In Section 2 we recall some well-known facts on projective systems and related codes, as well as the notion of polar Grassmannian of orthogonal type. In Section 3 we prove our main theorem.

2. Preliminaries

2.1. Projective systems and Grassmann codes

Let W be a vector space. An $\left[N, K, d_{\min }\right]_{q}$ projective system $\Omega \subseteq \mathrm{PG}(W)$ is a set of N points spanning $\operatorname{PG}(K-1, q) \leq \operatorname{PG}(W)$ such that there is a hyperplane Σ of $\operatorname{PG}(K-1, q)$ with $\#(\Omega \backslash \Sigma)=d_{\min }$ and for any hyperplane Σ^{\prime} of $\mathrm{PG}(K-1, q)$,

$$
\#\left(\Omega \backslash \Sigma^{\prime}\right) \geq d_{\min } .
$$

Existence of $\left[N, K, d_{\min }\right]_{q}$ projective systems is equivalent to that of projective linear codes with the same parameters; see, for instance, [12]. Indeed, let Ω be a projective system and denote by G a matrix whose columns G_{1}, \ldots, G_{N} are the coordinates of representatives of the points of Ω with respect to some fixed reference system. Then, G is the generator matrix of an $\left[N, K, d_{\text {min }}\right]$ code over \mathbb{F}_{q}, say $\mathcal{C}=\mathcal{C}(\Omega)$. The code $\mathcal{C}(\Omega)$ is not, in general, uniquely determined, but it is unique up to code equivalence. We shall thus speak, with a slight abuse of language, of the code defined by Ω.

As any word c of $\mathcal{C}(\Omega)$ is of the form $c=m G$ for some row vector $m \in \mathbb{F}_{q}^{K}$, it is straightforward to see that the number of zeroes in c is the same as the number of points of Ω lying on the hyperplane Π_{c} of equation $m \cdot x=0$, where $m \cdot x=\sum_{i=1}^{K} m_{i} x_{i}$ and $m=\left(m_{i}\right)_{1}^{K}, x=\left(x_{i}\right)_{1}^{K}$. The weight (i.e. the number of non-zero components) of c is then

$$
\begin{equation*}
\operatorname{wt}(c):=|\Omega|-\left|\Omega \cap \Pi_{c}\right| . \tag{1}
\end{equation*}
$$

Thus, the minimum distance $d_{\text {min }}$ of \mathcal{C} is

$$
\begin{equation*}
d_{\min }=|\Omega|-f_{\max }, \quad \text { where } \quad f_{\max }=\max _{\substack{\Sigma \leq \operatorname{PG}(K-1, q) \\ \operatorname{dim} \Sigma=K-2}}|\Omega \cap \Sigma| . \tag{2}
\end{equation*}
$$

We point out that any projective code $\mathcal{C}(\Omega)$ can also be regarded, equivalently, as an evaluation code over Ω of degree 1 . In particular, when Ω spans the whole of $\operatorname{PG}(K-1, q)=\operatorname{PG}(W)$, then there is a bijection, induced by the standard inner product of W, between the points of the dual vector space W^{*} and the codewords c of $\mathcal{C}(\Omega)$.

Let $\mathcal{G}_{2 n+1, k}$ be the Grassmannian of the k-subspaces of a vector space $V:=V(2 n+1, q)$, with $k \leq n$ and let $\eta: V \rightarrow \mathbb{F}_{q}$ be a non-degenerate quadratic form over V.

Denote by $\varepsilon_{k}: \mathcal{G}_{2 n+1, k} \rightarrow \mathrm{PG}\left(\bigwedge^{k} V\right)$ the usual Plücker embedding

$$
\varepsilon_{k}: \operatorname{Span}\left(v_{1}, \ldots, v_{k}\right) \rightarrow \operatorname{Span}\left(v_{1} \wedge \cdots \wedge v_{k}\right) .
$$

The orthogonal Grassmannian $\Delta_{n, k}$ is a geometry having as points the k-subspaces of V totally singular for η. Let $\varepsilon_{k}\left(\mathcal{G}_{2 n+1, k}\right):=\left\{\varepsilon_{k}\left(X_{k}\right): X_{k}\right.$ is a point of $\left.\mathcal{G}_{2 n+1, k}\right\}$ and $\varepsilon_{k}\left(\Delta_{n, k}\right)=\left\{\varepsilon_{k}\left(\bar{X}_{k}\right): \bar{X}_{k}\right.$ is a point of $\left.\Delta_{n, k}\right\}$. Clearly, we have $\varepsilon_{k}\left(\Delta_{n, k}\right) \subseteq \varepsilon_{k}\left(\mathcal{G}_{2 n+1, k}\right) \subseteq \operatorname{PG}\left(\bigwedge^{k} V\right)$. Throughout this paper we shall denote by $\mathcal{P}_{n, k}$ the code arising from the projective system $\varepsilon_{k}\left(\Delta_{n, k}\right)$. By [3, Theorem 1.1], if $n \geq 2$ and $k \in\{1, \ldots, n\}$, then $\operatorname{dim} \operatorname{Span}\left(\varepsilon_{k}\left(\Delta_{n, k}\right)\right)=\binom{2 n+1}{k}$ for q odd, while $\operatorname{dim} \operatorname{Span}\left(\varepsilon_{k}\left(\Delta_{n, k}\right)\right)=\binom{2 n+1}{k}-\binom{2 n+1}{k-2}$ when q is even.

We recall that for $k<n$, any line of $\Delta_{n, k}$ is also a line of $\mathcal{G}_{2 n+1, k}$. For $k=n$, the lines of $\Delta_{n, n}$ are not lines of $\mathcal{G}_{2 n+1, n}$; indeed, in this case $\left.\varepsilon_{n}\right|_{\Delta_{n, n}}: \Delta_{n, n} \rightarrow \operatorname{PG}\left(\bigwedge^{n} V\right)$ maps the lines of $\Delta_{n, n}$ onto non-singular conics of $\operatorname{PG}\left(\bigwedge^{n} V\right)$.

The projective system identified by $\varepsilon_{k}\left(\Delta_{n, k}\right)$ determines a code of length $N=\prod_{i=0}^{k-1} \frac{q^{2(n-i)}-1}{q^{i+1}-1}$ and dimension $K=\binom{2 n+1}{k}$ or $K=\binom{2 n+1}{k}-\binom{2 n+1}{k-2}$ according to whether q is odd or even. The following universal property provides a well-known characterization of alternating multilinear forms; see for instance [9, Theorem 14.23].

