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Key Points

• UDS demonstrated that BCR-
ABL KD mutations detectable
with conventional methods
may just be the tip of the
iceberg.

• The information provided
by conventional Sanger
sequencing may not always
be sufficient to predict
responsiveness to a given TKI.

In chronic myeloid leukemia and Philadelphia chromosome–positive acute lymphoblastic

leukemia, tyrosine kinase inhibitor (TKI) therapy may select for drug-resistant BCR-ABL

mutants. We used an ultra-deep sequencing (UDS) approach to resolve qualitatively and

quantitatively the complexity of mutated populations surviving TKIs and to investigate

their clonal structure and evolution over time in relation to therapeutic intervention. To this

purpose, we performed a longitudinal analysis of 106 samples from 33 patients who had

received sequential treatment with multiple TKIs and had experienced sequential relapses

accompanied by selection of 1 or more TKI-resistant mutations. We found that con-

ventional Sanger sequencing had misclassified or underestimated BCR-ABL mutation

status in 55% of the samples, where mutations with 1% to 15% abundance were detected.

A complex clonal texture was uncovered by clonal analysis of samples harboring multiple

mutations and up to 13 different mutated populations were identified. The landscape of

thesemutated populationswas found to be highly dynamic. The high degree of complexity

uncovered by UDS indicates that conventional Sanger sequencingmight be an inadequate

tool to assessBCR-ABL kinase domainmutation status, which currently represents an important component of the therapeutic decision

algorithms. Further evaluation of the clinical usefulness of UDS-based approaches is warranted. (Blood. 2013;122(9):1634-1648)

Introduction

The first Bcr-Abl tyrosine kinase inhibitor (TKI), imatinib, was in-
troduced in the treatment protocols of chronic myeloid leukemias
(CMLs) and Philadelphia chromosome–positive (Ph1) acute lym-
phoblastic leukemias (ALLs) more than a decade ago.1 Soon after,
however, it was observed that BCR-ABL kinase domain (KD)
mutated forms with reduced or no sensitivity to imatinib could be
selected.2 Second-(dasatinib/nilotinib/bosutinib) and third-generation
(ponatinib) TKIs with much fewer insensitive mutations are now
already approved or pending approval (Table 13-10). Sequential switch
from a TKI to another may rescue response, although further gain of
mutations by the same (compound mutations) or different (poly-
clonal mutations) Ph1 clones is possible.11

Capillary Sanger sequencing (SS) is the most widely adopted
method to assess BCR-ABL KD mutation status3 despite its multiple

technical limitations: it cannot robustly identify mutated populations
,10% to 15%, it provides only rough estimates of mutated clone
abundance, and it cannot discriminate between polyclonal and
compound mutations, unless it is preceded by a cumbersome step of
cloning. Before the advent of next-generation sequencing (NGS)
technologies, however, no method was available that could improve
upon these limitations while allowing for scanning of any sequence
variant at any position within the KD. NGS carries out thousands to
millions of picoliter-scale sequencing reactions simultaneously yielding
thousands to millions of sequence reads, each one corresponding
to a single, clonally amplified, DNA molecule.12 The use of this
approach to sequence a nucleotide position multiple times, thus
achieving high sensitivity, is defined as ultra-deep sequencing (UDS).
Among NGS technologies commercially available, the Roche
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454 Life Sciences is particularly suitable for projects of targeted
amplicon resequencing, the average read length being 400 to 600
bp.13 Its application for the UDS of the BCR-ABL KD would allow
for: (1) full characterization of the spectrum of minor (,10%-15%)
mutated variants; (2) the ability to follow the dynamics of resistant
mutations over time; and (3) reconstruction of the clonal architecture
of mutated populations in the case of multiple mutations occurring
within the same amplicon.

We thus decided to take advantage of a UDS-based approach in
order to resolve qualitatively and quantitatively the complexity of
mutated Ph1 populations surviving TKIs and to investigate their
clonal structure and evolution over time in relation to treatment.

Materials and methods

Patients

We retrospectively selected 33 CML or Ph1 ALL patients who had received
sequential treatment with multiple TKIs (2-4 TKIs among imatinib, dasatinib,
nilotinib, ponatinib) and had experienced sequential relapses accompanied by
selection of 1 or more TKI-resistant mutations. Their main characteristics are
presented in Table 2. Written informed consent had been obtained, in ac-
cordancewith the Declaration of Helsinki. Up to 10 samples were analyzed for
each patient, for a total of 106 samples.

We also randomly selected and analyzed 15 CML patients who had
achieved an optimal response to imatinib (according to the European Leukemia
Net [ELN] definitions)14 for comparison.

This study was approved by the review boards of the S. Orsola-
Malpighi Hospital (Bologna) and of the Institute of Hematology and Blood
Transfusion (Prague); it was conducted in accordance with the Declaration
of Helsinki.

SS of the BCR-ABL KD

SS of the BCR-ABL KD was performed on an ABI PRISM 3730 (Applied
Biosystems) as previously described.15

UDS of the BCR-ABL KD

RNA was converted to complementary DNA (cDNA) with the Transcriptor
High-Fidelity cDNA Synthesis kit (Roche Applied Science). To select for
the translocated ABL allele, a first step of amplification was performed by
polymerase chain reaction (PCR) with a forward primer either on BCR
exon 1a (in case of e1a2 BCR-ABL fusion) or on the border of BCR exons
12-13 (in case of b2a2 or b3a2 BCR-ABL fusions) and a reverse primer on
ABL, exon 10. A second amplification step was then performed to generate
4 partly overlapping amplicons covering the KD of ABL (supplemental
Figure 1, available on the Blood website), tagged with a 10-base “barcode”
sequence (multiplex identifier) for sample pooling. Amplifications were
done using the FastStart High-Fidelity PCR System kit (Roche Applied
Science). UDS was performed on a Roche GS Junior (454-Life Sciences)
according to the manufacturer’s instructions. Primer sequences, PCR, and
sequencing protocols are detailed in the supplemental Methods. Amplicon
Variant Analyzer (version 2.7; 454-Life Sciences) and Sequence Pilot
(version 4.0.1; JSI-Medical Systems) were used to align reads to the
reference ABL sequence (GenBank accession no. X16416.1) and to calculate
variant frequencies. The presence of all relevant mutations was alsomanually
verified by inspection of individual flowgrams at the corresponding posi-
tions, with particular attention to homopolymeric regions. Samples harboring
multiple mutations were analyzed to gain further insights into the clonal
architecture of mutated populations. To this purpose, 2 further amplicons
were designed generating clonal reads for cases harboring a P-loop mutation
plus a threonine 315 or phenylalanine 317 mutation, and for cases harboring
a threonine 315 or phenylalanine 317 mutation plus a methionine 315,
phenylalanine 359 or A-loop mutation: the most frequent mutation com-
binations (supplemental Figure 1). UDS runs were designed to enable high-
sensitivity mutation calling, the target sequence coverage ranging from 3438
to 9976 independent reads for each nucleotide position. The sensitivity and
reproducibility of an ultra-deep amplicon sequencing approach based on the
454 technology had been previously explored in the framework of the IRON

Table 1. Summary of the BCR-ABL KD amino acid substitutions identified in clinical samples from patients reported to be resistant to the
currently approved TKIs

Imatinib Nilotinib Dasatinib Bosutinib Ponatinib

M237V L273M F311L E355D/G V379I A397P Y253F/H* V299L† V299L† ?

M244V E275K/Q T315I‡ F359V/I/C* A380T S417F/Y E255K/V* T315I‡ T315I‡

L248R D276G F317L/V/I/C† D363Y F382L I418S/V T315I‡ F317L/V/I/C† ?

G250E/R T277A F359V/I/C L364I L384M S438C F359V/I/C*

Q252R/H E279K Y342H A365V L387M/F E453G/K

Y253F/H* V280A/I M343T L370P M388L E459K/V

E255K/V* V289A A344V V371A Y393C P480L

E258D V299L† M351T E373K H396R/P F486S

Imatinib, dasatinib, and nilotinib are approved both by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) for first- or subsequent-line use.

Busutinib and ponatinib have recently been approved by the FDA for patients with resistance (or intolerance) to prior TKI therapy. Amino acid substitutions reported to be

capable to survive imatinib therapy are almost 50.3 For patients harboring T315I, pharmacologic options include the recently FDA-approved ponatinib (for CML and Ph1 ALL

patients with resistance to a prior TKI therapy)4 or omacetaxine mepesuccinate,5 an alkaloid with a mechanism of action other than Bcr-Abl kinase inhibition (for CP or AP

CML patients with resistance to 2 or more TKIs).

