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We present a scheme for the experimental realization of a quantum phase gate act-
ing on the polarization degree of freedom of traveling single photon wave-packets.
The scheme exploits the giant Kerr nonlinearities that can be achieved in dense
atomic media showing electromagnetically induced transparency, and it may be
useful in a variety of quantum communication schemes,

Photons are ideal carriers of quantum information since they travel at the
speed of light and are negligibly affected by decoherence. In fact, quantum
key distribution ! and quantum teleportation 3 have been demonstrated us-
ing either single photon pulses, in which quantum information is encoded in
polarization 2, or squeezed light, in which information is encoded in the field
quadrature ®. Photons have also been proposed for quantum computation
schemes, even though the absence of significant photon-photon interactions is
an obstacle for the realization of efficient quantum gates. Two different ways
have been proposed to circumvent this problem: i) linear optics quantum
computation #, which is a probabilistic scheme implicitly based on the non-
linearity hidden in single-photon detectors; ii) enhancement of photon-photon
interaction using either cavity QED configurations °%7, or dense atomic me-
dia showing electromagnetically-induced transparency (EIT) 8. The linear
optics conditional scheme of 4 is scalable in principle, but it is limited by the
requirement of very efficient single-photon sources and single-photon detec-
tors. Here we shall follow the second approach, which is instead hindered by
the difficulty in getting the desired strong optical nonlinearity simultaneously
with negligible losses.

Single qubit gates and one universal two-qubit gate are needed for im-
plementing universal quantum computation. The most common two-qubit
gate in optical implementations is the quantum phase gate (QPG), in which
one qubit gets a phase conditioned to the other qubit state, i.e., |i)1]7)2 —
exp {igi; }|t)1|7)2, with ¢, 7 = 0,1 denoting the logical qubit bases. This gate
ig just the manifestation of cross-phase modulation in optical Kerr media, at
the single photon level, and it is universal when the conditional phase shift
¢ = d11 + oo — P10 — po1 # 0 >°1%. Partial demonstrations of an optical
QPG have been already performed. A conditional phase shift ¢ ~ 16° be-
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tween two frequency-distinct high-Q cavity modes, due to the effective cross
modulation mediated by a beam of Cs atoms, has been measured °. However,
the complete truth table of the gate has not been determined in this exper-
iment. A conditional phase shift ¢ ~ 8° has been instead obtained between
weak coherent pulses, using a second-order nonlinear crystal ''. However, this
experiment did not demonstrate a bona fide QPG because ¢ depends on the
input states, and the gate works only for a restricted class of inputs (weak
coherent states). Finally, a phase-tunable mized QPG between a two-level
Rydberg atom and the two lowest Fock states of a high-Q microwave cavity
has been demonstrated ©.

Therefore a complete demonstration of a fully optical QPG is still lacking.
Here we shall provide a new scheme for the realization of a QPG between the
polarization degree of freedom of two traveling single-photon wave-packets
12 Such a gate for traveling photonic qubits would be extremely useful for
quantum communication schemes: for example it has been showed that per-
fect Bell-state discrimination and complete quantum teleportation become
possible if a QPG with a conditional phase shift ¢ = 7 is used 3. Our pro-
posal is based on the giant Kerr nonlinearities that can be achieved in dense
atomic media showing EIT ' and that have been already demonstrated in
“slow-light” experiments *°.

The two qubits are represented by two polarized single photon wave-
packets (probe and trigger), whose generic state can be written as |1);) =
allet)i + a; |o7)i, i = P,T, where we have chosen the two circularly polar-
ized states

o) = [ dwti@)ak@)o (1)
as logical basis, with
L? o3 —izﬁ-(w-w.-}z
Eilw) = (5;{:_2_) € 4 (2)

giving the spectral shape of the wave-packets, with spatial length (in vacuum)
L;, and carrier frequency w;. The desired gate transformation is realized
when the two wave-packets simultaneously cross the dense atomic medium
prepared in an appropriate configuration, In the interaction region of length [
the optical field annihilation operators undergo the following transformation