Theorem 2.1. Let V and U be vector spaces over the same field. A map $f: V^{k} \longrightarrow U$ is alternating k-linear if and only if there is a linear map $\bar{f}: \wedge^{k} V \longrightarrow U$ with $\bar{f}\left(v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}\right)=f\left(v_{1}, v_{2}, \ldots, v_{k}\right)$. The map \bar{f} is uniquely determined.

In general, the dual space $\left(\bigwedge^{k} V\right)^{*} \cong \bigwedge^{k} V^{*}$ of $\bigwedge^{k} V$ is isomorphic to the space of all k-linear alternating forms of V. For any given non-null vector $\mathbf{v} \in \bigwedge^{2 n+1} V \cong V(1, q) \cong \mathbb{F}_{q}$, we have an isomorphism $\jmath_{\mathbf{v}}$: $\bigwedge^{2 n+1-k} V \rightarrow\left(\bigwedge^{k} V\right)^{*}$ defined by $\jmath_{\mathbf{v}}(\omega)(x)=c$ for any $\omega \in \bigwedge^{2 n+1-k} V$ and $x \in \bigwedge^{k} V$, where $c \in \mathbb{F}_{q}$ is such that $\omega \wedge x=c \mathbf{v}$. Clearly, as $\mathbf{v} \neq 0$ varies in $\bigwedge^{2 n+1} V$ we obtain different isomorphisms. For the sake of simplicity, we will say that $\omega \in \bigwedge^{2 n+1-k} V$ acts on $x \in \bigwedge^{k} V$ as $\omega \wedge x$.

For any $k=1, \ldots, 2 n$ and $\varphi \in\left(\bigwedge^{k} V\right)^{*}, v \in \bigwedge^{k} V$, we shall use the symbol $\langle\varphi, v\rangle$ to denote the bilinear pairing

$$
\left(\bigwedge^{k} V\right)^{*} \times\left(\bigwedge^{k} V\right) \rightarrow \mathbb{F}_{q},\langle\varphi, v\rangle=\varphi(v)
$$

Since the codewords of $\mathcal{P}_{n, k}$ bijectively correspond to functionals on $\bigwedge^{k} V$, we can regard a codeword as an element of $\left(\bigwedge^{k} V\right)^{*} \cong \bigwedge^{k} V^{*}$.

In this paper we are concerned with line Grassmannians, that is we assume $k=2$.
By Theorem 2.1, we shall implicitly identify any functional $\varphi \in\left(\bigwedge^{2} V\right)^{*}$ with the (necessarily degenerate) alternating bilinear form

$$
\left\{\begin{array}{l}
V \times V \rightarrow \mathbb{F}_{q} \\
(x, y) \rightarrow \varphi(x \wedge y) .
\end{array}\right.
$$

The radical of φ is the set

$$
\operatorname{Rad}(\varphi):=\{v \in V: \forall w \in V, \varphi(v, w)=0\} .
$$

This is always a vector space and its codimension in V is even. As $\operatorname{dim} V$ is odd, $2 n-1 \geq \operatorname{dim} \operatorname{Rad}(\varphi) \geq 1$ for $\varphi \neq 0$.

We point out that it has been proved in [8] that the minimum weight codewords of the line projective Grassmann code $\mathcal{C}_{2 n+1,2}$ correspond to points of $\varepsilon_{2 n-1}\left(\mathcal{G}_{2 n+1,2 n-1}\right)$; these can be regarded as non-null bilinear alternating forms of V of maximum radical. Actually, non-null bilinear forms of maximum radical may yield minimum weight codewords also for Symplectic Polar Grassmann Codes, see [2].

In the case of orthogonal line Grassmannians, not all points of $\mathcal{G}_{2 n+1,2 n-1}$ yield codewords of $\mathcal{P}_{n, 2}$ of minimum weight. However, as a consequence of the proof of our main result, we shall see that for $n>2$ all the codewords of minimum weight of $\mathcal{P}_{n, 2}$ do indeed correspond to some ($2 n-1$)-dimensional subspaces of V, that is to say, to bilinear alternating forms of maximum radical. In the case $n=2$, there are two classes of minimum weight codewords: one corresponding to bilinear alternating forms of maximum radical and another corresponding to certain bilinear alternating forms with radical of dimension 1.

2.2. A recursive condition

Since $\bigwedge^{k} V^{*} \cong\left(\bigwedge^{k} V\right)^{*} \cong \bigwedge^{2 n+1-k} V$, for any $\varphi \in\left(\bigwedge^{k} V\right)^{*}$ there is an element $\widehat{\varphi} \in \bigwedge^{2 n+1-k} V$ such that

$$
\langle\varphi, x\rangle=\widehat{\varphi} \wedge x, \quad \forall x \in \bigwedge^{k} V .
$$

Fix now $u \in V$ and $\varphi \in\left(\bigwedge^{k} V\right)^{*}$. Then, there is a unique element $\varphi_{u} \in \bigwedge^{k-1} V^{*}$ such that $\widehat{\varphi}_{u}=\widehat{\varphi} \wedge u \in$ $\wedge^{2 n+2-k} V$.

Let \mathcal{Q} be the parabolic quadric defined by the (non-degenerate) quadratic form η. For any $u \in \mathcal{Q}$, put $V_{u}:=u^{\perp \mathcal{Q}} / \operatorname{Span}(u)$. Observe that as $\left\langle\varphi_{u}, u \wedge w\right\rangle=\widehat{\varphi} \wedge u \wedge u \wedge w=0$ for any $u \wedge w \in \bigwedge^{k-1} V$, the functional

$$
\bar{\varphi}_{u}:\left\{\begin{array}{l}
\bigwedge^{k-1} V_{u} \rightarrow \mathbb{F}_{q} \\
x+\left(u \bigwedge^{k-2} V\right) \rightarrow \varphi_{u}(x)
\end{array}\right.
$$

with $x \in \bigwedge^{k-1} V$ and $u \bigwedge^{k-2} V:=\left\{u \wedge y: y \in \bigwedge^{k-2} V\right\}$ is well defined. Furthermore, V_{u} is endowed with the quadratic form $\eta_{u}: x+\operatorname{Span}(u) \rightarrow \eta(x)$. Clearly, $\operatorname{dim} V_{u}=2 n-1$. It is well known that the set of all totally singular points for η_{u} is a parabolic quadric of rank $n-1$ in V_{u} which we shall denote by $\operatorname{Res}_{\mathcal{Q}} u$. In other words the points of $\operatorname{Res}_{\mathcal{Q}} u$ are the lines of \mathcal{Q} through u.