? indicates that bosutinib-resistant mutations other than T315I and ponatinib-resistant mutations, if any, still need to be assessed.

*Y253F/H, E255K/V, F359V/I/C retain insensitivity also to nilotinib.6,7

†V299L and F317L/V/I/C retain insensitivity also to dasatinib.7-9

‡T315I is a pan-resistant mutation retaining insensitivity to dasatinib, nilotinib, and bosutinib.10

Table 2. Features of the patients included in the present study

Features n

Patients, total 33

Median age, y (range) 52 (18-79)

Male to female ratio 19:14

Disease phase/type

CML 18

Chronic phase 9

Accelerated phase 1

Myeloid blast crisis 3

Lymphoid blast crisis 5

Ph1 ALL 15

No. of lines of TKI therapy received

2 22

3 8

4 or more 3
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(Interlaboratory Robustness of Next-generation sequencing)16 consortium.
More recently, robustness and clinical utility were addressed in an even
greater detail by Grossmann et al.17 Moreover, we further explored and
confirmed the sensitivity and reproducibility of our UDS-based BCR-ABL
KDmutation screening assay in a series of additional experiments detailed in
the supplemental Methods.

Because (1) several studies concordantly demonstrated high reliability
and reproducibility of 454 technology for variants >1%,18-20 and (2) serial
dilution experiments (see supplemental Methods for details) confirmed the
ability of our assay to detect mutations as low as 1% (whereas lower levels
were not investigated), we decided to reduce the likelihood of false-positive
results by filtering-out variants with ,1% abundance and to exploit high
coverage only for haplotype and clonal evolution analyses.

Phylogenetic analysis

Multiple read alignment and clustering was done with Jalview (version 2.8;
www.jalview.org). Phylogenetic reconstruction was performed using the
bioneighbor joining method with the Kimura 2-parameter substitution model
with 1000 bootstrap replicates as implemented in the program SEAVIEW.21,22

To minimize the impact of sequencing errors, only sequences that
represent .0.5% of the reads sequenced for at least 1 time point were
considered for phylogenetic analyses.

Results

BCR-ABL KD mutation status may be more complex than

SS shows

All the nucleotide substitutions that had been detected by SS (“major”
mutations) were also detected by UDS, with fairly good concordance
between the percentage of variant reads assessed by UDS and the
mutation abundance estimated from the relative peak height in the
SS chromatogram (Table 3; response definitions in references 14 and
23). In 58 of 106 (55%) samples, however, UDS revealed that
mutations undetectable by SS (from now on referred to as “minor”
mutations; abundance between 1% and 15%) were also present
(Table 3). The type of minor mutations detected by UDS could
frequently be accounted for by TKI exposure history because half
(57 of 111, 51%) could be recognized to be poorly sensitive either
to the TKI being administered or to the previous TKI received, or
both (Table 1 reports the mutations know to be resistant to imatinib,
dasatinib, nilotinib). In 4 patients (MBC-11, ALL-23, ALL-32,
ALL-33), different Ph1 populations were found to have acquired
different nucleotide substitutions leading to the same TKI-resistant
amino acid change (eg, g.c and g.t at position 903, both resulting
in a Q252H mutation; t.c at 1096 and c.a at 1098, both resulting
in an F317L mutation). In the remaining cases, minor mutations
were either silent (20 of 111, 18%) or never reported in association
with TKI resistance (34 of 111, 28%).

Samples from 15 CML patients who had achieved stable opti-
mal response to imatinib14 were also analyzed by UDS, for com-
parison. None were found to harbor point mutations at a cutoff
level of >1%.

A complex clonal texture is uncovered by clonal analysis of

samples harboring multiple mutations by UDS

When multiple mutations fell in KD regions <450 bp, it was
possible to design “ad hoc” amplicons mapping to those regions
(supplemental Figure 1) and take advantage of the clonal nature of
the sequence reads generated by UDS to see whether multiple
mutations belonged to the same (compound mutations) or to different

(polyclonal mutations) BCR-ABL transcripts (hence, defined 1 or
multiple Ph1 populations). Supplemental Figures 8 and 9 show 2
representative examples. The great majority of the samples turned
out to be a complex mosaic of populations harboring the mutations
alone as well as in combination (Table 3). Single mutants were
136 of 274 (49.6%); compound mutants were almost as frequent
(Figure 1).

The landscape of mutated populations is highly dynamic

Longitudinal quantitative follow-up of mutated populations painted
an elaborate picture of how the relative frequency of competing
populations can ebb and flow over time and with therapeutic
intervention (Table 3). Some representative examples are illustrated
in Figure 2. The switch from a TKI to another determined the fall of
previously dominant population(s) and the rise of new dominant one(s),
not necessarily preexisting at the time of switchover (or, at least,
not always detectable at the time of switchover with the level of
sensitivity allowed by our experimental approach). A new dominant
population could be unrelated to the former, rather arising from an
unmutated population (as exemplified in Figure 2A-B), or could
result from the acquisition of new mutations by the former, which
generated compound mutants (Figure 2B-C). In several cases, the
evolution of the pattern of mutated populations suggested that the
same mutation could have been acquired in parallel by independent
populations (ie, 1 unmutated and 1 already harboring a mutation;
Figure 2C-D). Selection/deselection of mutated populations could
be strikingly rapid. Some compound mutants (M351T1F317L,
Y253H1T315I, Y253H1F317L, F359V1T315I) were observed to
have higher selective advantage over the respective single mutants.
Other compound mutants (H396R1F317L, H396R1T315I, T315I1
F317L, E355G1T315I, G250E1F317L, E255V1Y253H, E255V1
T315I) were identified that did not overcome the respective single
mutants. The E255K1T315I compound mutant was detected in 6
cases: in 3, it became dominant over the E255K and T315I mutants,
whereas in another 3 it did not. The triple and quadruple compound
mutants detected fluctuated at low levels and were never able to gain
dominance, except in patient LBC-17, suggesting that accumulation
of.2 mutations, when tolerated, has almost always limited selective
advantage.

Further insights into BCR-ABL KD sequence evolution:

a phylogenetic approach

Figure 3 shows the neighbor joining bootstrap consensus tree for
sequences recovered at 5 time points for patient ALL-30. The tree
can be considered as consisting of 3 clusters. Reassuringly, within
each cluster, both the timing of first observation of each sequence
and the types of amino acid substitutions present are fairly consis-
tent, suggesting that, despite the low bootstrap support for key
branches, relevant hypotheses can be generated from the phyloge-
netic analysis. The tree is consistent with E255V occurring once,
along the branch dividing cluster A from the rest of the tree. This
substitution, which affords resistance to imatinib and nilotinib, is
observed in the majority of the sequences in clusters B and C,
and was already frequent in ALL-30-01 after 6 weeks of nilotinib
treatment (seq128). Indeed, in ALL-30-02 (after 6 weeks on
imatinib), seq128 is the dominant haplotype, although other amino
acid substitutions are observed in cluster C combined with E255V.
The tree and the timing of emergence of these haplotypes are both
consistent with the hypothesis that they evolved from clones rep-
resented by seq128. In ALL-30-03, 2 other imatinib- and nilotinib-
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Table 3. Comparison between mutations detected by SS and mutations detected by UDS and estimated clonal composition of the samples
harboring multiple mutations as assessed by UDS

Code Date TKI Line Mutations by SS Mutations by UDS*
Estimated mutated

populations by UDS† Disease status and response

CP-01-01 2/29/2012 DAS 2 H396R (;50),

F317L (;30)

H396R (55.05), F317L (28.23) H396R (43.99), F317L (17.17),

H396R1F317L (11.06)

Complete cytogenetic response

but no molecular response

after 6 mo on DAS

CP-01-02 5/2/2012 DAS 2 F317L (;70),

H396R (;20)

F317L (63.07), H396R (15.74),

T315I (5.42)

F317L (55.47),H396R (7.60),

H396R1F317L (7.38), T315I

(4.44), H396R1T315I (0.76),

F317L1T315I (0.22)