!
G4 (w) — a4 (w)exp {i/ﬂ dzni(w,z}%} . (3)

where ny (w, z) is the refractive index, which depends upon z when cross phase
modulation is present. Inserting this expression into Eq. (1) and considering
pulses with a sufficiently narrow bandwidth so that the refractive indices vary
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in a negligible way within it, one gets

1 :
|+:ri)._- — exp {—t’f dz'ni(ui,z)%} lo*);
0

= exp { —1¢L } lo™);, (4)
yielding the following two-qubit gate

lo®) plot)r — e~ (#E+01) %) ot ) 7, (5)

which is a universal QPG when the conditional phase shift ¢ = (¢4 + ¢7) +
(6% + ¢T) — (¢F + ¢7) — (% + #7) #0.

These conditions can be realized if a magnetically confined ultracold Rb
gas (not necessarily in the condensed phase) is used as Kerr medium. This
cold atomic gas has to be driven in such a way that a nontrivial cross-phase
modulation between probe and trigger arise for only one of the four pos-
sible configurations of their polarization. A schematic description of such
configuration is given in Fig. 1. All the initial atomic population is in the
trapped state |1) = |68)/2,F = 1,m = —1). A o% polarized probe field at
Ap = 795 nm couples it to the excited state |2) = |5P 5, F = 1,m = 0),
which is in turn coupled to another Zeeman-splitted ground-state sublevel
|3) = 38} /2, F = 2, m = 1), by an intense ¢~ polarized pump beam with Rabi
frequency {2;. Ground state |3) is coupled to level [4) = [5P;/2, F = 1,m = 0)
when a trigger beam at Ay = 780 nm is ¢~ polarized. As first showed by
Schmidt and Imamoglu ', such a four-level N scheme yields an appreciable
cross-phase modulation between probe and trigger when the probe is subject
to EIT, and the trigger is sufficiently detuned from the 3 + 4 transition.
Here we consider a modified, five-level, M scheme in which we add another
o~ polarized beam (tuner), with Rabi frequency 24, between level |4) and a
third ground-state sublevel, |5) = |55} 2, F' = 1,m = 1). Thanks to the tuner,
also the trigger pulse is subject to EIT, and its group velocity is slowed down.
This is crucial because the trigger pulse is not slowed down in the N scheme,
and the group velocity mismatch significantly limits the achievable nonlinear
phase shifts 1917, We shall see that, within the M scheme of Fig. 1, the
parameters can be tuned so to make the group velocity mismatch negligible.
In correspondence, the nonlinear cross phase shift will assume values of the
order of .

When either the probe or the trigger polarizations (or both) are changed,
the M scheme of Fig. 1 is not realized, and the phase shifts acquired by the
two pulses are very different. In fact, if the probe is ¢~ polarized, there is no
sufficiently close level which the atoms in |1) can be driven to. Both probe and
trigger do not interact with the medium and each wave-packet only acquires
the trivial vacuum phase shift ¢} = kil (ki = w;/e, i = P, T"). When the probe
is o* polarized as in Fig. 1, and also the trigger is ot polarized, the probe
is subject to the EIT corresponding to the A scheme formed by the levels
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|[4>=|5P3/2,F=1,m=0>
2>=|5P1/2,F=1,m=0> 33

|3>=|5S1/2,F=2,m=1>
|1>=|5S1/2,F=1,m=-1>
|5>=|5S1/2,F=1,m=1>

Figure 1. Energy level scheme for 8"Rb atoms. The probe field (with frequency wp and
Rabi frequency [2;), and the trigger field (with frequency wy and Rabi frequency (3) are
weak coherent fields. The tuner (with frequency wy and Rabi frequency £14) and the o~
polarized field at w; is an intense pump beam. All the population is initially in level |1),

|1) — |2) — |3), while the trigger does not interact with the medium, because it
is too far from resonance from any level, The trigger acquires again a vacuum
phase shift ¢J, while the probe is slowed down by EIT and acquires a phase
shift ¢&. We thus arrive at the following QPG

o) plo™)r — e (#+ ) |o7) plo™ )7 (6)
o) plot)r — e {4 +90) (g) plat) (7)
o) plot) — e (#R 9 |g+) plo) g (8)
lo*) plo™ )z — e 6D o4y plo™)p (9)

with conditional phase shift
p=¢F +97 —of —¢f. (10)

The nontrivial nonlinear phase shifts c,f:-f and ¢ have to be evaluated consid-
ering the full M scheme of Fig. 1, while ¢} can be evaluated neglecting the
trigger and the tuner beams in Fig. 1.