We are now ready to deduce a recursive relation on the weight of codewords, in the spirit of $[8]$.
Lemma 2.2. Let $\varphi \in \bigwedge^{k} V^{*}$. Then,

$$
\operatorname{wt}(\varphi)=\frac{1}{q^{k}-1} \sum_{\substack{u \in \mathcal{O} \\ \bar{\varphi}_{u} \neq 0}} \operatorname{wt}\left(\bar{\varphi}_{u}\right) .
$$

Proof. Recall that

$$
\begin{align*}
\mathrm{wt}(\varphi) & =\#\left\{\operatorname{Span}\left(v_{1}, \ldots, v_{k}\right):\left\langle\varphi, v_{1} \wedge \cdots \wedge v_{k}\right\rangle \neq 0, \operatorname{Span}\left(v_{1}, \ldots, v_{k}\right) \in \Delta_{n, k}\right\} \\
& =\frac{1}{\left|\operatorname{GL}_{k}(q)\right|} \#\left\{\left(v_{1}, \ldots, v_{k}\right):\left\langle\varphi, v_{1} \wedge \cdots \wedge v_{k}\right\rangle \neq 0, \operatorname{Span}\left(v_{1}, \ldots, v_{k}\right) \in \Delta_{n, k}\right\}, \tag{3}
\end{align*}
$$

where the list $\left(v_{1}, \ldots, v_{k}\right)$ is an ordered basis of $\operatorname{Span}\left(v_{1}, \ldots, v_{k}\right) \subset \mathcal{Q}$.
For any point $u \in \mathcal{Q}$, we have $\operatorname{Span}\left(u, v_{2}, \ldots, v_{k}\right) \in \Delta_{n, k}$ if and only if $\operatorname{Span}_{u}\left(v_{2}, \ldots, v_{k}\right) \in$ $\Delta_{n-1, k-1}\left(\operatorname{Res}_{\mathcal{Q}} u\right)$, where $\Delta_{n-1, k-1}\left(\operatorname{Res}_{\mathcal{Q}} u\right)$ is the $(k-1)$-Grassmannian of $\operatorname{Res}_{\mathcal{Q}} u$ and by the symbol $\operatorname{Span}_{u}\left(v_{2}, \ldots, v_{k}\right)$ we mean $\operatorname{Span}\left(u, v_{2}, \ldots, v_{k}\right) / \operatorname{Span}(u)$. Furthermore, given a space $\operatorname{Span}_{u}\left(v_{2}, \ldots, v_{k}\right) \in$
$\Delta_{n-1, k-1}\left(\operatorname{Res}_{\mathcal{Q}} u\right)$, any of the q^{k-1} lists $\left(u, v_{2}+\alpha_{2} u, \ldots, v_{k}+\alpha_{k} u\right)$ is a basis for the same totally singular k-space through u, namely $\operatorname{Span}\left(u, v_{2}, \ldots, v_{k}\right)$. Conversely, given any totally singular k-space $W \in \Delta_{n, k}$ with $u \in W$, there are $v_{2}, \ldots v_{k} \in \operatorname{Res}_{\mathcal{Q}} u$ such that $W=\operatorname{Span}\left(u, v_{2}, \ldots, v_{k}\right)$ and $\operatorname{Span}_{u}\left(v_{2}, \ldots, v_{k}\right) \in$ $\Delta_{n-1, k-1}\left(\operatorname{Res}_{\mathcal{Q}} u\right)$. Let

$$
\begin{aligned}
\Omega_{u}:=\left\{\left(u, v_{2}+\alpha_{2} u, \ldots, v_{k}+\alpha_{k} u\right):\right. & \left\langle\varphi, u \wedge v_{2} \wedge \cdots \wedge v_{k}\right\rangle \neq 0, \\
& \left.\operatorname{Span}_{u}\left(v_{2}, \ldots, v_{k}\right) \in \Delta_{n-1, k-1}\left(\operatorname{Res}_{\mathcal{Q}} u\right), \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{F}\right\} .
\end{aligned}
$$

Then, we have the following disjoint union

$$
\begin{equation*}
\left\{\left(v_{1}, \ldots, v_{k}\right):\left\langle\varphi, v_{1} \wedge \cdots \wedge v_{k}\right\rangle \neq 0, \operatorname{Span}\left(v_{1}, \ldots, v_{k}\right) \in \Delta_{n, k}\right\}=\bigcup_{u \in \mathcal{Q}} \Omega_{u} \tag{4}
\end{equation*}
$$

Observe that if u is not singular, then, $\Omega_{u}=\emptyset$, as $\operatorname{Span}\left(u, v_{2}, \ldots, v_{k}\right) \nsubseteq \mathcal{Q}$; likewise, if $\bar{\varphi}_{u}=0$, then, $\left\langle\bar{\varphi}_{u}, v_{2} \wedge \cdots \wedge v_{k}\right\rangle=0$ for any v_{2}, \ldots, v_{k} and, consequently, $\Omega_{u}=\emptyset$.

The coefficients $\alpha_{i}, 2 \leq i \leq k$, are arbitrary in \mathbb{F}; thus,

$$
\# \Omega_{u}=q^{k-1} \#\left\{\left(u, v_{2}, \ldots, v_{k}\right):\left\langle\bar{\varphi}_{u}, v_{2} \wedge \cdots \wedge v_{k}\right\rangle \neq 0, \operatorname{Span}_{u}\left(v_{2}, \ldots, v_{k}\right) \in \Delta_{n-1, k-1}\left(\operatorname{Res}_{\mathcal{Q}} u\right)\right\}
$$

Hence,

$$
\begin{align*}
& \left|\operatorname{GL}_{k}(q)\right| \mathrm{wt}(\varphi)=\sum_{\substack{u \in \mathcal{Q} \\
\bar{\varphi}_{u} \neq 0}} \# \Omega_{u}= \\
& =q^{k-1} \sum_{\substack{u \in \mathcal{O} \\
\varphi_{u} \neq 0}} \#\left\{\left(u, v_{2}, \ldots, v_{k}\right):\left\langle\varphi_{u}, v_{2} \wedge \cdots \wedge v_{k}\right\rangle \neq 0, \operatorname{Span}_{u}\left(v_{2}, \ldots, v_{k}\right) \in \Delta_{n-1, k-1}\left(\operatorname{Res}_{\mathcal{Q}} u\right)\right\} . \tag{5}
\end{align*}
$$