Complete hematologic

response, cytogenetic

response not assessed

CP-01-03 7/7/2012 NIL 3 T315I (;100) T315I (99.28) T315I (99.28) Complete hematologic

response, no cytogenetic

response

CP-02-01 3/4/2008 IM 1 F359V (;20) F359V (17.33) F359V (17.33) Loss of complete hematologic

response after 5 mo on IM

CP-02-02 4/2/2008 DAS 2 T315I (;100) T315I (94.80) T315I (94.80) Progression to LBC

CP-03-01 3/7/2005 IM 1 G250E (;100) G250E (93.72), F317L (1.78) G250E (92.20), G250E1F317L

(1.52), F317L (0.26)

Minor cytogenetic response

after 12 mo on IM

CP-03-02 9/14/2005 DAS 2 G250E (;70),

F317L (;20)

G250E (74.71), F317L (22.51) G250E (62.00), G250E1F317L

(12.71), F317L (9.80)

Minor cytogenetic response

CP-03-03 11/17/2005 DAS 2 G250E (;70),

F317L (;30)

G250E (60.73), F317L (27.06) G250E (46.44), G250E1F317L

(14.29), F317L (12.77)

Not available

CP-03-04 2/13/2006 DAS 2 G250E (;50),

F317L (;40)

G250E (45.47), F317L (37.49),

H295H (4.91), C330C (1.48)

G250E (30.46), F317L (20.40),

G250E1F317L (12.47),

F317L1H295H (2.14),

G250E1F317L1H295H

(1.19), H295H (0.89),

F317L1C330C (0.82),

G250E1H295H (0.69),

G250E1F317L1C330C

(0.47), G250E1C330C

(0.19)

Complete hematologic

response, no cytogenetic

response

CP-03-05 5/15/2006 NIL 3 G250E (;100),

E255E (;100)

G250E (87.17), E255E (85.78),

F317L (10.44)

G250E1E255E (77.90),

G250E1F317L1E255E

(7.66), F317L (2.56), G250E

(1.61), F317L1E255E (0.22)

Complete hematologic

response, no cytogenetic

response

CP-04-01 10/20/2005 IM 1 L384M (;100) L384M (87.04), E255V (15.14) N.A. Loss of complete cytogenetic

response after 24 mo on IM

CP-04-02 12/22/2005 NIL 2 L384M (;70),

E255V (;30)

L384M (68.33), E255V (32.02),

M351I (2.64)

N.A. Loss of complete hematologic

response

CP-04-03 1/24/2006 NIL 2 E255V (;100) E255V (80.71), L384M (14.40) N.A. No hematologic response

CP-05-01 1/20/2005 IM 1 G250E (;100) G250E (99.51) G250E (99.51) Loss of complete cytogenetic

response after 36 mo on IM

CP-05-02 3/23/2005 DAS 2 F317L (;30),

G250E (;30)

F317L (24.93), G250E (22.89),

C305C (11.70), K274E

(10.38)

G250E (16.52), F317L (15.06),

C305C (9.30), G250E1F317L

(4.30), K274E (4.09) F317L1

K274E (3.70), G250E1

K274E (1.04), C305C1F317L

(0.97), C3051CK274E (0.91),

G250E1F317L1K274E

(0.51), G250E1C305C1

F317L (0.39), G250E1

C305C1K274E (0.13)

Not available

CP-05-03 4/20/2005 DAS 2 F317L (;100) F317L (99.50) F317L (99.50) Complete hematologic response,

no cytogenetic response

CP-06-01 4/19/2005 IM 1 H396R (;100) H396R (99.63), A413A (1.71),

K247N (1.11)

N.A. Partial cytogenetic response

after 18 mo on IM

For SS results, mutation-relative abundance was assessed on the basis of variant peak height. In the TKI column, the TKI being administered at the time of analysis is

indicated. In the Line column, the number of different lines of TKI therapy that had been administered to the patient is indicated. Disease status and response at each time

point are also detailed. Response definitions as in Baccarani et al14 and Vignetti et al.23

In patient ALL-29, “T315?” denotes that 2 overlapping peaks at adjacent positions (c/t at 1091 and t/g at 1092) of codon 315 were identified in the SS chromatogram and

the resulting amino acid substitution(s) could not be resolved (see supplemental Figure 9). In patients MBC-11, ALL-23, ALL-32, and ALL-33, the same amino acid changes

were found to result from different nucleotide substitutions at the same codons (specified in parentheses). N.A. indicates that clonal analysis could not be possible because of

multiple mutations located .450 bp apart. N.D. indicates that amplification with fusion primers was unsuccessful and the sample could not be analyzed with UDS.

ALL, Ph1 acute lymphoblastic leukemia; AP, accelerated phase; CP, chronic phase; DAS, dasatinib; FISH, fluorescence in situ hybridization; IM, imatinib; LBC, lymphoid

blast crisis; MBC, myeloid blast crisis; N.A., not assessable; N.D., not done; NIL, nilotinib; PON, ponatinib; SCT, stem cell transplantation.

*Cutoff set at variants $1%, see “Materials and methods” for details.

†Percentage calculated after manual visual inspection of nucleotide sequences at the specific positions where the variants $1% were identified.
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Table 3. (continued)

Code Date TKI Line Mutations by SS Mutations by UDS*
Estimated mutated

populations by UDS† Disease status and response

CP-06-02 5/17/2005 DAS 2 None H396R (16.07), F317L (7.43) H396R (16.07), F317L (7.43) Complete cytogenetic response

(5 0/200 Ph1 by FISH)

CP-06-03 6/14/2005 DAS 2 F317L (;20) F317L (20.86), H396R (3.54) F317L (20.20), H396R (2.88),

F317L1H396R (0.66)

Loss of complete cytogenetic

response (5 30/200 Ph1 by

FISH)

CP-07-01 3/22/2007 IM 1 None A433A (1.48), P408P (1.42),

K378R (1.32)

A433A (1.48), P408P (1.42),

K378R (1.32)

No cytogenetic response after

12 mo on IM

CP-07-02 9/8/2009 NIL 2 T315I (;30) T315I (25.99), M351T (5.93),

T345T (6.37), R332R (5.91)

T315I (20.47), T345T (6.15),

R332R (5.75), T315I1

M351T (5.30), M351T (0.47),

T315I1T345T (0.22),

M351T1R332R (0.16)

No cytogenetic response

CP-07-03 3/4/2010 NIL 2 T315I (;70) T315I (65.85), Y253H (16.65),

W235R (3.77), F497L (3.14),

T406I (2.43), Q477Q (2.37),

F486S (2.28), D363N (1.47)

N.A. No cytogenetic response;

transplanted 6 mo later

CP-08-01 6/22/2010 IM 1 M351T (;100),

E499E (;100)

M351T (99.84), E499E (99.84) N.A. No cytogenetic response after

12 mo on IM

CP-08-02 4/26/2012 NIL 2 Y253H (;100),

E499E (;100)

Y253H (95.64), E499E (99.67),

M351T (3.20)

N.A. No cytogenetic response

CP-09-01 6/22/2004 IM 1 M244V (;20) M244V (19.4), H396R (2.88),

L298V (1.91), L364I (1.64)

N.A. No cytogenetic response after

15 mo on IM

CP-09-02 7/14/2005 IM 1 M244V (;80) M244V (79.31), H396R (6.75),

L298V (3.75), L364I (3.28)

N.A. Loss of complete hematologic

response

CP-09-03 9/3/2007 DAS 2 M244V (;70),

T315A (;60)

M244V (73.36), T315A (57.53),

F425S (2.18), T406I (1.75)

N.A. Complete hematologic

response but no cytogenetic

response

AP-10-01 3/7/2005 IM 1 E355G (;50) E355G (43.75), L341P (21.75),

F496L (19.63), L428L

(11.01), T315I (10.24),

Y456Y (4.81)

N.A. Progression from CP to AP after

9 mo on IM

AP-10-02 4/11/2005 DAS 2 T315I (;50) T315I (42.60), F317L (1.25) T315I (42.60), F317L (1.25) Progression to MBC

MBC-11-01 4/12/2010 IM 1 M351T (;100),

L248V (;30)

N.D. N.D. Loss of complete hematologic

response after 6 mo on IM

MBC-11-02 8/23/2010 DAS 2 M351T (;100),

F317L (;70),

L248V (;20)

M351T (100.00), F317L(ttc.tta)

(65.52), L248V (19.45),

del(248-274) (9.52),

F317L(ttc.ctc)(8.52),

V299L (1.99)

M351T1F317L(ttc.tta)

