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Well-posedness of the linearized plasma-vacuum interface problem
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Brescia, Italy

E-mail: paolo.secchi@ing.unibs.it

YURI TRAKHININ

Sobolev Institute of Mathematics, Koptyug av. 4, 630090 Novosibirsk, Russia

E-mail: trakhin@math.nsc.ru

[Received 3 April 2012 and in revised form 30 May 2013]

We consider the free boundary problem for the plasma-vacuum interface in ideal compressible1

magnetohydrodynamics (MHD). In the plasma region the flow is governed by the usual compressible2

MHD equations, while in the vacuum region we consider the pre-Maxwell dynamics for the magnetic3

field. At the free-interface we assume that the total pressure is continuous and that the magnetic field4

is tangent to the boundary. The plasma density does not go to zero continuously at the interface, but5

has a jump, meaning that it is bounded away from zero in the plasma region and it is identically zero6

in the vacuum region. Under a suitable stability condition satisfied at each point of the plasma-7

vacuum interface, we prove the well-posedness of the linearized problem in conormal Sobolev8

spaces.9
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76E25, 35R35, 76B03.11
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free boundary, elliptic-hyperbolic system13

1. Introduction14

Consider the equations of ideal compressible MHD:15

8
ˆ̂̂
<
ˆ̂̂
:

@t � C div .�v/ D 0;

@t .�v/ C div .�v ˝ v � H ˝ H/ C rq D 0;

@t H � r � .v�H/ D 0;

@t

�
�e C 1

2
jH j2

�
C div

�
.�e C p/v C H�.v�H/

�
D 0;

(1.1)16

where � denotes density, v 2 R
3 plasma velocity, H 2 R

3 magnetic field, p D p.�; S/ pressure,17

q D p C 1
2
jH j2 total pressure, S entropy, e D E C 1

2
jvj2 total energy, and E D E.�; S/ internal18

energy. With a state equation of gas, � D �.p; S/, and the first principle of thermodynamics, (1.1)19

is a closed system.20

System (1.1) is supplemented by the divergence constraint21

div H D 0 (1.2)22

c European Mathematical Society 2013

mailto:paolo.secchi@ing.unibs.it
mailto:trakhin@math.nsc.ru


324 P. SECCHI AND YU. TRAKHININ

on the initial data. As is known, taking into account (1.2), we can easily symmetrize system (1.1)23

by rewriting it in the nonconservative form24

8
ˆ̂<
ˆ̂:

�p

�

dp

dt
C div v D 0; �

dv

dt
� .H � r/H C rq D 0;

dH

dt
� .H � r/v C H div v D 0;

dS

dt
D 0;

(1.3)25

where �p � @�=@p and d=dt D @t C .v � r/. A different symmetrization is obtained if we consider26

q instead of p. In terms of q the equation for the pressure in (1.3) takes the form27

�p

�

�
dq

dt
� H � dH

dt

�
C div v D 0; (1.4)28

where it is understood that now � D �.q � jH j2=2; S/ and similarly for �p . Then we derive div v29

from (1.4) and rewrite the equation for the magnetic field in (1.3) as30

dH

dt
� .H � r/v � �p

�
H

�
dq

dt
� H � dH

dt

�
D 0: (1.5)31

Substituting (1.4), (1.5) in (1.3) then gives the following symmetric system32

0
BB@

�p=� 0 �.�p=�/H 0

0T �I3 03 0T

�.�p=�/H T 03 I3 C .�p=�/H ˝ H 0T

0 0 0 1

1
CCA @t

0
BB@

q

v

H

S

1
CCAC

C

0
BB@

.�p=�/v � r r� �.�p=�/Hv � r 0

r �v � rI3 �H � rI3 0T

�.�p=�/H T v � r �H � rI3 .I3 C .�p=�/H ˝ H/v � r 0T

0 0 0 v � r

1
CCA

0
BB@

q

v

H

S

1
CCA D 0 ;

(1.6)33

where 0 D .0; 0; 0/. Given this symmetrization, as the unknown we can choose the vector U D34

U.t; x/ D .q; v; H; S/. For the sake of brevity we write system (1.6) in the form35

A0.U /@t U C
3X

j D1

Aj .U /@j U D 0; (1.7)36

which is symmetric hyperbolic provided the hyperbolicity condition A0 > 0 holds:37

