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We present here an all-optical scheme for the experimental realization of a quantum phase gate. It is
based on the polarization degree of freedom of two traveling single-photon wave packets and exploits
giant Kerr nonlinearities that can be attained in coherently driven ultracold atomic media.
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Photons are ideal carriers of quantum information as
they travel at the speed of light and are negligibly af-
fected by decoherence. In fact, quantum key distribution
[1] and quantum teleportation [2,3] have been demon-
strated using either single-photon pulses, which encode
the quantum information in the photon polarization [1,2],
or squeezed light encoding the information in the field
quadrature [3]. The use of photons has also been sug-
gested for quantum computation schemes even though
the absence of significant photon-photon interactions be-
comes an obstacle toward the realization of efficient
quantum gates. Two different ways have been proposed
to circumvent this problem, namely, linear optics quan-
tum computation [4] and nonlinear optical processes that
involve few photons. While one is a probabilistic scheme
implicitly based on the nonlinearity hidden in single-
photon detectors, the other is based on the enhance-
ment of photon-photon interaction achieved either in
cavity QED configurations [5–7] or in dense atomic
media exhibiting electromagnetically induced transpar-
ency (EIT) [8].

Single-qubit gates and one universal two-qubit gates
are required for implementing universal quantum
computation. The prototype optical implementation
of a two-qubit gate is the quantum phase gate (QPG)
in which one qubit gets a phase conditional to the other
qubit state according to the transformation jii1jji2 !
expfi!ijgjii1jji2, where fi; jg ! 0; 1 denote the logical
qubit bases. This gate becomes universal when ! !
!11 "!00 #!10 #!01 ! 0 [5,9].

Partial demonstrations of an optical QPG have already
been performed. A conditional phase shift ! ’ 16$ be-
tween two frequency-distinct cavity modes that experi-
ence an effective cross modulation mediated by a beam of
Cs atoms was first measured nearly a decade ago [5]. The
complete truth table of a QPG has not been determined as
yet and an attempt in this direction has been made only
very recently [10] , whereby a conditional phase shift ! ’
8$ has been obtained between weak coherent pulses ex-
ploiting second-order nonlinearities in a crystal. This
experiment, however, does not seem to demonstrate a

bona fide QPG as ! depends on the input states and the
gate works only for a restricted class of inputs. A phase-
tunable mixed QPG between a two-level Rydberg atom
and the two lowest Fock states of a high-Q microwave
cavity has also been demonstrated [6].

A complete demonstration of a fully optical QPG is
still lacking and we here envisage a new scheme for the
realization of such a logic gate. Our proposal relies on the
polarization degree of freedom of two traveling single-
photon wave packets and exploits the giant Kerr non-
linearities that can be observed in dense atomic media
under EIT [11]. A two-qubit gate for traveling photon
qubits is useful not only for optical implementations of
quantum computation, but also for quantum communica-
tion schemes. For example, perfect Bell-state discrimi-
nation for quantum dense coding and teleportation
becomes possible if a QPG with a conditional phase shift
! ! " could be used [12].

In our proposal the two qubits are a probe and a trigger
polarized single-photon wave packet,

j ii ! #"
i j$"ii " ##

i j$#ii; i ! fP; Tg; (1)

which can be written, in general, as a superposition of
two circularly polarized states,

j$%ii !
Z

d!%i&!'âay%&!'j0i; (2)

where %i&!' ! &&2i =2"'1=4 expf#&2i &!#!i'2=4g is the
frequency distribution of the incident wave packets cen-
tered on !i and with a time duration &i. In the interaction
region of length l the electric field operator undergoes the
following transformation:

âa%&!'! âa%&!' exp
!

i
!
c

Z l

0
dzn%&!; z'

"

; (3)

where n% is the real part of the refractive index which
depends also on zwhen cross-phase modulation is present.
Inserting Eq. (3) into Eq. (2) and assuming that the
refractive index varies slowly over the bandwidth of the
wave packets, one gets
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j$%ii ! e#i&!i=c'
R
l

0
dzn%&!i;z'j$%ii ( e#i!

i
% j$%ii; (4)

yielding a two-qubit gate in the form

j$%iPj$%iT ! e#i&!
P
%"!T

%'j$%iPj$%iT: (5)

This becomes a universal QPG [5,9] provided the condi-
tional phase shift

! ! &!P
" "!T

#' # &!P
# "!T

#' " f" !#g ! 0: (6)