(52.60), M351T (10.30),

M351T1L248V (9.29),

M351T1F317L(ttc.tta)1

L248V (8.78), M351T1

F317L(ttc.ctc) (6.33),

M351T1del(248-274)(4.77),

M351T1F317L(ttc.tta)1del

(248-274)(4.14), M351T1

V299L (1.41), M351T1

L248V1F317L(ttc.ctc)

(1.19), M351T1del(248-274)

1F317L(ttc.ctc) (0.61),

M351T1F317L(ttc.ctc)1

V299L (0.39), M351T1

L248V1V299L (0.19)

No hematologic response

MBC-12-01 3/5/2012 IM 1 F359V (;70) F359V (63.24), L387M (4.18),

M351T (3.42), V379I (1.62)

F359V (60.26), L387M (2.47),

M351T (2.45), F359V1L387M

(1.61), V379I (1.12), F359V1

Loss of complete cytogenetic

response after 12 mo on IM

For SS results, mutation-relative abundance was assessed on the basis of variant peak height. In the TKI column, the TKI being administered at the time of analysis is

indicated. In the Line column, the number of different lines of TKI therapy that had been administered to the patient is indicated. Disease status and response at each time

point are also detailed. Response definitions as in Baccarani et al14 and Vignetti et al.23

In patient ALL-29, “T315?” denotes that 2 overlapping peaks at adjacent positions (c/t at 1091 and t/g at 1092) of codon 315 were identified in the SS chromatogram and

the resulting amino acid substitution(s) could not be resolved (see supplemental Figure 9). In patients MBC-11, ALL-23, ALL-32, and ALL-33, the same amino acid changes

were found to result from different nucleotide substitutions at the same codons (specified in parentheses). N.A. indicates that clonal analysis could not be possible because of

multiple mutations located .450 bp apart. N.D. indicates that amplification with fusion primers was unsuccessful and the sample could not be analyzed with UDS.

ALL, Ph1 acute lymphoblastic leukemia; AP, accelerated phase; CP, chronic phase; DAS, dasatinib; FISH, fluorescence in situ hybridization; IM, imatinib; LBC, lymphoid

blast crisis; MBC, myeloid blast crisis; N.A., not assessable; N.D., not done; NIL, nilotinib; PON, ponatinib; SCT, stem cell transplantation.

*Cutoff set at variants $1%, see “Materials and methods” for details.

†Percentage calculated after manual visual inspection of nucleotide sequences at the specific positions where the variants $1% were identified.
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Table 3. (continued)

Code Date TKI Line Mutations by SS Mutations by UDS*
Estimated mutated

populations by UDS† Disease status and response

M351T (0.87), F359V1V379I

(0.50), M351T1L387M (0.10)

MBC-12-02 9/24/2012 DAS 2 L387M (;60),

T315A (;50),

F359V (;20)

L387M (57.43), T315A (57.19),

F359V (16.24), T315I (8.22),

F317V (3.98), F317L (1.15)

L387M1T315A (55.99), F359V1

T315I (8.06), F359V (4.37),

F359V1F317V (3.63), T315A

(1.20), L387M1F317L (0.97),

F317V (0.19), F359V1F317L

(0.18), L387M1T315I (0.16),

L387M1F317V (0.16), L387M

(0.15)

Loss of complete hematologic

response

MBC-13-01 5/28/2010 DAS 2 T315A (;100) T315A (73.75), V299L (8.19) T315A (72.40), V299L (6.84),

T315A 1V299L (1.35)

Loss of complete hematologic

response after 6 mo on DAS

MBC-13-02 12/9/2010 NIL 3 T315A (;100),

E255V (;70),

G250E (;15)

T315A (92.87), E255V (69.74),

G250E (12.22), E255K (1.03)

T315A1E255V (65.07), T315A

(15.72), T315A1G250E

(10.44), E255V (3.73),

T315A1E255V1G250E

(0.94), G250E (0.84),

T315A1E255K (0.70),

E255K (0.33)

No hematologic response

LBC-14-01 12/20/2011 IM 1 G250E (;40),

E255V (;20)

G250E (34.28), E255V (15.05),

E255K (2.34), Y253F (1.10)

G250E (32.91), E255V (14.09),

E255K (2.13), Y253F (0.90),

G250E1E255V (0.96),

G250E1E255K (0.21),

G250E1Y253F (0.20)

Progression to lymphoid bast

crisis after 32 mo on IM

LBC-14-02 2/8/2012 DAS 2 T315I (;30) T315I (28.92) T315I (28.92) No hematologic response

LBC-15-01 5/26/2011 IM 1 Y253H (;100) Y253H (99.88) Y253H (99.88) Hematologic relapse

LBC-15-02 12/5/2011 DAS 2 Y253H (;50),

F317L (;50)

Y253H (54.90), F317L (54.40) Y253H1F317L (43.00), Y253H

(11.90), F317L (11.40)

Hematologic relapse

LBC-16-01 3/14/2005 IM 1 E255K (;100) E255K (98.84) E255K (98.84) Progression to LBC after 9 mo

on IM

LBC-16-02 4/19/2005 DAS 2 E255K (;100),

T315I (;100)

E255K (99.84), T315I (99.48),

L273S (1.30)

E255K1T315I (97.83), E255K

(0.71), E255K1T315I1

L273S (1.30), T315I (0.35)

No hematologic response

LBC-16-03 5/23/2005 DAS 2 E255K (;100),

T315I (;100)

E255K (99.53), T315I (99.53) E255K1T315I (99.53) No hematologic response

LBC-17-01 11/29/2010 IM 1 L387M (;30) L387M (34.12) L387M (28.18) Loss of complete hematologic

response after 6 mo on IM

LBC-17-02 2/27/2012 DAS 2 L387M (;100),

T315I (;50),

M318V (;50),

F317L (;50),

Y320N (;50)

L387M (96.33), T315I (51.46),

M318V (51.19), F317L

(45.21), Y320N (44.79)

L387M1T315I1M318V (47.90),

L387M1F317L1Y320N

(42.21), L387M (2.63), T315I1

M318V (1.82), F317L1Y320N

(1.37), L387M1F317L (1.10),

L387M1T315I1M318V1

Y320N (0.80), L387M1M318V

(0.50), L387M1T315I1F317L

(0.36), L387M1Y320N (0.25),

L387M1T315I (0.25),

L387M1T315I1M318V1

F317L (0.17), L387M1T315I1

Y320N (0.16)

Loss of cytogenetic and

hematologic response

LBC-18-01 11/11/2007 IM 1 F359V (;60) F359V (57.89) F359V (57.89) Progression to LBC after 3 mo

on IM

LBC-18-02 1/17/2008 DAS 2 None F317L (8.48), F317I (1.02),

F359V (1.02)

F317L (8.48), F317I1F359V

(1.02)

Complete hematologic

response, partial cytogenetic

response

For SS results, mutation-relative abundance was assessed on the basis of variant peak height. In the TKI column, the TKI being administered at the time of analysis is

indicated. In the Line column, the number of different lines of TKI therapy that had been administered to the patient is indicated. Disease status and response at each time

point are also detailed. Response definitions as in Baccarani et al14 and Vignetti et al.23

In patient ALL-29, “T315?” denotes that 2 overlapping peaks at adjacent positions (c/t at 1091 and t/g at 1092) of codon 315 were identified in the SS chromatogram and

the resulting amino acid substitution(s) could not be resolved (see supplemental Figure 9). In patients MBC-11, ALL-23, ALL-32, and ALL-33, the same amino acid changes

were found to result from different nucleotide substitutions at the same codons (specified in parentheses). N.A. indicates that clonal analysis could not be possible because of

multiple mutations located .450 bp apart. N.D. indicates that amplification with fusion primers was unsuccessful and the sample could not be analyzed with UDS.

ALL, Ph1 acute lymphoblastic leukemia; AP, accelerated phase; CP, chronic phase; DAS, dasatinib; FISH, fluorescence in situ hybridization; IM, imatinib; LBC, lymphoid

blast crisis; MBC, myeloid blast crisis; N.A., not assessable; N.D., not done; NIL, nilotinib; PON, ponatinib; SCT, stem cell transplantation.

*Cutoff set at variants $1%, see “Materials and methods” for details.