� > 0; �p > 0: (1.8)38

Plasma-vacuum interface problems for system (1.1) appear in the mathematical modeling of plasma39

confinement by magnetic fields (see, e.g., [10]). In this model the plasma is confined inside a40

perfectly conducting rigid wall and isolated from it by a vacuum region, due to the effect of strong41

magnetic fields. This subject is very popular since the 1950–70’s, but most of theoretical studies42

are devoted to finding stability criteria of equilibrium states. The typical work in this direction is43
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the classical paper of Bernstein et al. [3]. In astrophysics, the plasma-vacuum interface problem can44

be used for modeling the motion of a star or the solar corona when magnetic fields are taken into45

account.46

According to our knowledge there are still no well-posedness results for full (non-stationary)47

plasma-vacuum models. More precisely, an energy a priori estimate in Sobolev spaces for the48

linearization of a plasma-vacuum interface problem (see its description just below) was proved49

in [23], but the existence of solutions to this problem remained open. In fact, the proof of existence50

of solutions is the main goal of the present paper.51

Let ˝C.t/ and ˝�.t/ be space-time domains occupied by the plasma and the vacuum52

respectively. That is, in the domain ˝C.t/ we consider system (1.1) (or (1.7)) governing the motion53

of an ideal plasma and in the domain ˝�.t/ we have the elliptic (div-curl) system54

r � H D 0; div H D 0; (1.9)55

describing the vacuum magnetic field H 2 R
3. Here, as in [3, 10], we consider so-called pre-56

Maxwell dynamics. That is, as usual in nonrelativistic MHD, we neglect the displacement current57

.1=c/ @t E , where c is the speed of light and E is the electric field.58

Let us assume that the interface between plasma and vacuum is given by a hypersurface59

� .t/ D fF.t; x/ D 0g. It is to be determined and moves with the velocity of plasma particles60

at the boundary:61

dF

dt
D 0 on � .t/ (1.10)62

(for all t 2 Œ0; T �). As F is an unknown of the problem, this is a free-boundary problem. The plasma63

variable U is connected with the vacuum magnetic field H through the relations [3, 10]64

Œq� D 0; H � N D 0; H � N D 0; on � .t/; (1.11)65

where N D rF and Œq� D qj� � 1
2
jHj2

j�
denotes the jump of the total pressure across the interface.66

These relations together with (1.10) are the boundary conditions at the interface � .t/.67

As in [12, 22], we will assume that for problem (1.1), (1.9)–(1.11) the hyperbolicity conditions68

(1.8) are assumed to be satisfied in ˝C.t/ up to the boundary � .t/, i.e., the plasma density does69

not go to zero continuously, but has a jump (clearly in the vacuum region ˝�.t/ the density is70

identically zero). This assumption is compatible with the continuity of the total pressure in (1.11).71

For instance, in the case of ideal polytropic gases one has p D A� eS with A > 0;  > 1. Then the72

continuity of the total pressure at � requires .A� eS C 1
2
jH j2/j�C

� 1
2
jHj2 D 0j��

, which may73

be obtained also for densities � discontinuous across � . Differently, in the absence of the magnetic74

field, the continuity of the pressure yields the continuity of the density so that the boundary condition75

becomes �j�C
D 0.76

Since the interface moves with the velocity of plasma particles at the boundary, by introducing77

the Lagrangian coordinates one can reduce the original problem to that in a fixed domain. This78

approach has been recently employed with success in a series of papers on the Euler equations in79

vacuum, see [6–9, 12]. However, as, for example, for contact discontinuities in various models of80

fluid dynamics (e.g., for current-vortex sheets [4, 21]), this approach seems hardly applicable for81

problem (1.1), (1.9)–(1.11). Therefore, we will work in the Eulerian coordinates and for technical82

simplicity we will assume that the space-time domains ˝˙.t/ have the following form.83

Let us assume that the moving interface � .t/ takes the form84

� .t/ WD
˚
.x1; x0/ 2 R

3 ; x1 D '.t; x0/
	

;85
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where t 2 Œ0; T � and x0 D .x2; x3/. Then we have ˝˙.t/ D fx1 ? '.t; x0/g. With our86

parametrization of � .t/, an equivalent formulation of the boundary conditions (1.10), (1.11) at87

the interface is88

@t ' D vN ; Œq� D 0; HN D 0; HN D 0 on � .t/; (1.12)89

where vN D v � N , HN D H � N , HN D H � N , N D .1; �@2'; �@3'/.90

System (1.7), (1.9), (1.12) is supplemented with initial conditions91

U.0; x/ D U0.x/; x 2 ˝C.0/; '.0; x/ D '0.x/; x 2 �;