The two-qubit gate (5) could be implemented in a mag-
netically confined cold sample of 87Rb atoms where two
weak and well stabilized probe and trigger light beams
exhibit a strong cross-Kerr effect in the five levels M
configuration described in Fig. 1. A $" polarized probe
couples the excited state j2i to the ground j1iwhere all the
atomic population is initially trapped. The other Zeeman-
split ground state j3i is coupled to level j4i by a $#

polarized trigger beam and to the excited state j2i by
an intense $# polarized pump. A fourth $# polarized
tuner beam couples level j4i and a third ground-state
sublevel, j5i. Owing to the tuner, the trigger group veloc-
ity can be significantly slowed down similarly to what
happens to the probe. This represents an essential im-
provement over the four levels N scheme of Ref. [11]
which does not involve the tuner and where the trigger
pulse, which is not slowed down, leads to a group velocity
mismatch that significantly limits the achievable nonlin-
ear shifts [13,14]. We anticipate that in the present M
scheme the group velocity mismatch can instead be re-
duced to zero and the cross-Kerr nonlinearity made large
enough to yield cross-phase shift values of the order of ".
Phase gating is realized when only one of the four pos-
sible probe and trigger polarization configurations in (5)
exhibits a strong nonlinear cross-phase shift. For both $#

polarized probe and trigger it can be seen, in fact, that for
not too large detunings there is no sufficiently close
excited state to which level j1icouples and no population

in j3i to drive the relevant trigger transition. Likewise for
a $# polarized probe and a $" polarized trigger. In either
case, probe and trigger only acquire the trivial vacuum
phase shift !i

0 ! kil ! !il=c. When both probe and trig-
ger are instead $" polarized, the former, subject to the
EIT produced by the j1i–j2i–j3i levels ! configuration
[15,16], acquires a nontrivial phase shift !P

! which can be
evaluated by neglecting trigger and tuner altogether,
while the latter, off any close resonant level, acquires
again the vacuum shift !T

0 . Finally, for a $" and $#

polarized probe and trigger, the two pulses will experi-
ence a substantial cross-Kerr effect acquiring nonlinear
cross-phase shifts !P

" and !T
#. We arrive then at the

following QPG table:

j$#iPj$#iT ! e#i&!
P
0"!T

0 'j$#iPj$#iT; (7)

j$#iPj$"iT ! e#i&!
P
0"!T

0 'j$#iPj$"iT; (8)

j$"iPj$"iT ! e#i&!
P
!
"!T

0 'j$"iPj$"iT; (9)

j$"iPj$#iT ! e#i&!
P
""!T

#'j$"iPj$#iT; (10)

with a conditional phase- shift given by

! ! !P
" "!T

# #!P
! #!T

0 : (11)

Let us now explicitly evaluate the phase shift appearing
in the required gate transformation (7)–(10). We start by
describing the system dynamics for the M configuration
of Fig. 1 in terms of five coupled equations for the slowly
varying atomic amplitudes ci [11,17], i.e.,

i _cc1 ! #")
1

2
c2; (12)

i _cc2 !
#

#1 # i
'2

2

$

c2 #
"1

2
c1 #

"2

2
c3; (13)

i _cc3 ! #12c3 #
")

2

2
c2 #

")
3

2
c4; (14)

i _cc4 !
#

#13 # i
'4

2

$

c4 #
"3

2
c3 #

"4

2
c5; (15)

i _cc5 ! #14c5 #
")

4

2
c4; (16)

where the relative detunings #12 ! #1 # #2, #13 !
#12 "#3, and #14 ! #13 # #4 are defined in terms of
the detunings #1 ! !21 #!P, #2 ! !23 #!2, #3 !
!43 #!T , #4 ! !45 #!4. We here examine ultracold
atomic samples at temperatures T < 1 (K so that
Doppler broadenings and shifts can be neglected. We
assume that decay only occurs from the two excited states
j2i and j4i out of the system, with similar rates '2 ’
'4 ! '. The pump and the tuner are taken as cw light
beams with constant Rabi frequencies "2 and "4, while
"1 and "3, referring to weak probe and trigger coherent
pulses, are space and time dependent Rabi frequencies.