†Percentage calculated after manual visual inspection of nucleotide sequences at the specific positions where the variants $1% were identified.
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Table 3. (continued)

Code Date TKI Line Mutations by SS Mutations by UDS*
Estimated mutated

populations by UDS† Disease status and response

LBC-18-03 2/12/2008 DAS 2 F359V (;100),

F317I (;100)

F317I (92.35), F359V (90.11),

F317L (4.25)

F359V1F317I (88.01), F317I

(4.34), F317L (3.12),

F359V1F317L (1.13),

F359V (0.97)

Loss of complete hematologic

response

ALL-19-01 9/27/2005 IM 1 Y253H (;100) Y253H (99.79) Y253H (99.79) Hematologic relapse after 6 mo

on IM

ALL-19-02 1/3/2006 DAS 2 None P465L (2.78), I432I (1.60),

T277I (1.56), E352V (1.41),

A474A (1.15)

N.A. Complete hematologic and

cytogenetic response,

molecularly detectable

disease

ALL-19-03 3/2/2006 DAS 2 None A399V (1.58) A399V (1.58) Complete hematologic and

cytogenetic response,

molecularly detectable disease

ALL-19-04 6/15/2006 DAS 2 Y253H (;100),

T315I (;50)

Y253H (99.70), T315I (40.29),

N336S (5.39), W405R (1.89)

N.A. Hematologic relapse

ALL-20-01 1/11/2005 IM 1 M351T (;100) M351T (99.91) M351T (99.91) Hematologic relapse after 12 mo

on IM

ALL-20-02 3/12/2005 DAS 2 None L370L (5.45), I432I (2.65) N.A. Complete hematologic and

cytogenetic response,

molecularly detectable

disease

ALL-20-03 1/16/2006 DAS 2 M351T (;100),

F317L (;50)

M351T (99.77), F317L (53.27) M351T (46.50), M351T1F317L

(53.27)

Hematologic relapse

ALL-20-04 4/7/2006 DAS 2 M351T (;100),

F317L (;100)

M351T (95.46), F317L (85.32),

A399T (5.64), Y353H (1.00)

M351T1F317L (85.32),

M351T1A399T (5.64),

M351T (3.50), M351T1

F317L1Y353H (1.00)

Progressive disease

ALL-21-01 5/30/2005 DAS 2 F317L (;100) F317L (99.99), M237I (2.03) F317L (97.96), F317L1M237I

(2.03)

Hematologic relapse after 3 mo

on DAS

ALL-21-02 10/27/2005 NIL 3 F317L (;100),

Y253H (;20)

F317L (98.59), Y253H (17.35) F317L (81.24), F317L1Y253H

(17.35)

Complete hematologic

response but no cytogenetic

response

ALL-21-03 1/16/2006 NIL 3 F317L (;100),

Y253H (;20)

F317L (100.00), Y253H (18.77) F317L (81.23), F317L1Y253H

(18.77)

Hematologic relapse

ALL-21-04 3/17/2006 NIL 3 F317L (;100),

Y253H (;100)

F317L (100.00), Y253H

(100.00)

F317L1Y253H (100.00) Progressive disease

ALL-22-01 12/23/2005 IM 1 F359V (;100) F359V (99.76), M237T (2.11) N.A. Hematologic relapse after 26 mo

on IM

ALL-22-02 1/29/2005 DAS 2 F359V (;100),

T315I (;100)

F359V (99.30), T315I (98.77),

Y449Y (10.50)

N.A. Progressive disease

ALL-23-01 9/14/2011 DAS 2 E255K (;30),

T315I (;20)

E255K (24.04), T315I (19.37),

G303G (1.51)

E255K (20.88), T315I (16.21),

E255K1T315I (3.16),

G303G (1.51)

Hematologic relapse after 9 mo

on DAS

ALL-23-02 10/27/2011 PON 3 T315I (;100) T315I (99.78), Y312C (1.22) T315I (98.28), T315I1Y312C

(1.22)

Complete hematologic response

ALL-23-03 11/3/2011 PON 3 T315I (;100) T315I (99.83) T315I (99.83) Complete hematologic response

ALL-23-04 12/15/2011 POST-SCT,

NONE

/ None None None Complete hematologic and

cytogenetic response,

molecularly detectable disease

ALL-23-05 1/11/2012 POST-SCT,

IM

4 E255K (;100) E255K (99.88) E255K (99.88) Complete hematologic response

but loss of cytogenetic

response

ALL-23-06 1/25/2012 PON 5 E255K (;100) E255K (99.36), S417S (2.21) N.A. Hematologic relapse

ALL-23-07 2/8/2012 PON 5 E255K (;30) E255K (22.49) E255K (22.49) Complete hematologic response

For SS results, mutation-relative abundance was assessed on the basis of variant peak height. In the TKI column, the TKI being administered at the time of analysis is

indicated. In the Line column, the number of different lines of TKI therapy that had been administered to the patient is indicated. Disease status and response at each time

point are also detailed. Response definitions as in Baccarani et al14 and Vignetti et al.23

In patient ALL-29, “T315?” denotes that 2 overlapping peaks at adjacent positions (c/t at 1091 and t/g at 1092) of codon 315 were identified in the SS chromatogram and

the resulting amino acid substitution(s) could not be resolved (see supplemental Figure 9). In patients MBC-11, ALL-23, ALL-32, and ALL-33, the same amino acid changes

were found to result from different nucleotide substitutions at the same codons (specified in parentheses). N.A. indicates that clonal analysis could not be possible because of

multiple mutations located .450 bp apart. N.D. indicates that amplification with fusion primers was unsuccessful and the sample could not be analyzed with UDS.

ALL, Ph1 acute lymphoblastic leukemia; AP, accelerated phase; CP, chronic phase; DAS, dasatinib; FISH, fluorescence in situ hybridization; IM, imatinib; LBC, lymphoid

blast crisis; MBC, myeloid blast crisis; N.A., not assessable; N.D., not done; NIL, nilotinib; PON, ponatinib; SCT, stem cell transplantation.

*Cutoff set at variants $1%, see “Materials and methods” for details.

†Percentage calculated after manual visual inspection of nucleotide sequences at the specific positions where the variants $1% were identified.
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Table 3. (continued)

Code Date TKI Line Mutations by SS Mutations by UDS*
Estimated mutated

populations by UDS† Disease status and response

ALL-23-08 2/15/2012 PON 5 E255K (;100) E255K (99.88) E255K (99.88) Partial hematologic response

ALL-23-09 3/12/2012 DAS 6 E255K (;70),

T315I (;50)

E255K (76.10), T315I (57.35),

Q252H (cag.cac)(14.19),

Q252H (cag.cat)(7.49),

G250E (1.05)

E255K1T315I (51.60),

E255K1Q252H (cag.cac)

(13.94), E255K1Q252H

(cag.cat) (7.34),T315I

(5.75), E255K (2.52),

E255K1 G250E (0.70),

Q252H (cag.cac) (0.25),

G250E (0.35), Q252H (cag.

cat) (0.15)

Progressive disease

ALL-23-10 3/28/2012 PON 7 E255K (;100),

T315I (;100)

E255K (99.64), T315I (98.56) E255K1T315I (98.20), E255K

(1.44), T315I (0.36)

Progressive disease

ALL-24-01 6/15/2011 NIL 1 Y253H (;30) Y253H (27.35), P465L (1.55) N.A. Complete hematologic and

cytogenetic response,

molecularly detectable

disease

ALL-24-02 7/28/2011 IM 2 Y253H (;100) Y253H (99.99), R367L (3.62) Y253H (96.37), Y253H1R367L

(3.62)

Complete hematologic and

cytogenetic response, but

1-log increase in BCR-ABL

transcript levels

ALL-24-03 3/1/2012 DAS 3 None Y302S (1.62) Y302S (1.62) Complete hematologic and

cytogenetic response, no

molecular assessment

performed

ALL-24-04 3/29/2012 DAS 3 Y253H (;100),

T315I (;100)

Y253H (99.10), T315I (99.10),

L273L (1.09)

Y253H1T315I (98.01);

Y253H1T315I1L273L (1.09)

Hematologic relapse

ALL-25-01 12/2/2011 IM 1 Y253H (;20) Y253H (18.38) Y253H (18.38) Complete hematologic and

cytogenetic response,

molecularly detectable

disease after 18 mo on IM

ALL-25-02 1/18/2012 DAS 2 Y253H (;100),

T315I (;100)

Y253H (87.69), T315I (86.16) Y253H1T315I (80.53), Y253H

(7.16), T315I (5.63)

Hematologic relapse

ALL-26-01 1/11/2012 IM 1 E255K (;60) E255K (54.75), F359V (13.81),

T315I (3.84)