H.0; x/ D H0.x/; x 2 ˝�.0/;
(1.13)92

From the mathematical point of view, a natural wish is to find conditions on the initial data providing93

the existence and uniqueness on some time interval Œ0; T � of a solution .U; H; '/ to problem (1.7),94

(1.9), (1.12), (1.13) in Sobolev spaces. Since (1.1) is a system of hyperbolic conservation laws that95

can produce shock waves and other types of strong discontinuities (e.g., current-vortex sheets [21]),96

it is natural to expect to obtain only local-in-time existence theorems. Notice that (1.7), (1.9) is a97

coupled hyperbolic-elliptic system.98

We must regard the boundary conditions on H in (1.12) as the restriction on the initial data99

(1.13). More precisely, we can prove that a solution of (1.7), (1.12) (if it exists for all t 2 Œ0; T �)100

satisfies101

div H D 0 in ˝C.t/ and HN D 0 on � .t/;102

for all t 2 Œ0; T �, if the latter were satisfied at t D 0, i.e., for the initial data (1.13). In particular, the103

fulfillment of div H D 0 implies that systems (1.1) and (1.7) are equivalent on solutions of problem104

(1.7), (1.12), (1.13).105

The remainder of the paper is organized as follows. In the next section we introduce an106

equivalent formulation in the fixed domain with flat boundary. In Section 2 we formulate the107

linearized problem associated to (1.17)–(1.19) and introduce suitable decompositions of the108

magnetic fields to reduce it to that with homogeneous boundary conditions and homogeneous109

linearized “vacuum” equations. In fact, for proving the basic a priori energy estimate, it is convenient110

to have the vacuum magnetic field satisfying homogeneous equations and boundary conditions as111

in (2.14), and the plasma magnetic field satisfying homogeneous constraints (2.23), (2.24). Thus we112

introduce the decomposition PH D H0 C H00 in the vacuum side, with H0 solution of (2.14), and H00
113

taking all the nonhomogeneous part (2.13), and the decomposition (2.21) in the plasma side.114

The main result of the paper is stated in Section 4. We prove the existence of a unique solution115

to the linearized hyperbolic-elliptic problem (2.29) satisfying the a priori estimate (4.2). The a priori116

estimate (4.2) improves the similar estimate firstly proved in [23].117

In Section 5 we introduce a fully hyperbolic regularization (5.1) of the coupled hyperbolic-118

elliptic system (2.29). In Section 6 we show an a priori estimate of solutions uniform in the small119

parameter " of regularization. In Section 7 we prove the existence of the solution to the hyperbolic120

regularizing problem (5.1). For it one main difficulty is the fact that the problem is non standard,121

due to the coupling with the front, and that the Kreiss-Lopatinskii condition doesn’t hold uniformly,122

so that for instance the approach of [2] does not apply. Other difficulties are due to the characteristic123

boundary and the lack of reflexivity (in the sense of Ohkubo [17], [2]). In Section 7 we find124

a relatively simple proof of existence by means of an alternative formulation and a fixed point125

argument. In Section 8 we conclude the proof of Theorem 4.1 by passing to the limit as " ! 0.126

Sections 9, 10, 11 are devoted to the proof of some technical results.127
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1.1 An equivalent formulation in the fixed domain128

Let us denote129

˝˙ WD R
3 \ fx1 ? 0g ; � WD R

3 \ fx1 D 0g :130

We want to reduce the free boundary problem (1.7), (1.9), (1.12), (1.13) to the fixed domains ˝˙.131

For this purpose we introduce a suitable change of variables that is inspired by Lannes [11]. In132

all what follows, H s.!/ denotes the Sobolev space of order s on a domain !. The following133

lemma shows how to lift functions from � to R
3. An important point is the regularization of one134

half derivative of the lifting function 	 w.r.t. the given function '. For instance, there is no such135

regularization in the lifting function chosen in [13, 14].136

LEMMA 1.1 Let m > 3. For all � > 0 there exists a continuous linear map ' 2 H m�0:5.R2/ 7!137

