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Phase-resonant closed-loop optical transitions can be engineered to achieve broadly tunable light phase
shifts. Such a novel phase-by-phase control mechanism does not require a cavity and is illustrated here for
an atomic interface where a classical light pulse undergoes radian level phase modulations all-optically
controllable over a few micron scale. It works even at low intensities and hence may be relevant to new
applications of all-optical weak-light signal processing.
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All refractive optics of macroscopic media, including
basic tools such as lenses, work by applying spatially
varying phase shifts of several radians to incoming light
beams. The ability, on the other hand, to control phases and
relative phases over the short length scales of microscopic
media is a challenging task in optics and of obvious
relevance to modern microscopy [1], information process-
ing [2–4], and micro- and nanoscale optics [5,6]. In
quantum systems, e.g., large and controllable optical phase
shifts have long remained elusive and only recently
appreciable shifts have been observed from atoms [7],
molecules [8], trapped ions [9], and superconducting qubits
[10]. It’s even less obvious how to attain large and
controllable optical shifts working at low-light levels or
with the tiny optical powers of several or a few photons.
This requires unpractical propagation distances, often
overcome by using multipass high-finesse optical cavities
[11], or strong enhancements of the weak photon-photon
nonlinear interactions. Electromagnetically induced trans-
parency, e.g., is commonly used in trapped atomic samples
to enhance the weak Kerr effect responsible for the photon-
photon interaction, namely, through a significant reduction
of the photon’s propagation speed. Within this context,
multilevel atom configurations driven to attain large cross-
phase-modulation effects have been extensively studied
[12–16] and over the years various demonstrations [17–20]
of phase shifts, which may even reach the size of a radian
[21–23], have been carried out yet at the price of fairly large
light intensities. Conversely, this seems to confirm early
predictions that large shifts through enhancement of Kerr
nonlinearities at low-light levels or even down to the single-
photon level [24,25] are unlikely.
Here we discuss a physical mechanism to achieve radian-

level shifts in the phase of an optical field across the tiny
length scales of an atomic interface [26]. We show that the
phase of a weak narrow band signal wave packet can be
steered by easily changing the interface driving parameters
or by means of another weak narrow band copropagating

control wave packet. The signal phase may be preserved or
set to acquire continuously variable shifts reaching π
radians. This can be done all-optically over a few microns.
The proposal is illustrated for classical coherent states

and builds on ideas of resonant effects occurring in atomic
transitions with a closed excitation loop, where the resonant
conditions hinge not only on frequencies but also on the
phase of the exciting lasers [27–29]. The phase control
parameters and interface characteristics are described in
Figs. 1(a) and 1(b). The control mechanism does not
require a cavity and is in principle efficient even for weak
classical fields. Such an approach may be relevant to new
applications of all-optical low-light signal processing for
communications and information [39] including all-optical
switching [40] as exemplified, e.g., in Fig. 1(c).
The shift in the phase of the signal (ωm) across the

interface in the presence of the control wave packet (ωp) is
computed here within the general framework of quantum
electromagnetic theory [41] through the phase of the signal
electric field expectation value hÊþ

mðz; tÞi [33]. The oper-
ator Êþ

mðz; tÞ is obtained as a one-dimensional continuous-
mode Heisenberg field operator solution of a system of
coupled equations describing the signal and control
joint dynamics through the interface. Such a field can be
expressed as a superposition of signal and control free-
space field operators weighted by the atomic-medium
electric fields amplitudes Emm and Emp [33,42]. Each
amplitude’s expression is involved, yet for wave packets
[Fig. 1(b)] double-resonant with (i) a nearly resonant
transition and with (ii) a Raman transition for which
fδp; γ2g ≪ Δ ≪ jΩcj2=γ3, we can rewrite Emm and Emp

as suitable superpositions [33,42] of two plane–waves
whose frequency-dependent wave vectors are determined
by the refractive index n− and nþ exhibited, respectively,
on the nearly-resonant transition and on the far-detuned
Raman transition. Upon averaging Êþ

mðz; tÞ over a con-
tinuous-mode coherent state jfαm; αpgi [43], representing
our incident wave packets each with a Gaussian frequency
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distribution ξm;pðωÞ ¼ ðL2=2πc2Þ1=4e−L2ðω−ωm;pÞ2=4c2 , and
working out the phase of hÊþ

mðz; tÞi we obtain the shift
accumulated at time t across an interface of length z [33],