N.A. Hematologic relapse after 6 mo

on IM

ALL-26-02 6/16/2012 DAS 2 T315I (;100) T315I (99.42) T315I (99.42) Progressive disease

ALL-27-01 1/14/2011 IM 1 T315I (;100) T315I (99.87) T315I (99.87) Complete hematologic but not

cytogenetic response after 3

mo on IM

ALL-27-02 1/31/2011 IM 1 T315I (;100) T315I (99.74) T315I (99.74) Stable disease

ALL-27-03 2/7/2011 NIL 2 T315I (;80) T315I (75.55), E255K (9.70),

E255V (1.53)

T315I (70.47), E255K (5.10),

T315I1E255K (4.60), E255V

(1.05), T315I1E255V (0.48)

Stable disease

ALL-27-04 2/21/2011 NIL 2 T315I (;60),

E255K (;30)

T315I (53.80), E255K (25.63),

E255V (1.33)

T315I (46.10), E255K (18.26),

T315I1E255K (7.37), E255V

(1.00), T315I1E255V (0.33)

Hematologic relapse

ALL-28-01 12/5/2007 IM 1 Y253H (;50),

E255K (;20)

Y253H (56.01), E255K (14.92),

T315I (8.33), Q252H (6.32),

A269T (3.57), Y253F (1.37)

Y253H (52.30), E255K (14.70),

T315I (5.29), Q252H (3.92),

Y253H1T315I (2.93),

Q252H1A269T (2.40),

Y253F (1.26), Y253H1269T

(0.63), A269T (0.54),

Y253H1E255K (0.15),

Y253F1T315I (0.11)

Hematologic relapse after 9 mo

on IM

ALL-28-02 3/26/2008 DAS 2 T315I (;100) T315I (90.96) T315I (90.96) Progressive disease

For SS results, mutation-relative abundance was assessed on the basis of variant peak height. In the TKI column, the TKI being administered at the time of analysis is

indicated. In the Line column, the number of different lines of TKI therapy that had been administered to the patient is indicated. Disease status and response at each time

point are also detailed. Response definitions as in Baccarani et al14 and Vignetti et al.23

In patient ALL-29, “T315?” denotes that 2 overlapping peaks at adjacent positions (c/t at 1091 and t/g at 1092) of codon 315 were identified in the SS chromatogram and

the resulting amino acid substitution(s) could not be resolved (see supplemental Figure 9). In patients MBC-11, ALL-23, ALL-32, and ALL-33, the same amino acid changes

were found to result from different nucleotide substitutions at the same codons (specified in parentheses). N.A. indicates that clonal analysis could not be possible because of

multiple mutations located .450 bp apart. N.D. indicates that amplification with fusion primers was unsuccessful and the sample could not be analyzed with UDS.

ALL, Ph1 acute lymphoblastic leukemia; AP, accelerated phase; CP, chronic phase; DAS, dasatinib; FISH, fluorescence in situ hybridization; IM, imatinib; LBC, lymphoid

blast crisis; MBC, myeloid blast crisis; N.A., not assessable; N.D., not done; NIL, nilotinib; PON, ponatinib; SCT, stem cell transplantation.

*Cutoff set at variants $1%, see “Materials and methods” for details.

†Percentage calculated after manual visual inspection of nucleotide sequences at the specific positions where the variants $1% were identified.
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Table 3. (continued)

Code Date TKI Line Mutations by SS Mutations by UDS*
Estimated mutated

populations by UDS† Disease status and response

ALL-29-01 6/6/2012 IM

POST-SCT

2 T315? T315M (30.20) T315M (30.20) Complete hematologic

response, molecularly

detectable disease

ALL-29-02 6/20/2012 IM 2 T315? T315M (22.32) T315M (22.32) Hematologic relapse

ALL-29-03 7/10/2012 IM 2 T315? T315M (30.28) T315M (30.28) Progressive disease

ALL-29-04 8/1/2012 IM 2 T315? T315M (57.28), T315I (1.09) T315M (57.28), T315I (1.09) Stable disease

ALL-29-05 8/22/2012 PON 3 T315?,

E255V (;20)

T315M (28.61), T315I (22.93),

E255V (12.40)

T315M (25.20), T315I (20.01),

E255V (5.03), T315M1

E255V (3.41), T315I1E255V

(2.92)

Progressive disease

ALL-30-01 3/30/2010 NIL 1 E255V (;40) E255V (34.70) E255V (34.70) Complete hematologic

response, molecularly

detectable disease after 1

mo on IM

ALL-30-02 5/12/2010 IM 2 E255V (;100) E255V (91.90), V304A (3.91),

L302R (1.61), G303W (1.61)

See Figure 3 Complete hematologic

response, molecularly

detectable disease with 1-log

increase in BCR-ABL

transcript levels

ALL-30-03 7/19/2010 IM 4 E255V (;50),

Y253H (;50)

E255V (46.50), Y253H (39.30),

E255K (1.02)

See Figure 3 Hematologic relapse

ALL-30-04 9/7/2010 DAS 5 E255V (;100) E255V (91.60), T315I (2.00),

E255K (1.80), K262R (1.00)

See Figure 3 Stable disease

ALL-30-05 10/5/2010 DAS 5 E255V (;50),

T315I (;30)

E255V (53.00), T315I (23.00),

Q252E (14.30), E255K (2.10)

See Figure 3 Progressive disease

ALL-31-01 4/4/2006 IM 1 F317L (;100) F317L (99.64) F317L (99.64) Hematologic relapse after 5 mo

on IM

ALL-31-02 6/6/2006 DAS 2 D276G (;50),

F317L (;50),

T315A (;50)

T315A (51.12), F317L (45.81),

D276G (44.86)

F317L (33.45), T315A1D276G

(32.00), T315A (17.87),

F317L1D276G (11.11),

D276G (1.25), T315A1

F317L (0.75), T315A1

F317L1D276G (0.50)

Hematologic relapse after

transient hematologic

improvement

ALL-31-03 7/14/2006 IM 3 F317L (;100) F317L (99.76), R332R (4.17) F317L (95.59), F317L1R332R

(4.17)

Stable disease

ALL-31-04 8/23/2006 IM 3 T315A (;100),

G250E (;100)

T315A (100.00), G250E (90.48) T315A1G250E (90.48), T315A

(9.52)

Progressive disease

ALL-31-05 9/26/2006 NIL 4 T315A (;100),

G250E (;100)

T315A (99.83), G250E (99.83) T315A1G250E (99.83) Progressive disease

ALL-31-06 10/24/2006 NIL 4 T315A (;100),

G250E (;60),

D276G (;30),

Y253H (;30)

T315A (99.96), G250E (67.93),

D276G (28.89), Y253H

(27.21), Q252E (1.49)

T315A1G250E (65.82),

T315A1Y253H1D276G

(26.02), T315A (3.76),

T315A1G250E1D276G

(2.11), T315A1Q252E

(0.78), T315A1Y253H

(0.48), T315A1Y253H1

D276G1Q252E (0.48),

T315A1D276G (0.28),

T315A1Y253H1Q252E

(0.23)

Progressive disease

ALL-32-01 1/6/2012 IM 2 Y253H (;100) Y253H (99.79) Y253H (99.79) Hematologic relapse

ALL-32-02 4/12/2012 DAS 3 None None None Complete hematologic and

cytogenetic response,

For SS results, mutation-relative abundance was assessed on the basis of variant peak height. In the TKI column, the TKI being administered at the time of analysis is

indicated. In the Line column, the number of different lines of TKI therapy that had been administered to the patient is indicated. Disease status and response at each time

point are also detailed. Response definitions as in Baccarani et al14 and Vignetti et al.23

In patient ALL-29, “T315?” denotes that 2 overlapping peaks at adjacent positions (c/t at 1091 and t/g at 1092) of codon 315 were identified in the SS chromatogram and

the resulting amino acid substitution(s) could not be resolved (see supplemental Figure 9). In patients MBC-11, ALL-23, ALL-32, and ALL-33, the same amino acid changes

were found to result from different nucleotide substitutions at the same codons (specified in parentheses). N.A. indicates that clonal analysis could not be possible because of

multiple mutations located .450 bp apart. N.D. indicates that amplification with fusion primers was unsuccessful and the sample could not be analyzed with UDS.