Let us now explicitly evaluate the nonlinear phase shift of both probe
and trigger for the M scheme of Fig. 1. This scheme has been only recently
studied (see '®:19) for its capability to give high-order nonlinearity via multi-
photon coherence. We describe the dynamics of the M system in terms of
five coupled equations for the slowly varying atomic amplitudes ¢;, in which
relaxation processes are introduced phenomenologically 420 je.

ax

iéy = -—2-1-0.2 (11)
o . Q Q
ey = (f.’bl = 1.32—%) Gy — -—élcl -~ *5?-(33 (12]
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ity = Aqaey — 5% -ﬁgﬂi (13)
v . Q 0

ity = (ﬁw - 11;) es — —2%3 - T‘icﬁ (14)
" 0

s = Agges — *-zi&h (15)

where g =~ 74 =y = 27 x 6 MHz are the decay rates of the two excited states
|2) and [|4), and the relative detunings Az = A; — Ag, Az = Az + Ag,
Ay = Az — Ay, are defined in terms of the detunings A, = wg — wp,
Az = wo3 — wo, Az = wy3 — wp, Ay = wys — wy. We assume an ultracold Rb
gas (T" < 1 pK) and consequently neglect Doppler broadenings and shifts. As
we have seen above (see Eq. (4)), the nonlinear phase shifts are determined
by the classical nonlinear refractive index, and therefore we describe the four
fields in terms of the four Rabi frequencies ;, i = 1,...,4. The two pump
fields can be taken as cw fields, so that (2; and 4 are constants, while {
and (3 describe the probe and trigger weak coherent pulses, and therefore are
space and time dependent functions. The stationary state of Eqs. (11)-(15)
can be easily determined assuming that the pump is much stronger than the
probe (2 > ), so that most of the population remains in level [1). From
the stationary polarization, one gets the probe and trigger susceptibilities,
which we rewrite as

xp(2,1) = X33 + xi3 | Er(z,t)[? (16)
XT{z't) =XB4IEP zrt}lzv {17}
where Ej;(z,t) (i = P,T) are the probe and trigger electric fields,

N IP'J 2 4 ﬂ.4|2
Xglz} = Vh ]ull)ﬂlﬂ [45-14 (313 — g 2 ) = L:r' (18)
@) _ N |zl psal® Arg ”
o 09
@ _ _ @ [* RaZ AW U

12 and pia4 are the dipole matrix elements, N/V is the atomic number density,
and

Bi==Ay (m 2)' i + A2 (A (21)

-—z%) — lnjig] [ﬂm (1313 —il;-) — E‘i!-"z*] ,

which is time-independent (as well as x(m), x\3 and x'7) in the case of a weak

trigger pulse, {23 < Q;. These general expressions reproduce previous results
as limiting cases. The N scheme third-order susceptibility of '* is obtained
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when A1z = 0 and 23, 24 < (2, while the M scheme trigger susceptibility of
18 is obtained when Ay = A3 = 0 and Q3 < (25,