ϕmðz; tÞ ¼ 2Φþ arg½Zðz; tÞ�

≃ Φ − jζj − tan−1
�

cos½δðzÞ þ 2jζj�
sin½δðzÞ þ 2jζj� þ E−ðz;tÞ cosΦ

Eþðz;tÞ sinΦ

�
:

ð1Þ
We denote by 2Φ ¼ ðΔϕc − ΔϕαÞ the difference between
the couplings relative phase Δϕc ¼ ϕcm − ϕcp and the
two wave packets initial relative phase Δϕα ¼ ϕm − ϕp

[Fig. 1(a)]. The complex function [44]

Zðz; tÞ ¼ n1=2p Impðz; tÞ þ e−if2ΦþΔ½ðz=cÞ−t�gn1=2m Immðz; tÞ
ð2Þ

comprises the frequency convolution Imp (Imm) between
the electric field amplitudes Emp (Emm) and the mode
frequency distributions ξp (ξm) that arise from computing
hÊþ

mðz; tÞi. For the specific driving conditions (i and ii) we
adopt here one has [33]

Impðz; tÞ≃ ½eiη−ðωpz=cÞE−ðz; tÞ − f− → þg�e−iωpt; ð3Þ

where the two envelopes

E�ðz; tÞ ¼ e−κ�ðωpz=cÞe−c2½t−ðz=v�Þ�2=L2

; ð4Þ
propagate at different group velocities (v�) and damp over
different lengths (∝ λpκ

−1
� ), with η� (κ�) being the real

(imaginary) part of the refractive index n�. With the help of
Imp and Imm [45] one obtains from Eq. (2) the signal shift
ϕmðz; tÞ, which can be described to a very good approxi-
mation by the last expression in Eq. (1), with
ζ ¼ iγ3Δ=jΩcj2. Such a simplified expression indicates that
variations mainly occur through the mismatch δðzÞ ¼
ðηþ − η−Þωpz=c, giving rise to space oscillations with
period Losc ≃ Δ=γ2ðN=VÞƛ2o, and through the second term
in the denominator of the inverse-tangent function in Eq. (1),
giving rise instead to space-time modulations. The former
are determined by the phase velocities c=η� while the latter
are determined by the envelopes E�ðz; tÞ and Φ. In par-
ticular, at any time t and z the shift ϕmðz; tÞ will be affected
by the external phase difference Φ and by the interface
optical response, through the control detuning δp. Both
parameters can be changed independently, providing a wide
range of control over the signal phase as we discuss below.
Phase modulations.—Consider first some specific values

of Φ, i.e.,

Φ ¼ 0 or Φ ¼ π

2
: ð5Þ

The last term in Eq. (1) practically vanishes in the first case,
a situation that is relevant when the phase ϕmðz; tÞ needs to
be preserved through the interface (jζj ≪ 1). The fact that
space-time propagation effects have in this case little
impact on the signal shift physically arises from dark-state
matching. This can be understood by supposing that each
of the two optical fields creates its own dark state through
the corresponding coupling beam. When Φ ¼ 0 the two
dark states exactly match to one another [46], the atoms
loosely couple to the signal and control field in a regime of
reduced absorption and slow light propagation. As a result
the interface has a negligible steady effect on the shift.
Conversely, when Φ ¼ π=2 the last term in Eq. (1) does
not vanish and ϕmðz; tÞ increase (nearly) linearly with z,
exhibiting a π-radian change over half a period Losc. This is
important instead when exactly a π-phase change is sought
after. In this case, however, the dark state mismatch is such
that the atoms strongly couple to the fields and the signal
quickly dissipates through the sample, making the shift
observable only over a 10 − 20 μm long interface [33].
The case of arbitrary Φ’s, no longer subject to the

restrictions [Eq. (5)], is less intuitive. One expects
continuous space-time variations of ϕmðz; tÞ which we
examine here at a given time t0 of the signal wave packet
propagation and for a typical range of atomic interface