ALL, Ph1 acute lymphoblastic leukemia; AP, accelerated phase; CP, chronic phase; DAS, dasatinib; FISH, fluorescence in situ hybridization; IM, imatinib; LBC, lymphoid

blast crisis; MBC, myeloid blast crisis; N.A., not assessable; N.D., not done; NIL, nilotinib; PON, ponatinib; SCT, stem cell transplantation.

*Cutoff set at variants $1%, see “Materials and methods” for details.

†Percentage calculated after manual visual inspection of nucleotide sequences at the specific positions where the variants $1% were identified.
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resistant mutations (E255K and Y253H) are observed. However,
the tree indicates that these derive from an unmutated haplotype
rather than on the predominant E255V background. The final
clinically relevant substitution, the pan-resistant T315I, is observed in
cluster B, often in conjunction with E255V (and Q252E whose
possible clinical relevance is unknown). T315I thus appears to have
arisen at the base of this cluster on an E255V background, rather than
from the seq128 haplotype observed in cluster C. This observation
suggests that, as in the cases of E255K and Y253H, new TKI-resistant
mutations can arise from low frequency, possibly slow-proliferating
clones that do not represent the majority of the circulating haplotypes
at earlier time points. Interestingly, sequences 31, 38, and 104 do not
exhibit E255V, suggesting that after withdrawal of imatinib/nilotinib
treatment, reversion of this mutation can occur. Indeed, the relatively
high frequency of seq104 might be consistent with the hypothesis that
such a reversion is positively selected in the context of T315I under
dasatinib treatment. An alternative interpretation of the distribution of
T315I would be that it arose on an unmutated background, and that
E255V subsequently arose independently in some lines within cluster
B (as well as on the branch linking cluster C with clusters A and B).

Discussion

UDS has revolutionized the way we can approach the study of drug-
resistant cellular populations. Virology is one of the fields that has
benefited most from the possibility of highlighting heretofore-
undetectable minor mutated variants and performing haplotype
analysis, thus allowing for characterization and monitoring of
population diversity in HIV and hepatitis viruses.24 There seem to be
striking similarities between viral populations and Ph1 leukemia
populations, in that they both tend to accumulate mutations to
escape antiviral or TKI therapy, respectively. In both scenarios,
testing for resistance-associated mutations is important to guide
selection of the most appropriate treatment regimen. We have now
found that there may be a high degree of heterogeneity, recalling that
of viral quasispecies, in BCR-ABL KD sequences from patients
failing multiple sequential TKIs. In 55% of the samples, “major”
mutations (detectable by SS) were found to be only “the tip of the
iceberg”: UDS revealed that additional “minor” (,10%-15%)
mutations might be present, even by using a quite “conservative”

Table 3. (continued)

Code Date TKI Line Mutations by SS Mutations by UDS*
Estimated mutated

populations by UDS† Disease status and response

molecularly detectable

disease

ALL-32-03 8/8/2012 DAS 3 None Y253H (2.49), T315I (1.19) Y253H (1.30), Y253H1T315I

(1.19)

Complete hematologic

response, 2-log increase in

BCR-ABL transcript levels

ALL-32-04 9/17/2012 DAS 3 Y253H (;100),

T315I (;60),

F317L(ttc.tta)

(;20)

Y253H (100.00), T315I (79.11),

F317L(ttc.tta)(15.70),

F317L(ttc.ctc)(4.04)

Y253H1T315I ((78.77),

Y253H1 F317L(ttc.tta)

(15.36), Y253H1 F317L(ttc.

ctc)(4.04), Y253H (1.49),

Y253H1T315I1F317L(ttc.

tta)(0.34)

Loss of cytogenetic response

ALL-33-01 3/27/2005 IM 1 G250E (;100) G250E (99.50) G250E (99.50) Hematologic relapse

ALL-33-02 9/5/2005 DAS 2 G250E (;100),

F317L (;70)

N.D. N.D. Hematologic relapse after

a 5-mo complete

hematologic response

ALL-33-03 12/1/2005 NIL 3 G250E (;100),

F317L (;50),

Y253H (;30)

G250E (99.99), F317L(ttc.tta)

(43.63), Y253H (26.36),

V299L (4.84), L248R (1.89),

F317L(ttc.ctc)(1.01)

G250E (35.54), G250E1F317L

(ttc.tta) (31.90), G250E1

Y253H (14.86), G250E1

F317L(ttc.tta)1Y253H

(9.84), G250E1V299L

(2.72), G250E1L248R

(1.13), G250E1Y253H1

V299L (0.99), G250E1

F317L(ttc.tta)1V299L

(0.77), G250E1F317L(ttc.

tta)1L248R (0.76), G250E1

F317L(ttc.ctc) (0.70),

G250E1F317L(ttc.tta)1

V299L1Y253H (0.36),

G250E1F317L(ttc.ctc)1

Y253H (0.31)

Progressive disease

For SS results, mutation-relative abundance was assessed on the basis of variant peak height. In the TKI column, the TKI being administered at the time of analysis is

indicated. In the Line column, the number of different lines of TKI therapy that had been administered to the patient is indicated. Disease status and response at each time

point are also detailed. Response definitions as in Baccarani et al14 and Vignetti et al.23

In patient ALL-29, “T315?” denotes that 2 overlapping peaks at adjacent positions (c/t at 1091 and t/g at 1092) of codon 315 were identified in the SS chromatogram and

the resulting amino acid substitution(s) could not be resolved (see supplemental Figure 9). In patients MBC-11, ALL-23, ALL-32, and ALL-33, the same amino acid changes

were found to result from different nucleotide substitutions at the same codons (specified in parentheses). N.A. indicates that clonal analysis could not be possible because of

multiple mutations located .450 bp apart. N.D. indicates that amplification with fusion primers was unsuccessful and the sample could not be analyzed with UDS.

ALL, Ph1 acute lymphoblastic leukemia; AP, accelerated phase; CP, chronic phase; DAS, dasatinib; FISH, fluorescence in situ hybridization; IM, imatinib; LBC, lymphoid

blast crisis; MBC, myeloid blast crisis; N.A., not assessable; N.D., not done; NIL, nilotinib; PON, ponatinib; SCT, stem cell transplantation.

*Cutoff set at variants $1%, see “Materials and methods” for details.

†Percentage calculated after manual visual inspection of nucleotide sequences at the specific positions where the variants $1% were identified.
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lower abundance cutoff of 1%. In 51% of the cases, minor mutations
could be recognized as poorly sensitive either to the TKI being
administered or to the previous TKI received. They most likely
corresponded either to outgrowing mutations anticipating an
imminent relapse (as for the pan-resistant T315I in samples CP-01-02,
AP-10-01, ALL-26-01, ALL-28-01, ALL-29-04) or, more rarely, to
“withdrawing” mutants not (yet) entirely deselected by the change
in TKI (as in CP-03-06, CP-04-03, CP-06-02, and CP-06-03). In
other cases, they could rather be seen as the result of “secondary
route(s)” toward resistance followed by some Ph1 cells as an alternative
to the one(s) leading to the dominant population(s) (as in AP-10-02,
LBC-14-01, ALL-27-03, ALL-32-04, ALL-33-03). In a not negligible
proportion of cases, however, minor mutations were either silent or
never reported in association with TKI resistance. One would expect
such mutations to be always colocalized (“passengers”) on BCR-ABL
molecules already harboring a TKI-resistant mutation (“driver”; as
in sample CP-03-05); however, this was not always the case, sug-
gesting that, depending on the specific context, a mutant that per se
would not be so markedly insensitive to treatment may somehow, at
least temporarily, survive and expand to a certain extent, although it
will never be able to achieve dominance.

An even higher degree of complexity emerged when we tried to
reconstruct the different haplotypes in the samples harboring multiple
mutations (Table 3). In the early days of the second-generation TKI
era, one study had suggested that compound mutations might be
particularly insidious because they may be associated with enhanced
oncogenic potential and TKI insensitivity than the separate mutants
would exhibit.11 However, the clinical relevance of compound as
against polyclonal mutations in patients failing multiple TKIs has
long been underestimated. This is mainly because SS, the most
widely used method for routine BCR-ABL KD mutation screening,3

precludes the determination of whether multiple mutations are co-
located on the same BCR-ABL molecule: only SS of an appropriate
number of bacterial colonies with cloned-in BCR-ABL KD would
bypass this limitation, but the labor-intensiveness of this approach
limits its use to exploratory studies of small patient cohorts.25 Our
UDS approach revealed that compound and polyclonal mutations are
not 2 mutually exclusive scenarios. This reminds the pattern observed
for some patients with myeloproliferative disorders in which JAK2
and TET2 mutations were observed in the same clone and also in
different clones.26 Thus, sequential changes in TKI-selective pressure
result in heterogeneous mosaics of Ph1 populations harboring dif-
ferent mutations or mutation combinations. Longitudinal observation

of the dynamics of these populations in vivo in relation to TKI
treatment might suggest that some compound mutants (M351T1
F317L, Y253H1T315I, Y253H1F317L) are selectively at an
advantage over single mutants, whereas others (H396R1F317L,
H396R1T315I, T315I1F317L) are not. On the other hand, the
same E255K1T315I (the most frequent compound mutant iden-
tified in our samples) was found to achieve dominance in some
cases but not in others, suggesting that the patient-specific context,
including number and features of coexisting populations, may shape
the fitness of a compound mutant and a general rule cannot easily be
inferred.