	 2 H m.R3/ such that 	.0; x0/ D '.x0/, @1	.0; x0/ D 0 on � , and138

k@1	kL1.R3/ 6 � k'kH 2.R2/: (1.14)139

We give the proof of Lemma 1.1 in Section 10 at the end of this article. The following lemma gives140

the time-dependent version of Lemma 1.1.141

LEMMA 1.2 Let m > 3 be an integer and let T > 0. For all � > 0 there exists a continuous142

linear map ' 2 \m�1
j D0 Cj .Œ0; T �I H m�j �0:5.R2// 7! 	 2 \m�1

j D0 Cj .Œ0; T �I H m�j .R3// such that143

	.t; 0; x0/ D '.t; x0/, @1	.t; 0; x0/ D 0 on � , and144

k@1	kC.Œ0;T �IL1.R3// 6 � k'kC.Œ0;T �IH 2.R2//: (1.15)145

Furthermore, there exists a constant C > 0 that is independent of T and only depends on m, such

that

8 ' 2 \m�1
j D0 C

j .Œ0; T �I H m�j �0:5.R2// ; 8 j D 0; : : : ; m � 1 ; 8 t 2 Œ0; T � ;

k@
j
t 	.t; �/kH m�j .R3/ 6 C k@

j
t '.t; �/kH m�j �0:5.R2/ :

The proof of Lemma 1.2 is also postponed to Section 10. The diffeomorphism that reduces the free146

boundary problem (1.7), (1.12), (1.13) to the fixed domains ˝˙ is given in the following lemma.147

LEMMA 1.3 Let m > 3 be an integer. For all T > 0, and for all ' 2148

\m�1
j D0 Cj .Œ0; T �I H m�j �0:5.R2//, satisfying without loss of generality k'kC.Œ0;T �IH 2.R2// 6 1, there149

exists a function 	 2 \m�1
j D0 Cj .Œ0; T �I H m�j .R3// such that the function150

˚.t; x/ WD
�
x1 C 	.t; x/; x0

�
; .t; x/ 2 Œ0; T � � R

3 ; (1.16)151

defines an H m-diffeomorphism of R
3 for all t 2 Œ0; T �. Moreover, there holds @

j
t .˚ � Id/ 2152

C.Œ0; T �I H m�j .R3// for j D 0; : : : ; m � 1, ˚.t; 0; x0/ D .'.t; x0/; x0/, @1˚.t; 0; x0/ D .1; 0; 0/.153

Proof of Lemma 1.3. The proof follows directly from Lemma 1.2 because154

@1˚1.t; x/ D 1 C @1	.t; x/ > 1 � k@1	.t; �/kC.Œ0;T �IL1.R3// > 1 � � k'k
C

�
Œ0;T �IH 2.R2/

� > 1=2 ;155

provided � is taken sufficiently small, e.g. � < 1=2. The other properties of ˚ follow directly from156

Lemma 1.2.157
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We introduce the change of independent variables defined by (1.16) by setting158

eU .t; x/ WD U
�
t; ˚.t; x/

�
; eH.t; x/ WD H

�
t; ˚.t; x/

�
:159

Dropping for convenience tildes in eU and eH, problem (1.7), (1.9) (1.12), (1.13) can be reformulated

on the fixed reference domains ˝˙ as

P.U; 	/ D 0 in Œ0; T � � ˝C; V.H; 	/ D 0 in Œ0; T � � ˝�; (1.17)

B.U; H; '/ D 0 on Œ0; T � � �; (1.18)

.U; H/jtD0 D .U0; H0/ in ˝C � ˝�; 'jtD0 D '0 on �; (1.19)

where P.U; 	/ D P.U; 	/U ,

P.U; 	/ D A0.U /@t CeA1.U; 	/@1 C A2.U /@2 C A3.U /@3;

eA1.U; 	/ D 1

@1˚1

�
A1.U / � A0.U /@t 	 �

3X

kD2

Ak.U /@k	
�
;

V.H; 	/ D
� r � H

div h

�
;

H D .H1@1˚1; H�2
; H�3

/; h D .HN ; H2@1˚1; H3@1˚1/;

HN D H1 � H2@2	 � H3@3	; H�i
D H1@i 	 C Hi ; i D 2; 3;

B.U; H; '/ D

0
@

@t ' � vN jx1D0

Œq�

HN jx1D0

1
A ; Œq� D qjx1D0 � 1

2
jHj2x1D0;

vN D v1 � v2@2	 � v3@3	:

To avoid an overload of notation we have denoted by the same symbols vN ; HN here above and160

vN ; HN as in (1.12). Notice that vN jx1D0 D v1�v2@2'�v3@3'; HN jx1D0 D H1�H2@2'�H3@3',161

as in the previous definition in (1.12).162

We did not include in problem (1.17)–(1.19) the equation163

div h D 0 in Œ0; T � � ˝C; (1.20)164

and the boundary condition165

HN D 0 on Œ0; T � � �; (1.21)166

where h D .HN ; H2@1˚1; H3@1˚1/, HN D H1 � H2@2	 � H3@3	 , because they are just167

restrictions on the initial data (1.19). More precisely, referring to [21] for the proof, we have the168

following proposition.169

PROPOSITION 1.4 Let the initial data (1.19) satisfy (1.20) and (1.21) for t D 0. If .U; H; '/ is a170

solution of problem (1.17)–(1.19), then this solution satisfies (1.20) and (1.21) for all t 2 Œ0; T �.171

Note that Proposition 1.4 stays valid if in (1.17) we replace system P.U; 	/ D 0 by system172

(1.1) in the straightened variables. This means that these systems are equivalent on solutions of our173

plasma-vacuum interface problem and we may justifiably replace the conservation laws (1.1) by174

their nonconservative form (1.7).175
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2. The linearized problem176

2.1 Basic state177

Let us denote178

Q˙
T WD .�1; T � � ˝˙; !T WD .�1; T � � �:179

Let180

.bU .t; x/;bH.t; x/; O'.t; x0// (2.1)181

be a given sufficiently smooth vector-function with bU D . Oq; Ov; bH;bS/, respectively defined on182

QC
T ; Q�

T ; !T , with183

kbU k
W 2;1.Q

C

T
/
C k@1

bU k
W 2;1.Q

C

T
/

C kbHkW 2;1.Q�
T

/ C k O'kW 3;1.Œ0;T ��R2/ 6 K;

k O'kC.Œ0;T �IH 2.R2// 6 1;

(2.2)184

where K > 0 is a constant. Corresponding to the given O' we construct O	 and the diffeomorphism185

O̊ as in Lemmata 1.2 and 1.3 such that186

@1
b̊

1 > 1=2:187

We assume that the basic state (2.1) satisfies (for some positive �0; �1 2 R)

�. Op;bS/ > �0 > 0; �p. Op;bS/ > �1 > 0 in Q
C

T ; (2.3)

@t
bH C 1

@1
b̊

1

n
. Ow � r/bH � . Oh � r/ Ov C bHdiv Ou

o
D 0 in QC

T ; (2.4)

div Oh D 0 in Q�
T ; (2.5)

@t O' � OvN D 0; bHN D 0 on !T ; (2.6)

where all the “hat” values are determined like corresponding values for .U; H; '/, i.e.,

bH D .bH1@1
b̊

1;bH�2
;bH�3

/; Oh D . OHN ; OH2@1
b̊

1; OH3@1
b̊

1/; Oh D . OHN ; OH2@1
O̊

1; OH3@1
O̊
1/;

Op D Oq � j OH j2=2; OvN D Ov1 � Ov2@2
O	 � Ov3@3

O	; OHN D OH1 � OH2@2
O	 � OH3@3

O	;

and where188

Ou D . OvN ; Ov2@1
b̊

1; Ov3@1
b̊

1/; Ow D Ou � .@t
b	; 0; 0/:189

Note that (2.2) yields190

krt;x
b	kW 2;1.Œ0;T ��R3/ 6 C.K/;191

where rt;x D .@t ; r/ and C D C.K/ > 0 is a constant depending on K .192

It follows from (2.4) that the constraints193

div Oh D 0 in QC
T ; bH N D 0 on !T ; (2.7)194

are satisfied for the basic state (2.1) if they hold at t D 0 (see [21] for the proof). Thus, for the basic195

state we also require the fulfillment of conditions (2.7) at t D 0.196
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2.2 Linearized problem197

The linearized equations for (1.17), (1.18) read:

P
0.bU ;b	/.ıU; ı	/ WD d

d"
P.U"; 	"/j"D0 D f in QC

T ;

V
0.bH;b	/.ıH; ı	/ WD d

d"
V.H"; 	"/j"D0 D G

0 in Q�
T ;

B
0.bU ;bH; O'/.ıU; ıH; ı'/ WD d

d"
B.U"; H"; '"/j"D0 D g on !T ;

where U" D bU C " ıU , H" D bH C " ıH, '" D O' C " ı'; ı	 is constructed from ı' as in Lemma198