Since u is fixed,

$$
\begin{aligned}
& \#\left\{\left(u, v_{2}, \ldots, v_{k}\right):\left\langle\varphi_{u}, v_{2} \wedge \cdots \wedge v_{k}\right\rangle \neq 0, \operatorname{Span}_{u}\left(v_{2}, \ldots, v_{k}\right) \in \Delta_{n-1, k-1}\left(\operatorname{Res}_{\mathcal{Q}} u\right)\right\} \\
& =\#\left\{\left(v_{2}, \ldots, v_{k}\right):\left\langle\varphi_{u}, v_{2} \wedge \cdots \wedge v_{k}\right\rangle \neq 0, \operatorname{Span}_{u}\left(v_{2}, \ldots, v_{k}\right) \in \Delta_{n-1, k-1}\left(\operatorname{Res}_{\mathcal{Q}} u\right)\right\} .
\end{aligned}
$$

On the other hand, by (3) and by the definition of $\bar{\varphi}_{u}$,

$$
\left|\operatorname{GL}_{k-1}(q)\right| \operatorname{wt}\left(\bar{\varphi}_{u}\right)=\#\left\{\left(v_{2}, \ldots, v_{k}\right):\left\langle\bar{\varphi}_{u}, v_{2} \wedge \cdots \wedge v_{k}\right\rangle \neq 0, \operatorname{Span}_{u}\left(v_{2}, \ldots, v_{k}\right) \in \Delta_{n-1, k-1}\left(\operatorname{Res}_{\mathcal{Q}} u\right)\right\} ;
$$

thus,

$$
\begin{equation*}
\operatorname{wt}(\varphi)=q^{k-1} \frac{\left|\mathrm{GL}_{k-1}(q)\right|}{\left|\mathrm{GL}_{k}(q)\right|} \sum_{\substack{u \in \mathcal{Q} \\ \bar{\varphi}_{u} \neq 0}} \operatorname{wt}\left(\bar{\varphi}_{u}\right)=\frac{1}{q^{k}-1} \sum_{\substack{u \in \mathcal{Q} \\ \bar{\varphi}_{u} \neq 0}} \operatorname{wt}\left(\bar{\varphi}_{u}\right) . \tag{6}
\end{equation*}
$$

3. Proof of the Main Theorem

As $\operatorname{dim} V$ is odd, all non-degenerate quadratic forms on V are projectively equivalent. For the purposes of the present paper we can assume without loss of generality that a basis $\left(e_{1}, \ldots, e_{2 n+1}\right)$ has been fixed such that

$$
\begin{equation*}
\eta(x):=\sum_{i=1}^{n} x_{2 i-1} x_{2 i}+x_{2 n+1}^{2} . \tag{7}
\end{equation*}
$$

Let $\beta(x, y):=\eta(x+y)-\eta(x)-\eta(y)$ be the bilinear form associated with η. As in Section 2.2, denote by \mathcal{Q} the set of the non-zero totally singular vectors for η. Clearly, for any k-dimensional vector subspace W of V, then $W \in \Delta_{n, k}$ if and only if $W \subseteq \mathcal{Q}$.

Henceforth we shall work under the assumption $k=2$. Denote by φ an arbitrary alternating bilinear form defined on V and let M and S be the matrices representing respectively β and φ with respect to the basis $\left(e_{1}, \ldots, e_{2 n+1}\right)$ of V. Write $\perp_{\mathcal{Q}}$ for the orthogonal relation induced by η and \perp_{W} for the (degenerate) symplectic relation induced by φ. In particular, for $v \in V$, the symbols $v^{\perp \mathcal{Q}}$ and $v^{\perp W}$ will respectively denote the space orthogonal to v with respect to β and φ. Likewise, when X is a subspace of V, the notations $X^{\perp \mathcal{Q}}$ and $X^{\perp W}$ will be used to denote the spaces orthogonal to X with respect to β and φ. We shall say that a subspace X is totally singular if $X \leq X^{\perp \mathcal{Q}}$ and totally isotropic if $X \leq X^{\perp W}$.

Lemma 3.1. Let \mathcal{Q} be a parabolic quadric with equation of the form (7), and let $p \in V, p \neq 0$. Denote by ρ a codeword corresponding to the hyperplane $p^{\perp \mathcal{Q}}$. Then,

$$
\operatorname{wt}(\rho)= \begin{cases}q^{2 n-1} & \text { if } \eta(p)=0 \\ q^{2 n-1}-q^{n-1} & \text { if } \eta(p) \text { is a non-zero square } \\ q^{2 n-1}+q^{n-1} & \text { if } \eta(p) \text { is a non-square. }\end{cases}
$$

Proof. If $\eta(p)=0$, then $p \in \mathcal{Q}$ and $p^{\perp \mathcal{Q}} \cap \mathcal{Q}$ is a cone with basis a parabolic quadric of rank $n-1$; it has $1+\left(q^{2 n-1}-q\right) /(q-1)$ projective points, see [7]. The value of $\mathrm{wt}(\rho)$ now directly follows from (1).

Suppose now p to be external to \mathcal{Q}, that is $p^{\perp \mathcal{Q}} \cap \mathcal{Q}$ is a hyperbolic quadric; it is immediate to see that in this case $\operatorname{wt}(\rho)=q^{2 n-1}-q^{n-1}$. Likewise, when p is internal to $\mathcal{Q}, \operatorname{wt}(\rho)=q^{2 n-1}+q^{n-1}$.

The orthogonal group $O(V)$ stabilizing the quadric \mathcal{Q} has 3 orbits on the points of V; these correspond respectively to totally singular, external and internal points to \mathcal{Q}. By construction, all elements in the same orbit are isomorphic 1-dimensional quadratic spaces. In other words, the quadratic class of $\eta(p)$ is constant on each of these orbits. In particular, the point $e_{2 n+1}$ is external to \mathcal{Q} and $\eta\left(e_{2 n+1}\right)=1$ is a square. Thus we have that external points to \mathcal{Q} correspond to those p for which $\eta(p)$ is a square, $\eta(p) \neq 0$ and internal points correspond to those for which $\eta(p)$ is a non-square.

3.1. Some linear algebra

Lemma 3.2.

1. For any $v \in V, v^{\perp \mathcal{Q}}=v^{\perp W}$ if and only if v is an eigenvector of non-zero eigenvalue of $T:=M^{-1} S$.
2. The radical $\operatorname{Rad}(\varphi)$ of φ corresponds to the eigenspace of T of eigenvalue 0 .

Proof. 1. Observe that $v^{\perp \mathcal{Q}}=v^{\perp W}$ if and only if the equations $x^{T} M v=0$ and $x^{T} S v=0$ are equivalent for any $x \in V$. This means that there exists an element $\lambda \in \mathbb{F}_{q} \backslash\{0\}$ such that $S v=\lambda M v$. As M is non-singular, the latter says that v is an eigenvector of non-zero eigenvalue λ for T.
2. Let v be an eigenvector of T of eigenvalue 0 . Then $M^{-1} S v=0$, hence $S v=0$ and $x^{T} S v=0$ for every $x \in V$, that is $v^{\perp W}=V$. This means $v \in \operatorname{Rad}(\varphi)$.