[t is straightforward to obtain from Egs. (16)-(21) the probe and trigger
group velocities, which are important for the determination of the nonlinear
phase shifts. In fact, as shown in '®, cross phase modulation becomes rel-
evant just when the probe is in the EIT condition, and its group velocity
becomes very slow. If however the trigger is not slowed down, the nonlinear
phase shift is limited by the time duration of the trigger pulse '°. A much
larger phase shift can be obtained when the two group velocities are slow and
equal, so that the phase shift becomes proportional to the time spent within
the medium. Two schemes have been proposed to achieve this goal: i) using
a mixture of two atomic species '7 so that one kind of atoms realizes a N
scheme, and the other one realizes a A scheme able to slow down the trigger
pulse; ii) considering a six level scheme in which probe and trigger are affected
by EIT and cross-phase modulation in a symmetric fashion, so that the two
group velocities are equal by construction *'. The present M scheme is not
symmetrical, and therefore it does not give in general equal probe and trigger
group velocities. However the two group velocities can be tuned and made
equal simply by tuning the frequencies and intensities of the four input light
beams. This way of achieving a zero group velocity mismatch has clear ad-
vantages over the above schemes '"?!, Qur scheme could be directly applied
to a magnetically confined cold sample of 8"Rb atoms while the scheme in 7
requires an accurate (and difficult) control of the atomic densities in order to
get equal group velocities. The symmetric scheme studied in ?' yields equal
group velocities automatically. Yet, the initial atomic population is here to
be put in a Zeeman-split m = 0 ground state sublevel which cannot be easily
done in a magnetically confined atomic sample requiring more sophisticated
optical trapping techniques.

Using vg(w) = ¢/(1 + ng(w)), with ny(w) = 2mwiRex(w)/0w, and
Egs. (16)-(21), one has, when Ay =0 and Q3 <

il E 3‘?7|au12|2wp
9 V ﬁEu'ﬂgP

s £8ﬂ|p34|2m1~
A ¥ ﬁﬁu|ﬂ3|2

(1 + |23)%8) (22)

ng(wp) =

[?8, (23)

nglwr) =n

where
(86 [(on-82)"-4
(20— 102)" + 15]" |

The two group velocities can be both made small and essentially equal by
adjusting the tuner Rabi frequency {24 and the parameter Aj4.

f= (24)
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We have therefore all the ingredients for the evaluation of the phase shifts
¢F and ¢7 of Eq. (9), and ¢4 of Eq. (8) for the proposed QPG. In fact, the
propagation equation for the slowly varying electric field amplitudes &;(z,t)
(such that Ej(z,t) = e(z,t) exp {ikiz — iw;t} + e.c) is given by (i = P, T)

(% + vl‘%) ei(z,t) = 2mik;xi(2, t)ei(z, 1), (25)

g

whose solution is
eilz,t) = £:(0,t - ;zi-}exp{ilﬂ'ik,- f dz'x: (2, t}} , (26)
g 0

The phase shifts at the outer boundary 2 = [ of the gas sample are therefore
given by @5 = ¢f +2nkp [ d2'xp(2,t) and ¢T = ¢f +2nky [ d2'xr(2, 1).
As discussed above, in the case when both probe and trigger are ot+-polarized,
one has only a A-scheme for the probe, and therefore one has the linear phase
shift ¢f = o + 2nkplx 3y (03 = Q4 = 0). Using Eqs. (16) and (17), and the
fact that for the single photon Gaussian wavepacket of Eq. (2), moving with
group velocity v; and with transverse area S;, one has

JE,;(z,tHz = (hw;/V27S;Li€o) exp{—2c2 (t - z,fv;,)z/.[,f} ; (27)

one finally gets the probe and trigger phase shifts,

oF = of + 2mkplxy (28)
=1
oy P |1 1 Vaic|1 L
+heXiz 2STcep | vy *ug Erf{ Ly |vf ’ug
. a]
T AT (3) fwpr | 1 1
= L - 29
P~ =90 +krXas 28peeo (vf  oT a9
xerf Ve | 1 . s
Lp v;’ vg