Our results on the complexity of mutated populations and on
their dynamics under sequential TKI treatment concur to depict a
model in which evolution of BCR-ABL–positive cells is mainly
shaped by TKI-selective pressure (whether microenvironment and/
or the immune surveillance may also be playing a role is currently
unknown) and the fitness of each mutated population is the net result
of an “absolute” fitness (the ability to survive treatment depending
on the intrinsic sensitivity to the specific TKI administered) and of
a “relative” fitness (the ability to survive the competition with all
other coexisting populations). For the majority of arising mutants,
the fitness will luckily not be high enough to sustain clonal ex-
pansion (at least not over a certain threshold), and the population
will rather face extinction. Other mutants will expand, although the
switch to another TKI may later turn a “fit” into an “unfit” popu-
lation and lead to an evolutionary “dead-end”. Rare cells within
existing mutated populations will gain additional mutations (giving
rise to compound mutants), and this will be either an advantage or
a disadvantage depending on the type of mutation. Recent whole-
genome sequencing studies have challenged the longstanding model
of linear evolution of tumors through stepwise accumulation of
genetic hits in a founding clone.27 In multiple myeloma, for ex-
ample, tumor progression has been shown to proceed in a branching
rather than in a linear manner, leading to substantial clonal diversity
and coexistence of wide genetic heterogeneity.28,29 On a smaller
scale, the same seems to apply to drug-resistant BCR-ABL mutants.

Two clinical caveats derive from our findings.We here show that
information provided by SS may not always be sufficient to predict
responsiveness to a TKI. SS is the currently recommended method
for BCR-ABLKDmutation analysis, and its results do influence TKI
selection3,30-33: for example, if an imatinib-resistant patient was
found to harbor a Y253H by SS, switching to dasatinib rather than to
nilotinib should be considered, in light of the fact that this mutant
has been shown both in vitro and in vivo to be fully sensitive to
dasatinib but poorly sensitive to nilotinib.6,7 If the scenario turned
out to be more complex with additional minor mutated populations,
clinical efficacy of the selected TKI might be compromised, or only
transient.34,35 Such a case should sound as a warning to the
physician and a closer monitoring could be beneficial. We ac-
knowledge that in very few instances the information added by UDS
would alter TKI selection: in case one of these minor mutated
populations were a T315I-positive one, for example, ponatinib might
become preferable over dasatinib.4,36 However, if multiple low-level
mutations were detected, it would become difficult to predict their role
in relapse and progression and to place this information into a
therapeutic decision algorithm. We also acknowledge that the clin-
ical significance of low-level mutation detection remains, at present,
unclear. Methods with sensitivities ranging between 1% and 10%
have been set up and proposed by several authors.37-40 Nevertheless,
the optimal lower detection limit allowing for identification of only
those mutants that will outgrow and trigger relapse has not been
established yet,41,42 although we believe that prospective

Figure 1. Relative frequency of single as opposed to compound mutants.

Compound mutants harboring 2 paired mutations were almost as frequent (38.3%)

as single mutants (49.6%) and were by far more frequent than triple and quadruple

(they accounted for 105 of the 138 [76%] compound mutants overall identified).

Mutated Ph1 populations harboring 3 or 4 mutations in the same BCR-ABL molecule

were occasionally detected, but in 1 case only they were found to have achieved

clonal dominance over those with 1 or 2 mutations.
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application of UDS in a large series of patients might ultimately
clarify this issue.

Another “warning” from our observations is that sensitivity of
a single or a compound mutant to a TKI in vivo might be dictated
by more complex factors than the mere in vitro IC50 (half maximal
inhibitory concentration) value. If the in vivo sensitivity of any
single or compound mutant is influenced by competition with other
coexisting mutants, physicians should be warned against using the
in vitro IC50 values to estimate the degree of insensitivity of a
specific Bcr-Abl mutant protein to a specific TKI.43,44

Many foresee that UDS will soon find routine diagnostic appli-
cation, especially in the field of hematologic malignancies where the
pivotal IRON study has recently provided first evidence of technical
feasibility and high concordance of results across multiple labo-
ratories.16 Although it is premature to predict whether UDS will
replace SS as the gold standard for BCR-ABL KDmutation analysis,
further evaluation of this technology is highly warranted. Currently,
the ongoing IRON II study45 is setting-up and testing UDS strategies
for the detection of a wide spectrum of mutations, including the BCR-
ABL KD screening strategy herein presented.

Figure 2. Mutated populations rise and fall in dominance over time in relation to therapeutic intervention. Graphical illustration of the kinetics of mutated population

abundances in 4 representative cases. Arrows indicate the time points at which UDS was performed. Patient IDs are as in Table 3. (A) At the time of first relapse, 7 distinct

imatinib-resistant mutated populations were detected. Dasatinib treatment cleared these mutants as quickly as in 2 months, but just as quickly a pan-resistant T315I mutant

was found to have emerged. The patient achieved a transient hematologic response after 1 month but lost it shortly after detection of T315I. The question mark indicates that

no T315I had been detected by UDS at the time of switchover (at a coverage of 4527 reads, suggesting that either it was present in,1/5000 transcripts, or that it was acquired

some time later). (B) At the time of first relapse, a single imatinib-resistant Y253H mutant that accounted for almost 90% of BCR-ABL–positive cells was detected by SS and

UDS. After 3 months of dasatinib therapy, the patient had achieved a complete cytogenetic response (no Ph1 metaphases detectable in the bone marrow by standard

chromosome banding analysis) although residual disease remained detectable at the molecular level (as assessed by real-time quantitative [RT-Q]-PCR for BCR-ABL

transcript). Neither the Y253H (known to be substantially sensitive to dasatinib) nor other mutants were detectable any longer by UDS. After 9 months on dasatinib, the patient

was found to have lost the cytogenetic response. UDS showed the coexistence of 3 distinct compound mutants where Y253H was coupled with 3 well-known dasatinib-

resistant mutations (a T315I and an F317L resulting from 2 different nucleotide substitutions). It might be hypothesized that the original Y253H-positive cells were never

completely eliminated by dasatinib and persisted at very low levels (undetectable by UDS) until they happened to gain a selective advantage again, although de novo

acquisition of mutations by previously unmutated cells cannot be ruled out. Interestingly, Y253H and T315I were already detectable by UDS 1 month before. (C) At the time of

second relapse, after 6 months of dasatinib therapy, a dasatinib-resistant F317L mutation was detected. UDS portrayed a complex scenario with 3 distinct populations where the

former imatinib-resistant Y253H and the newly acquired dasatinib-resistant F317L were present alone and in combination, although the Y253H1F317L compound mutant

quantitatively dominated over the F317L- and Y253H-positive ones. It might be hypothesized that the same mutation was acquired in parallel by independent populations (ie, one

unmutated and one already positive for the Y253H). (D) After 6 months of second-line dasatinib treatment, during which the patient achieved a complete cytogenetic response but no

molecular response, the former imatinib-resistant H396R mutant plus 2 additional populations, 1 harboring a dasatinib-resistant F317L and 1 harboring H396R1F317L, were

detected. Three months later, the F317L had become the dominant one, while H396R1F317L and H396R had declined. During dasatinib therapy, a pan-resistant T315I was also

acquired because at the time of switchover to nilotinib, a T315I together with H396R1T315I and F317L1T315I compound mutants were already detectable by UDS (4.44%, 0.76%,

and 0.22%, respectively). As quickly as in 2 months, nilotinib treatment selected the T315I mutant that expanded, achieving almost full dominance. IM, imatinib; DAS, dasatinib; NIL,

nilotinib.
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