We can now characterize the eigenspaces of T.
Lemma 3.3. Let μ be a non-zero eigenvalue of T and V_{μ} be the corresponding eigenspace. Then,
(1) $\forall v \in V_{\mu}$ and $r \in \operatorname{Rad}(\varphi), r \perp_{\mathcal{Q}} v$. Hence, $V_{\mu} \leq r^{\perp \mathcal{Q}}$.
(2) The eigenspace V_{μ} is both totally isotropic for φ and totally singular for η.
(3) Let $\lambda, \mu \neq 0$ be two not necessarily distinct eigenvalues of T and u, v be two corresponding eigenvectors. Then, one of the following holds:
(a) $u \perp_{\mathcal{Q}} v$ and $u \perp_{W} v$.
(b) $\mu=-\lambda$.
(4) If λ is an eigenvalue of T then $-\lambda$ is an eigenvalue of T.

Proof. 1. Take $v \in V_{\mu}$. As $T v=M^{-1} S v=\mu v$ we also have $\mu v^{T}=v^{T} S^{T} M^{-T}$. So, $v^{T} M^{T}=\mu^{-1} v^{T} S^{T}$. Let $r \in \operatorname{Rad}(\varphi)$. Then, as $S^{T}=-S, v^{T} M r=\mu^{-1} v^{T} S^{T} r$ and $v^{T} S r=0$ for any v, we have $v^{T} M r=0$, that is $r \perp_{\mathcal{Q}} v$.
2. Let $v \in V_{\mu}$. Then $M^{-1} S v=\mu v$, which implies $S v=\mu M v$. Hence, $v^{T} S v=\mu v^{T} M v$. Since $v^{T} S v=0$ and $\mu \neq 0$, we also have $v^{T} M v=0$, for every $v \in V_{\mu}$. Thus, V_{μ} is totally singular for η. Since V_{μ} is totally singular, for any $u \in V_{\mu}$ we have $u^{T} M v=0$; so, $u^{T} S v=\mu u^{T} M v=0$, that is V_{μ} is also totally isotropic.
3. Suppose that either $u \chi_{\mathcal{Q}} v$ or $u \swarrow_{W} v$. Since, by Lemma 3.2, $u^{\perp \mathcal{Q}}=u^{\perp W}$ and $v^{\perp \mathcal{Q}}=v^{\perp W}$, we have $M u=\lambda^{-1} S u$ and $M v=\mu^{-1} S v$. So, $u \not \chi_{\mathcal{Q}} v$ or $u \not \chi_{W} v$ implies $v^{T} M u \neq 0 \neq v^{T} S u$. Since $M^{-1} S u=\lambda u$ and $M^{-1} S v=\mu v$, we have

$$
v^{T} S u=v^{T} S\left(\lambda^{-1} M^{-1} S u\right)=\lambda^{-1}\left(-M^{-1} S v\right)^{T} S u=-\left(\lambda^{-1} \mu\right) v^{T} S u ;
$$

hence, $-\lambda^{-1} \mu=1$.
4. Let $\lambda \neq 0$ be an eigenvalue of T and x a corresponding eigenvector. Then $M^{-1} S x=\lambda x$ if and only if $S M^{-1} S x=\lambda S x$, which, in turn, is equivalent to $-\left(M^{-1} S\right)^{T} S x=\lambda S x$, that is $\left(M^{-1} S\right)^{T}(S x)=-\lambda S x$. Since $\lambda \neq 0, S x$ is an eigenvector of $\left(M^{-1} S\right)^{T}$ of eigenvalue $-\lambda$. Clearly, $\left(M^{-1} S\right)^{T}$ and $M^{-1} S$ have the same eigenvalues, so $-\lambda$ is an eigenvalue of T.

Corollary 3.4. Let V_{λ} and V_{μ} be two eigenspaces of non-zero eigenvalues $\lambda \neq-\mu$. Then, $V_{\lambda} \oplus V_{\mu}$ is both totally singular and totally isotropic.

3.2. Minimum weight codewords

Recall that $\varphi \in \bigwedge^{2} V^{*}$ and, for any $u \in \mathcal{Q}, \bar{\varphi}_{u} \in V^{*}$. In particular, $\bar{\varphi}_{u}$ either determines a hyperplane of $V_{u}=u^{\perp} \mathcal{Q} / \operatorname{Span}(u)$ or it is null on V_{u}.

Lemma 3.5. $\bar{\varphi}_{u}=0$ if and only if u is an eigenvector of T.
Proof. By Lemma 3.2, u is an eigenvector of T if and only if $u^{\perp \mathcal{Q}} \subseteq u^{\perp W}$. By definition of $\perp_{\mathcal{Q}}$, for every $v \in u^{\perp \mathcal{Q}} \cap \mathcal{Q}$, we have $\operatorname{Span}(u, v) \in \Delta_{n, 2}$. However, as $v \in u^{\perp W}$, also $\langle\varphi, u \wedge v\rangle=0$. So, $\bar{\varphi}_{u}(v)=0, \forall v \in u^{\perp \mathcal{Q}}$. Thus, $\bar{\varphi}_{u}=0$ on $\operatorname{Res}_{\mathcal{Q}} u$. Conversely, reading the argument backwards, we see that if $\bar{\varphi}_{u}=0$ then u is eigenvector of T.

We remark that $\varphi_{u}=0$ if and only if $u \in \operatorname{ker} T$ (by Lemma 3.2(2)).
Lemma 3.6. Suppose $u \in \mathcal{Q}$ not to be an eigenvector of T. Then,

$$
\operatorname{wt}\left(\bar{\varphi}_{u}\right)= \begin{cases}q^{2 n-3} & \text { if } \eta(T u)=0 \\ q^{2 n-3}-q^{n-2} & \text { if } \eta(T u) \neq 0 \text { is a square } \\ q^{2 n-3}+q^{n-2} & \text { if } \eta(T u) \text { is a non-square. }\end{cases}
$$

Proof. Let $a_{u}:=T u$ and let $\mathcal{Q}_{u}:=a_{u}^{\perp \mathcal{Q}} \cap \mathcal{Q}$. Note that $u \in \mathcal{Q}_{u} \cap u^{\perp \mathcal{Q}}$. Indeed, $u^{T} M T u=u^{T} S u=0$. So, $\mathrm{wt}\left(\bar{\varphi}_{u}\right)=\operatorname{wt}\left(\bar{\varphi}_{a_{u}}\right)$. The quadric $\operatorname{Res}_{\mathcal{Q}_{u}} u:=\left(\mathcal{Q}_{u} \cap u^{\perp \mathcal{Q}}\right) / \operatorname{Span}(u)$ is either hyperbolic, elliptic or degenerate according as a_{u} is external, internal or contained in \mathcal{Q}. The result now follows from Lemma 3.1.