These expressions are the central result of the paper and can be used for an
accurate estimation of the conditional phase shift of the proposed QPG. Large
nonlinear shifts take place when probe and trigger velocities are very much
alike and for appreciably large values of the two nonlinear susceptibilities real
parts. At the same time, their imaginary parts have to be kept small so as to
avoid absorption, which may hamper the efficiency of the gating mechanism.
Assuming a perfect EIT regime for the probe, i.e. A; = Ag = 0, it is easily
seen from Egs. (16)-(21) that one can attain imaginary parts that are two
orders of magnitude smaller than their real parts for suitable values of the
tuner intensity and provided that trigger and tuner are both strongly detuned
and by nearly equal amounts, i.e. A3 =~ Ay4. Such a choice further leads to
values of 3 that yield equal group velocities. By taking, e.g., Az ~ Ay = 20y

446



with Ayg = 10724, and y ~ 7, 0 =~ 0.08 v, Q3 ~ 0.04 4, Q; ~ 24,
one has at typical densities of N/V = 3 x 10" em™? group velocities v} =~
'ug' ~ 10 m/s along with over 65 % average transmission and a conditional
phase shift ¢ ~ 7 over an interaction length ! ~ 1.8 mm. This set of Rabi
frequencies corresponds to single photon probe and trigger pulses for tightly
focused beams (several microns) with time duration ~ 1 ps.

The 65 % average transmission means that the desired nonlinear phase
shift can be obtained only in conjunction with a non-negligible absorption.
However, this does not mean that the proposed QPG does not work, but sim-
ply that one has a probabilistic QPG, giving single-photon probe and trigger
pulses with the correct phase shifts at the output, in only 42% of the cases.
Moreover, the easiest way to demonstrate experimentally the present QPG
is to use post-selection of single-photon coherent pulses rather than single
photon wave-packets, which are difficult to generate. In this case, the phase
gating mechanism described by Eqgs. (6)-(9) is carried out by considering the
four possible configurations for the input polarizations, measuring the phase
shifts with a Mach-Zender interferometer set-up '!, and post-selecting only the
events with a coincident detection of one photon out of each probe and trigger
pulse. Non-negligible absorption implies then only a smaller value of probe
and trigger transmitted amplitudes with a concomitant lower probability (by
42%) to detect a two-photon coincidence between probe and trigger.

Laser pump intensity and frequency fluctuations may increase absorption
and phase-shift fluctuations. The gate fidelity may then be hampered though
in the proposed post-selection scheme, the fidelity is essentially affected only
by the fluctuations of the shifts ¢}, ¢7 and ¢f. On general ground one
estimates that a 1% intensity fluctuation yields an error probability of about
3% though relative detuning fluctuations of the order of 1072 can make the
error probability to become as large as 10%. Yet, error probability as small
as 1% or less are achieved when, e.g., A3 is stabilized at 10~9+ or more.
Such a requirement, though stringent, is within experimental reach provided
all lasers are tightly phase-locked to each other '2.

Another important source of absorption is given by the decay of coherence
between the ground state levels |1), |3), and [5), yielding a finite lifetime of
the dark state at the basis of EIT 8. However, these ground state dephasing
processes are not included in the amplitude equation description of Egs. (11)-
(15), and their effect can be exactly described only within a Bloch equation
treatment. We have therefore compared the predictions of the amplitude
equation treatment of Eqs. (16)-(21) with the susceptibilities obtained from
the numerical solution of the complete Bloch equations of the M scheme of
Fig. 1. We have checked that the two predictions essentially coincide in a wide
range of parameters (provided that the fundamental condition 2, Q3 < (s
is satisfied) if the dephasing rates are zero. When the ground state dephasing
rates are nonzero, probe and trigger absorption increase, even though the
effect is not significant if these rates are not too large, i.e., they are kept

447



smaller than 100 Hz. These moderate dephasing rates could be achieved
using not too dense media, as for example bosonic cold gases above T..

It is worthwhile to note that a classical phase gate could be implemented

by using more intense probe and trigger pulses. In fact, a conditional phase
shift ¢ >~ 7 could be achieved with the same atomic density but over a shorter
interaction length, | =~ 10um, along with 80 % average transmission, by choos-
ing £2; ~ 1.4 v, 3 ~ 0.16 v, Q4 ~ v, Q5 ~ 7 v and by slightly decreasing the
detunings Az and A,.
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