|1>=|5S1/2,F=1,m=-1>

|2>=|5P1/2,F=1,m=0>

|3>=|5S1/2,F=2,m=1>

|4>=|5P3/2,F=1,m=0>

|5>=|5S1/2,F=1,m=1>

∆1 ∆2

∆3 ∆4

ωP Ω1
σ+ ωΤ

Ω3

σ−

ω2
Ω2

σ−

ω4 Ω4
σ−

γ2

γ4

FIG. 1. Polarization phase gate in ultracold 87Rb. The probe
(!P;"1) and trigger (!T;"3) pulses impinging upon a Rb
sample in the presence of a strong pump (!2;"2) and a tuner
(!4, "4) realize the gating transformation (7)–(10). For a
suitable choice of the four beam detunings (#1;#2;#3;#4)
and intensities, the $" and $# polarized probe and trigger
can acquire a large cross-Kerr phase modulation. The two
excited states decay with rates '2 ’ '4 ! ' ! 2"* 6 MHz.
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We determine the stationary state of Eqs. (12)–(16) by
assuming that most of the population remains in the
initially populated level j1i; this occurs when the inten-
sity of the pump is sufficiently larger than the probe
intensity and the detunings as well, i.e., j"2j2 +
j#12&#1 # i'=2'j. Under the further assumption that the
pump be stronger than the trigger as well, the stationary
probe and trigger susceptibilities can be rewritten as

)P&z; t' ’ )&1'
12 " )&3'

12 jET&z; t'j2; (17)

)T&z; t' ’ )&3'
34 jEP&z; t'j2: (18)

Here EP and ET are the probe and trigger electric fields,
while

)&1'
12 ! #N

V
j(12j2
$h*0

4#12

j"2j2
; (19)

)&3'
12 ! )&3'

34 ! N
V
4j(12j2j(34j2
$h3*0j"2j2

%

#13 # i
'
2
# j"4j2

4#14

&#1

(20)

are, respectively, the linear and nonlinear susceptibili-
ties given in terms of the dipole matrix elements (12 and
(34 and atomic density N=V. These expressions yield
previous results as limiting cases. The third-order suscep-
tibility for the N configuration assumed in [11] is ob-
tained when "4 ! 0, while the trigger susceptibility for
the M configuration examined in [18] is obtained when
#13 ! 0.

The above results (17)–(20) enable one to asses the
group velocity mismatch between probe and trigger. As
pointed out in [14], the two group velocities have to be
comparable and small in order to achieve large cross-
phase modulations. Unlike the six-level scheme studied
in [19], in which cross-phase modulation takes place in a
symmetric fashion so that the two group velocities are
equal by construction, our present scheme is not sym-
metrical and hence probe and trigger group velocities are
not, in general, equal. The group velocities follow from
(19) and (20),

vPg ’
$hc*0

8"j(12j2!P&N=V'
j"2j2

1" +j"3j2
; (21)

vTg ’
$hc*0

8"j(34j2!T&N=V'
j"2j2
+j"1j2

; (22)

where

+ !
&1" j"4j2

4#2
14
',&#13 # j"4j2

4#14
'2 # '2

4 -

,&#13 # j"4j2
4#14

'2 " '2

4 -2
: (23)

It follows that the two velocities can be made both small
and equal by varying the probe and trigger relative in-
tensities and the parameter +. Because of the tuner, our

present configuration enables one to further control the
group mismatch through +, which can be varied inde-
pendently by adjusting the tuner intensity and its relative
detuning #14.

By comparing the qubit shifts in (4) with the solution

"i&z; t' ! "i

#

0; t# z
vig

$

exp
!

2"iki
Z z

0
dz0)i&z0; t'

"

(24)

of the propagation equation [15] for the slowly varying
electric field amplitudes "i&z; t', where )i ’ &ni # 1'=2"
are given in Eqs. (19) and (20) and vig in Eqs. (21) and
(22), the phase in Eq. (24) yields directly the required
shifts for the phase-gating transformation (7)–(10). The
linear phase shift !P

! acquired by a $"-polarized probe
pulse moving in the z direction across a sample of optical
thickness l then becomes

!P
! ! kPlf1" 2")&1'

12 g; (25)

while the nonlinear shift is obtained when the last con-
tribution on the right-hand side of Eq. (17) is included. For
a trigger Gaussian pulse [20] of peak Rabi frequency "pk

3
and moving within the sample with group velocity vTg , we
arrive at an overall probe shift in the form

!P
" ! !P

! " 2"kP)
&3'
12

Z l

0
dz0jET&z0; t'j2

! !P
! " kPl

"3=2 $h2j"pk
3 j2

4j(34j2
erf,,P-
,P

Re)&3'
12 ; (26)

with ,P ! &1# vPg=vTg '
'''

2
p
l=vPg&T and where &T is the

trigger pulse time duration. By following the same pro-
cedure one has for the trigger phase shift