FIG. 1 (color online). (a) Phase Control. Two weak coherent
wave packets ωm and ωp, with equal initial intensities (nm ¼ np)
and length (L), and two coupling beams ωcm and ωcp couple to an
atomic interface of length z [30]. The couplings relative phaseΔϕc,
the phaseϕp and detuning δp of the control wave packet are used to
steer the phase ϕm of the signal wave packet. Here ϕm ðϕpÞ and
nm ðnpÞ are the initialmeanphase angle andmeanphotonnumberof
the coherent state excitation αm (αp) in the mode m ðpÞ. The two
couplings Rabi frequency are fixed at Ωc ¼ 2γ2 and the Raman
detuning at Δ ¼ 20γ2. (b) The interface. The level scheme
corresponds to the transition 5 2S1=2 → 5 2P3=2 (87Rb D2 line) at
λ21 ¼ 780.24 nm with decay rates γ2 ¼ 2π × 6 MHz and
γ3 ¼ 2π × 1 kHz. The wave packets with a bandwidth c=L ∼
1=τ ≲ γ2 ≪ Δ are double resonant with the couplings
(ωm − ωcm ≃ ωp − ωcp) through a nearly resonant (δp ≃ δcp≲
γ2) transition and a far off-resonant (δm ≃ δcm ¼ Δ) Raman
transition between the two hyperfine grounds j1i and j3i. (c)Meas-
urement. Mach-Zehnder setup used to measure ϕmðz; tÞ at the
photodetector (PD). The interferometer may also be used to
implement a low-light optical switch [33].
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lengths z and arbitrary phases Φ. The results, reported in
Fig. 2 for a setup of ultracold 87Rb [47], show broad
tunability with Φ, meaning that signal phase manipulation
can be achieved directly [48] by changing either the
couplings phases (Δϕc) or the control pulse phase (ϕp).
One of these characteristic phase patterns is illustrated for a
fixed value of Φ in Fig. 3(a). Each point (green dots)
corresponds to a length z and regions with a sparse point
distribution correspond to the steepest phase gradients. We
also examine in this case how the atom density (blue dots)
[49] and the control pulse detunings δp (brown dots) affect
the signal phase. Optically thicker (thinner) interfaces in
general exhibit shorter (longer) modulations with a sharper
(smoother) rise since Losc ∝ ðN=VÞ−1. Rather small δp’s,
on the other hand, are sufficient to shrink the pattern of the
phase swiftly moving the maxima at z’s for which one
would observe nearly no shift in the case of a vanishing δp.
Notice that in all cases steep changes take place over ramps
ranging from a few to several μm [Fig. 3(a), inset]. We,
finally, show phase patterns for arbitrarily fixed lengths z in
Fig. 3(b) where the signal phase undergoes any required
shift between 0 and π as Φ is varied [48]. We report, in
particular, the values of Φ (color dots) for which the phase
undergoes a complete π-change.
Discussion.—Any viable all-optical physical mechanism

to control steep phase changes on short length scales
requires broad tunability, steep gradients, basic control
optics, and low loss. The results above indicate that these
requirements are essentially met. We focus now on empha-
sizing some key features
First, the mechanism by which two wave packets can

steer one another’s phase to large modulations hinges on
propagation. The steep shifts in Fig. 3, e.g., physically
arise from the joint propagation of the two wave packets’

electric fields Eþ
mðz; tÞ and Eþ

p ðz; tÞ, hence their phases,
specifically occurring when the propagation of the two
fields makes the numerator of the inverse tangent argument
in Eq. (1) undergo rapid sign changes in region(s) where the
denominator is smooth [see Fig. 3(a), inset]. This phase-
shift effect is then associated with the process of energy
swapping [50] between the two frequency channels of the
interface taking place in a regime of slow light propagation
via the common spin coherence j1i-j3i [33].
Second, for identical wave packets the shift ϕmðz; tÞ is

independent of the intensity [51]. This leads to the note-
worthy result that the mechanism may work in principle for
very weak classical signal (control) field excitations. Thus,
in proximity of a steep phase-change, radian-level shifts in
the signal phase may in general be obtained at a much
reduced interaction strength than it would be required
to achieve through typical non-linear cross-phase-
modulations [23]. Within our twofold closed-loop interface
configuration, steep shifts in fact are largely determined by
the combined dynamics of two wave packet envelopes
rather than their intensities, as clearly embedded in Eq. (1).
Large shifts are not new. The Gouy shift, whereby light

passing through a focus will undergo a π shift [52], or the
π-phase advance that blue detuned light will experience
when tuned through an atomic resonance [9] are well