Define

$$
\begin{aligned}
\mathfrak{A}^{\prime} & :=\{u: u \in \mathcal{Q} \text { and } u \text { non-eigenvector of } T\}, & & A^{\prime}:=\# \mathfrak{A}^{\prime} ; \\
\mathfrak{B} & :=\left\{u: u \in \mathfrak{A}^{\prime} \text { and } T u \in \mathcal{Q}\right\}, & & B:=\# \mathfrak{B} ; \\
\mathfrak{C} & :=\left\{u: u \in \mathfrak{A}^{\prime} \text { and } \eta(T u) \text { is a non-square }\right\}, & & C:=\# \mathfrak{C} .
\end{aligned}
$$

By definition, both \mathfrak{B} and \mathfrak{C} are subset of \mathfrak{A}^{\prime}. Using (6) we can write

$$
\begin{equation*}
\operatorname{wt}(\varphi)=\frac{q^{2 n-3}-q^{n-2}}{q^{2}-1} A^{\prime}+\frac{q^{n-2}}{q^{2}-1} B+\frac{2 q^{n-2}}{q^{2}-1} C . \tag{8}
\end{equation*}
$$

Put $A=q^{2 n-2}-1-\#\{u: u \in \mathcal{Q}$ and u eigenvector of $T\}$; then, (8) becomes

$$
\begin{equation*}
\mathrm{wt}(\varphi)=q^{4 n-5}-q^{3 n-4}+\frac{q^{n-2}}{q^{2}-1}\left(\left(q^{n-1}-1\right) A+B+2 C\right) . \tag{9}
\end{equation*}
$$

Clearly, $B, C \geq 0$. We investigate A more closely. Let $\operatorname{Spec}^{\prime}(T)$ be the set of non-zero eigenvalues of T and let $V_{\lambda}=\operatorname{ker}(T-\lambda I)$ be the corresponding eigenspaces for $\lambda \in \operatorname{Spec}^{\prime}(T)$. By Lemma 3.3, each space V_{λ} is totally singular; thus

$$
\begin{equation*}
A=q^{2 n-2}-1-\sum_{\lambda \in \operatorname{Spec}^{\prime}(T)}\left(\# V_{\lambda}-1\right)-\#(\operatorname{ker} T \cap \mathcal{Q}) . \tag{10}
\end{equation*}
$$

Let $r \in \mathbb{N}$ be such that $\operatorname{dim} \operatorname{Rad}(\varphi)=\operatorname{dim} \operatorname{ker} T=2(n-r)+1$, where by Theorem 2.1, we may regard φ as a bilinear alternating form.

The non-degenerate symmetric bilinear form β induces a symmetric bilinear form β^{*} on V^{*}, defined as $\beta^{*}\left(v_{1}^{*}, v_{2}^{*}\right)=\beta\left(v_{1}, v_{2}\right)$ where v_{1}^{*}, v_{2}^{*} are functionals determining respectively the hyperplanes $v_{1}^{\perp \mathcal{Q}}$ and $v_{2}^{\perp \mathcal{Q}}$. In particular, given the basis $\left(e_{1}, \ldots, e_{2 n+1}\right)$ of V, the above correspondence determines a basis $\left(e^{1}, \ldots, e^{2 n+1}\right)$ of V^{*}, where e^{i}, as a functional, describes the hyperplane $e_{i}^{\perp \mathcal{Q}}$ for $1 \leq i \leq 2 n+1$. As before, let also $O(V)$ be the orthogonal group stabilizing \mathcal{Q}. We have the following theorem.

Theorem 3.7. For any $\varphi \in \bigwedge^{2} V^{*}$ exactly one of the following conditions holds:
(1) $r=1$; then $\operatorname{wt}(\varphi) \geq q^{4 n-5}-q^{3 n-4}$ with equality occurring if and only if φ is in the $O(V)$-orbit of $e^{1} \wedge e^{2 n+1} ;$
(2) $r>1$ and $A>0$: in this case $\operatorname{wt}(\varphi)>q^{4 n-5}-q^{3 n-4}$;
(3) $r>1$ and $A<0$: in this case $r=n=2$ and φ is in the $O(V)$-orbit of $e^{1} \wedge e^{2}+e^{3} \wedge e^{4}$ with $\operatorname{wt}(\varphi)=q^{3}-q^{2}$.

Proof. If $r=1$, then $\operatorname{dim} \operatorname{Rad}(\varphi)=2 n-1$. As $\varphi \in \bigwedge^{2} V^{*}$ has tensor rank 1 (i.e. is fully decomposable), φ determines a unique 2 -dimensional subspace W_{φ} of V^{*}. In particular, the subspace W_{φ} is endowed with the quadratic form obtained from the restriction of β^{*} to W_{φ}. There are just 5 types of 2-dimensional quadratic spaces; they correspond respectively to the forms $f_{1}(x, y)=0, f_{2}(x, y)=y^{2}, f_{3}(x, y)=\varepsilon y^{2}$, $f_{4}(x, y)=x^{2}-\varepsilon y^{2}$ and $f_{5}(x, y)=x y$, where ε is a non-square in \mathbb{F}_{q} and the coordinates are with respect to a given reference system of W_{φ}.

For each $f_{i}, 1 \leq i \leq 5$, there are some $\varphi_{i} \in \bigwedge^{2} V^{*}$ such that $\left.\beta^{*}\right|_{W_{\varphi_{i}}} \cong f_{i}$. Examples of such φ_{i} inducing, respectively, f_{i} for $i=1, \ldots, 5$ are the following: $\varphi_{1}=e^{1} \wedge e^{3}, \varphi_{2}=e^{1} \wedge e^{2 n+1}, \varphi_{3}=e^{1} \wedge\left(e^{3}+\varepsilon e^{4}\right)$, $\varphi_{4}=e^{2 n+1} \wedge\left(e^{1}-\varepsilon e^{2}\right)$ and $\varphi_{5}=e^{1} \wedge e^{2}$.

Using Witt's extension theorem we see that there always is an isometry between a given W_{φ} and any of these spaces $W_{\varphi_{i}}(1 \leq i \leq 5)$ which can be extended to an element of $O(V)$. In other words any form with $r=1$ is equivalent to one of the aforementioned five elements of $\Lambda^{2} V^{*}$.