!T
# ! !T

0 " kTl
"3=2 $h2j"pk

1 j2
4j(12j2

erf,,T-
,T

Re)&3'
34 ; (27)

where ,T is obtained from ,P upon interchanging P$ T.
Large nonlinear shifts take place when probe and trig-

ger velocities are very much alike, i.e., when , ! 0, in
which case the erf,,-=, reaches the maximum value
2=

''''

"
p

, and for appreciably large values of the two non-
linear susceptibilities’ real parts. At the same time, their
imaginary parts have to be kept small so as to avoid
absorption, which may hamper the efficiency of the gat-
ing mechanism. Assuming a perfect EIT regime for the
probe, i.e., #1 ! #2 ! 0, it is easily seen from Eq. (20)
that one can attain imaginary parts that are 2 orders
of magnitude smaller than their real parts for suitable
values of the tuner intensity and provided that trigger and
tuner are both strongly detuned and by nearly equal
amounts, i.e., #3 ’ #4. Such a choice further leads to
values of + that yield equal group velocities. By taking,
e.g., #3 ’ #4 ! 20' with #14 ! 10#2', and "4 ’ ',
"1 ’ 0:08', "3 ’ 0:04', "2 ’ 2', one has at typi-
cal densities of N=V ! 3* 1013 cm#3 group velocities
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vPg ’ vTg ’ 10 m=s along with over 65% average trans-
mission [21] and a conditional phase shift ! ’ " over an
interaction length l ’ 1:8 mm. This set of Rabi frequen-
cies corresponds to single-photon probe and trigger pulses
for tightly focused beams (several microns) with time
duration .1 (s. The non-negligible absorption accompa-
nying the nonlinear phase shift does not hinder the
proposed QPG mechanism. A demonstration of the pro-
posed QPG may be done by using post selection of single-
photon coherent pulses instead of single-photon wave
packets. In this case, the phase-gating mechanism de-
scribed by Eqs. (7)–(10) is carried out by considering
the four possible configurations for the input polariza-
tions, measuring the phase shifts with a Mach-Zender
interferometer setup [10], and post selecting only the
events with a coincident detection of one photon out of
each probe and trigger pulse. Non-negligible absorption
implies then only a smaller value of probe and trigger
transmitted amplitudes with a concomitant lower proba-
bility (by 40%) to detect a two-photon coincidence be-
tween probe and trigger.

Laser pump intensity and frequency fluctuations may
increase absorption and phase-shift fluctuations. The gate
fidelity may then be hampered though in the proposed
post-selection scheme; the fidelity is essentially affected
only by the fluctuations of the shifts !P

!, !T
#, and !P

". On
general ground one estimates that a 1% intensity fluctua-
tion yields an error probability of about 3% though rela-
tive detuning fluctuations of the order of 10#5' can make
the error probability become as large as 10% [22].

It is worthwhile to note that a classical phase gate could
be implemented by using more intense probe and trigger
pulses. In fact, a conditional phase shift ! ’ " could be
achieved with the same atomic density but over a shorter
interaction length, l ’ 10 (m, along with 80% average
transmission, by choosing "1 ’ 1:4', "3 ’ 0:16', "4 ’
', "2 ’ 7' and by slightly decreasing the detunings #3
and #4.

We here propose in conclusion a feasible scheme for an
all-optical quantum phase gate that uses traveling single-
photon pulses in which quantum information is encoded
in the polarization degree of freedom. Unlike a similar
scheme already investigated in [18,23] and where the
issue of the two probe and trigger pulses group velocities
mismatch was not addressed, we here observe that a "
phase shift is obtained only when the probe and trigger
group velocities are both small and almost equal. We
show, within the framework of the present model, that
this can be realized simply by tuning the frequencies and
intensities of the four input light beams. This way of
achieving a zero group velocity mismatch has clear ad-
vantages over other schemes that have been recently dis-
cussed [14,19]. The proposed scheme could be directly
applied, in fact, to a magnetically confined cold sample
of 87Rb atoms and does not require a cold trapped
mixture of two atomic species as in [14], where the two

species realizing an N and a ! scheme, respectively,
require an accurate control of the atomic densities in
order to get equal group velocities. The scheme studied
instead in [19] is symmetric for probe and trigger and
therefore yields equal group velocities automatically. Yet,
the initial atomic population is here to be put in a Zeeman
split m ! 0 ground-state sublevel which cannot be easily
done in a magnetically confined atomic sample requiring
more sophisticated optical trapping techniques.
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