FIG. 2 (color online). Signal phase modulations accumulated at
time t0 ¼ 0.1τ by a narrow band signal Gaussian wave packet of
duration τ ¼ 5.2 μs for arbitrary interfaces of lengths z and
phases Φ. Each curve represents values fz;Φg for which
ϕmðz; t0Þ has the same value. Phases are in rad with an atomic
density N=V ≃ 1013 cm−3 and a length scale L ¼ 1 mm. All
other parameters are as in Fig. 1. FIG. 3 (color online). (a) Signal phase ϕmðz; t0Þ vs z (Φ ¼ π=4)

when δp ¼ 0 and N=V ≃ 1013 cm−3 (green), δp ¼ 0 and N=V ≃
5 × 1012 cm−3 (blue), δp ¼ 0.03γ2 and N=V ≃ 1013 cm−3

(brown). Inset: Inverse tangent term (green) in Eq. (1) around
z≃ 0.0054L (box). Large shifts arise from a swift change in sign
of the numerator (dash) over μm length scale where the
denominator (solid) has only smooth variations. (b) Signal phase
ϕmðz0; t0Þ vs Φ when z0 ¼ 0.006L (blue), z0 ¼ 0.01L (violet),
and z0 ¼ 0.14L (green). For z0 ¼ 0.01L the phase undergoes a π
shift for Φ≃ 2.9 (blue-dot). Inset: The phase plotted π jumps are
due to a quadrant swap [33].
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known. At variance with these instances where distances as
large as a few Rayleigh ranges [52] or complicated
architectures with a string of atoms [7] or molecules [8]
spread over a few hundred of nanometers are needed to
achieve sizable shifts and yet with sizable intensities, our
method works even for weak intensities [53]. This phase-
resonant excitation free-space mechanism, in addition, does
not require demanding confinements [6–9] to control both
the strength and the spatial range over which changes in
ϕmðz; tÞ occur but only basic optics entailing phases
besides detunings [see Fig. 3(b)].
Third, the control mechanism affects not only phases but

also the mode intensity; characteristic space-time depen-
dent power densities are reported in Ref. [33]. We find it
instructive to examine here the joint time-dependent evo-
lution of both m and p mode intensities together with the
phase accumulated by the signal. This is done in Fig. 4
where ϕmðz0; tÞ is seen to remain almost constant along the
pulse temporal profile, except close to a region around t0
where a phase singularity [54] occurs (inset, left). Here the
p mode (blue) is mostly populated while the other shows a
residual profile around t0 arising from not-a-perfect swap-
ping. Both real and imaginary parts of the m-mode
amplitude Zðz; tÞ, and hence its intensity [33], vanish at
t0, the phase remaining then undefined. In general, there
are more of these singularities occurring precisely at the
crossings points (black dots) of the contour lines in Fig. 4
(inset, right). The overall space-time evolution of the signal
phase and its singularities are further illustrated through an
animation in Ref. [33].
Outlook.—Managing phases of weak optical fields over

short distances is a challenge in different research areas
[1–10]. In multiatom ensembles, Kerr enhancement, e.g., is

often used to achieve appreciable phase modulations, yet
when working in the low-light level regime there exists an
upper limit of the order of a fraction of a radian per photon
[24]. Other interesting forms of enhancement in warm [55]
or cold Rydberg atoms [56,57] can also be envisaged. By
exploiting, instead, phase-sensitive coherent excitations in
a multilevel-atom interface (see Fig. 1), shifts between 0
and π can be continuously controlled by direct optical
engineering of the interface, e.g., by adjusting the coupling
beams phases Δϕc while fixing either of the two pulse
control parameters fδp;ϕpg or by reversibly fixing Δϕc

while adjusting either of fδp;ϕpg.
Phase control remains efficient here even for weak fields;

the conditions [Eq. (5)], e.g., may be relevant to implemen-
tations of a conditional π-phase shift between two (very)
weak classical pulses across the interface [58]. Finally, our
results for Rb atoms adapt to cold-atom photonic crystal-
fiber interfaces [59,60] or to solid interfaces [58,61–63], to
miniaturized (micrometer-sized) atomic vapor cells [31,64]
or to crystals doped with rare-earth-metal ions [58] or with
nitrogen-vacancy color centers [65] where similar three-level
two-fold interaction configurations exist.
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