A direct computation shows that the list of possible weights is as follows:

$$
\begin{aligned}
& \operatorname{wt}\left(e^{1} \wedge e^{2}\right)=\operatorname{wt}\left(e^{2 n+1} \wedge\left(e^{1}-\varepsilon e^{2}\right)\right)=q^{4 n-5}-q^{2 n-3}, \\
& \operatorname{wt}\left(e^{1} \wedge e^{3}\right)=q^{4 n-5}, \quad \operatorname{wt}\left(e^{1} \wedge e^{2 n+1}\right)=q^{4 n-5}-q^{3 n-4}, \\
& \operatorname{wt}\left(e^{1} \wedge\left(e^{3}+\varepsilon e^{4}\right)\right)=q^{4 n-5}+q^{3 n-4} .
\end{aligned}
$$

As an example we will explicitly compute $\operatorname{wt}\left(e^{1} \wedge e^{2}\right)$. The remaining cases are analogous. Since $\varphi_{5}=e^{1} \wedge e^{2}$, we have, by (3),

$$
\operatorname{wt}\left(\varphi_{5}\right)=\#\left\{\left(v_{1}, v_{2}\right): v_{1}, v_{2} \in\left\{e_{1}, e_{2}\right\}^{\perp \mathcal{Q}} \cap \mathcal{Q}, \beta\left(e_{1}+v_{1}, e_{2}+v_{2}\right)=0\right\}
$$

In particular, as

$$
\beta\left(e_{1}+v_{1}, e_{2}+v_{2}\right)=\beta\left(e_{1}, v_{2}\right)+\beta\left(v_{1}, e_{2}\right)+\beta\left(e_{1}, e_{2}\right)+\beta\left(v_{1}, v_{2}\right)=1+\beta\left(v_{1}, v_{2}\right)
$$

we have $\beta\left(v_{1}, v_{2}\right)=-1$. Observe that $\mathcal{Q}^{\prime}:=\left\{e_{1}, e_{2}\right\}^{\perp \mathcal{Q}} \cap \mathcal{Q}$ is a non-singular parabolic quadric $\mathcal{Q}(2 n-2, q)$ of rank $n-1$; thus it contains $\left(q^{2 n-2}-1\right)$ non-zero vectors and we can choose v_{1} in $\left(q^{2 n-2}-1\right)$ ways. For each projective point $p \in \mathcal{Q}^{\prime}$ with $p \notin v_{1}^{\perp \mathcal{Q}}$, there is exactly one vector v_{2} such that $v_{2} \in p$ and $\beta\left(v_{1}, v_{2}\right)=-1$. The number of such points is

$$
\# \mathcal{Q}^{\prime}-\#\left(v_{1}^{\perp \mathcal{Q}} \cap \mathcal{Q}^{\prime}\right)=\frac{q^{2 n-2}-1}{q-1}-\left(\frac{q^{2 n-4}-1}{q-1} q+1\right)=q^{2 n-3} .
$$

In particular, the overall weight of $\operatorname{wt}\left(\varphi_{5}\right)$ is

$$
\operatorname{wt}\left(\varphi_{5}\right):=q^{2 n-3}\left(q^{2 n-2}-1\right)=q^{4 n-5}-q^{2 n-3} .
$$

The case $e^{1} \wedge e^{2 n+1}$ will yield words of minimum weight.
Suppose now $r>1$. Clearly,

$$
\# \operatorname{ker}(T) \cap \mathcal{Q} \leq \# \operatorname{ker}(T)-1=q^{2 n-2 r+1}-1
$$

Furthermore, if $\lambda \in \operatorname{Spec}^{\prime}(T)$ then also $-\lambda \in \operatorname{Spec}^{\prime}(T)$ by Lemma 3.3 (4). Thus, we can write $\operatorname{Spec}^{\prime}(T)=$ $\left\{\lambda_{1}, \ldots, \lambda_{\ell}\right\} \cup\left\{-\lambda_{1}, \ldots,-\lambda_{\ell}\right\}$ with $\lambda_{i} \neq \pm \lambda_{j}$ if $i \neq j$. By Corollary 3.4, the space $X^{+}:=\oplus_{i=1}^{\ell} V_{\lambda_{i}}$ is totally singular; hence, $\operatorname{dim} X^{+} \leq n$ and

$$
\sum_{i=1}^{\ell} \#\left(V_{\lambda_{i}} \backslash\{0\}\right) \leq \# X^{+}-1 \leq q^{n}-1 ;
$$

likewise, considering $X^{-}:=\oplus_{i=1}^{\ell} V_{-\lambda_{i}}$, we get $\sum_{i=1}^{\ell} \#\left(V_{-\lambda_{i}} \backslash\{0\}\right) \leq q^{n}-1$. Thus,

$$
\begin{equation*}
A \geq q^{2 n-2}-q^{2 n-2 r+1}-2\left(q^{n}-1\right) . \tag{11}
\end{equation*}
$$

If $A>0$, then $\mathrm{wt}(\varphi)>q^{4 n-5}-q^{3 n-4}$. We now distinguish two cases.
Suppose that $\operatorname{Rad}(\varphi)$ contains a singular vector u; then, by statement (1) of Lemma 3.2, $X^{+} \oplus \operatorname{Span}(u)$ would then be a totally singular subspace; thus, $\operatorname{dim} X^{ \pm} \leq n-1$ and

$$
A \geq q^{2 n-2}-q^{2 n-2 r+1}-2\left(q^{n-1}-1\right)>q^{n-1}\left(q^{n-1}-q^{n-2}-2\right) \geq 0 ;
$$

therefore, $A>0$. By Chevalley-Warning theorem, as $2(n-r)+1 \geq 3$, the set $\operatorname{Rad}(\varphi) \cap \mathcal{Q}$ always contains a non-zero singular vector.

Suppose now that $\operatorname{Rad}(\varphi)$ does not contain any non-zero singular vector; then $n=r$ and, consequently, $A \geq q^{2 n-2}-1-2\left(q^{n}-1\right)$ (where we have replaced by 1 the term $q^{2(n-r)+1}$ of (11), which was an upper bound for the number of singular vectors in $\operatorname{Rad}(\varphi))$. This latter quantity is positive unless $n=2$.

Therefore, $A \leq 0$ and $r>1$ can occur only for $r=n=2$.
If $A=0$, then

$$
\#\{u: u \in \mathcal{Q} \text { and } u \text { eigenvector of } T\} \cup\{0\}=q^{2} .
$$

This happens only if there exists an eigenvalue $\lambda \neq 0$ such that $V_{\lambda} \subseteq \mathcal{Q}$ and $\operatorname{dim}\left(V_{\lambda}\right)=2$. By Lemma 3.3(4), also $-\lambda$ is an eigenvalue, so $V_{-\lambda} \subseteq \mathcal{Q}$. Then,

$$
\#\{u: u \in \mathcal{Q} \text { and } u \text { eigenvector of } T\} \cup\{0\}>q^{2}, \quad \text { a contradiction. }
$$

Hence, $A<0$ and $r>1$. In this case $\operatorname{Rad}(\varphi)$ would be a one dimensional subspace of V not contained in \mathcal{Q}. We claim that actually φ is in the $O\left(V^{*}\right)$-orbit of $e^{1} \wedge e^{2}+e^{3} \wedge e^{4}$. As before, let $\operatorname{Spec}^{\prime}(T)=$ $\left\{\lambda_{1}, \ldots, \lambda_{\ell}\right\} \cup\left\{-\lambda_{1}, \ldots,-\lambda_{\ell}\right\}$. Since X^{+}is totally singular, $\operatorname{dim} X \leq 2$, whence $\ell \leq 2$. If $\ell=2$, then $\operatorname{dim} X^{+}=\operatorname{dim} X^{-}=2$. Thus, all four eigenspaces $V_{ \pm \lambda_{i}}$ have dimension 1 and $\sum_{\lambda \in \operatorname{Spec}^{\prime}(T)} \#\left(V_{\lambda} \backslash\{0\}\right)=$ $4(q-1)$. It follows $A \geq q^{2}-1-4(q-1)=(q-2)^{2}-1 \geq 0$ and we are done. Therefore, $\ell \leq 1$. If $\ell=0$, then $A \geq q^{2}-1>0$. Likewise, if $\ell=1$ and $\operatorname{dim} V_{\lambda_{1}}=\operatorname{dim} V_{-\lambda_{1}}=1$, then $A \geq q^{2}-1-2(q-1)>0$. There remain to consider only the case $\ell=1$ and $\operatorname{dim} V_{\lambda}=\operatorname{dim} V_{-\lambda}=2$. Observe first that if there were a vector $b_{3} \in V_{-\lambda} \cap V_{\lambda}^{\perp \mathcal{Q}}$, then $V_{\lambda} \oplus \operatorname{Span}\left(b_{3}\right)$ would be totally singular - a contradiction, as the rank of \mathcal{Q} is 2 . Therefore we can choose a basis $\left(b_{1}, b_{2}, \ldots, b_{5}\right)$ for V such that $V_{\lambda}=\operatorname{Span}\left(b_{1}, b_{3}\right), V_{-\lambda}=\operatorname{Span}\left(b_{2}, b_{4}\right)$, $\beta\left(b_{2}, b_{1}\right)=1, \beta\left(b_{3}, b_{2}\right)=0, \operatorname{Rad}(\varphi)=\operatorname{Span}\left(b_{5}\right)$ and $\operatorname{Span}\left(b_{1}, b_{2}, b_{5}\right)^{\perp \mathcal{Q}}=\operatorname{Span}\left(b_{3}, b_{4}\right)$. Indeed, we may assume that b_{3}, b_{4} are a hyperbolic pair. By construction $\beta\left(T b_{4}, b_{i}\right)=-\beta\left(b_{4}, T b_{i}\right)=0$ for $i=1,2,4,5$. Hence T has matrix $\operatorname{diag}(\lambda,-\lambda, \lambda,-\lambda, 0)$ with respect to this basis, that is $\varphi=b^{1} \wedge b^{2}+b^{3} \wedge b^{4}$. We now compute $\operatorname{wt}(\varphi)$ directly, under the assumption $n=2$ and obtain

$$
\operatorname{wt}(\varphi)=q^{3}-q^{2} .
$$

This completes the proof of the Main Theorem.
Corollary 3.8. If $n>2$ the codewords of minimum weight all lie on the orbit of $e^{1} \wedge e^{2 n+1}$ under the action of the orthogonal group $O(V)$. For $n=2$ the minimum weight codewords either lie in the orbit of $e^{1} \wedge e^{5}$ or in the orbit of $e^{1} \wedge e^{2}+e^{3} \wedge e^{4}$.

Acknowledgements

K.V. Kaipa is supported by the Indo-Russian project INT/RFBR/P-114 from the Department of Science \& Technology, Govt. of India.

References

[1] I. Cardinali, L. Giuzzi, Codes and caps from orthogonal Grassmannians, Finite Fields Appl. 24 (2013) 148-169.
[2] I. Cardinali, L. Giuzzi, Minimum distance of symplectic Grassmann codes, Linear Algebra Appl. 488 (2016) 124-134.
[3] I. Cardinali, A. Pasini, Grassmann and Weyl embeddings of orthogonal Grassmannians, J. Algebr. Comb. 38 (2013) 863-888.
[4] S.R. Ghorpade, K.V. Kaipa, Automorphism groups of Grassmann codes, Finite Fields Appl. 23 (2013) 80-102.
[5] S.R. Ghorpade, G. Lachaud, Hyperplane sections of Grassmannians and the number of MDS linear codes, Finite Fields Appl. 7 (2001) 468-506.
[6] S.R. Ghorpade, A.R. Patil, H.K. Pillai, Decomposable subspaces, linear sections of Grassmann varieties, and higher weights of Grassmann codes, Finite Fields Appl. 15 (2009) 54-68.
[7] J.W.P. Hirshfeld, J.A. Thas, General Galois Geometries, Clarendon Press, Oxford, 1991.
[8] D.Yu. Nogin, Codes associated to Grassmannians, in: Arithmetic, Geometry and Coding Theory, Luminy, 1993, de Gruyter, 1996, pp. 145-154.
[9] S. Roman, Advanced Linear Algebra, Grad. Texts Math., vol. 135, Springer-Verlag, 2005.
[10] C.T. Ryan, An application of Grassmannian varieties to coding theory, Congr. Numer. 57 (1987) 257-271.
[11] C.T. Ryan, Projective codes based on Grassmann varieties, Congr. Numer. 57 (1987) 273-279.
[12] M.A. Tsfasman, S.G. Vlăduţ, D.Yu. Nogin, Algebraic Geometric Codes: Basic Notions, Math. Surv. Monogr., vol. 139, American Mathematical Society, 2007.

[^0]: * Corresponding author. Tel.: +39 030 3715739; fax: +390303615745 .

 E-mail addresses: ilaria.cardinali@unisi.it (I. Cardinali), luca.giuzzi@unibs.it (L. Giuzzi), kaipa@iiserpune.ac.in (K.V. Kaipa), antonio.pasini@unisi.it (A. Pasini).