1.2 and 	" D O	 C " ı	 .199

Here we introduce the source terms f D .f1; : : : ; f8/, G0 D .�; �/, � D .�1; �2; �3/, and200

g D .g1; g2; g3/ to make the interior equations and the boundary conditions inhomogeneous.201

We compute the exact form of the linearized equations (below we drop ı):

P
0.bU ;b	/.U; 	/ D P.bU ;b	/U C C.bU ;b	/U �

˚
P.bU ;b	/	

	 @1
bU

@1
b̊

1

D f;

V
0.bH;b	/.H; 	/ D V.H;b	/ C

0
BBB@

rbH1 � r	

r �

0
@

0

�bH3

bH2

1
A � r	

1
CCCA D G

0;

B
0.bU ;bH; O'/.U; H; '/ D

0
B@

@t ' C Ov2@2' C Ov3@3' � vN

q � bH � H

HN � bH2@2' � bH3@3'

1
CA

jx1D0

D g;

where q WD p C bH � H , vN WD v1 � v2@2
b	 � v3@3

b	 , and the matrix C.bU ;b	/ is determined as

follows:

C.bU ;b	/Y D .Y; ryA0.bU //@t
bU C .Y; ry

eA1.bU ;b	//@1
bU

C.Y; ryA2.bU //@2
bU C .Y; ryA3.bU //@3

bU ;

.Y; ryA.bU // WD
8X

iD1

yi

�
@A.Y /

@yi

ˇ̌
ˇ̌
Y DbU

�
; Y D .y1; : : : ; y8/:

Since the differential operators P0.bU ;b	/ and V
0.bH;b	/ are first-order operators in 	 , as in [1] the202

linearized problem is rewritten in terms of the “good unknown”203

PU WD U � 	

@1
b̊

1

@1
bU ; PH WD H � 	

@1
b̊

1

@1
bH: (2.8)204

Taking into account assumptions (2.6) and omitting detailed calculations, we rewrite our linearized205
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equations in terms of the new unknowns (2.8):206

P.bU ;b	/ PU C C.bU ;b	/ PU C 	

@1
b̊

1

@1

˚
P.bU ;b	/

	
D f;

V. PH;b	/ C 	

@1
b̊

1

@1

˚
V.bH;b	/

	
D G

0:

(2.9)207

B
0.bU ;bH; O'/. PU ; PH; '/ WD B

0.bU ;bH; O'/.U; H; '/

D

0
B@

@t ' C Ov2@2' C Ov3@3' � PvN � ' @1 OvN

Pq � bH � PH C Œ@1 Oq�'

PHN � @2

�bH2'
�

� @3

�bH3'
�

1
CA

jx1D0

D g; (2.10)

where PvN D Pv1 � Pv2@2
O	 � Pv3@3

O	 , PHN D PH1 � PH2@2
O	 � PH3@3

O	 , and208

Œ@1 Oq� D .@1 Oq/jx1D0 � .bH � @1
bH/jx1D0:209

We used assumption (2.5) taken at x1 D 0 while writing down the last boundary condition in (2.10).210

As in [1, 5, 21], we drop the zeroth-order terms in 	 in (2.9) and consider the effective linear211

operators212

P
0
e.bU ;b	/ PU WD P.bU ;b	/ PU C C.bU ;b	/ PU D f:213

In the future nonlinear analysis the dropped terms in (2.9) should be considered as error terms. The

new form of our linearized problem for . PU ; PH; '/ reads:

bA0@t
PU C

3X

j D1

bAj @j
PU CbC PU D f in QC

T ; (2.11a)

r � PH D �; div Ph D � in Q�
T ; (2.11b)

@t ' D PvN � Ov2@2' � Ov3@3' C ' @1 OvN C g1; (2.11c)

Pq D bH � PH � Œ@1 Oq�' C g2; (2.11d)

PHN D @2

�bH2'
�

C @3

�bH3'
�

C g3 on !T ; (2.11e)

. PU ; PH; '/ D 0 for t < 0; (2.11f)

where

bA˛ DW A˛.bU /; ˛ D 0; 2; 3; bA1 DW eA1.bU ;b	/; bC WD C.bU ;b	/;

PH D . PH1@1
b̊

1; PH�2
; PH�3

/; Ph D . PHN ; PH2@1
b̊

1; PH3@1
b̊

1/;

PHN D PH1 � PH2@2
b	 � PH3@3

b	; PH�i
D PH1@i

b	 C PHi ; i D 2; 3:

The source term � of the first equation in (2.11b) should satisfy the constraint div � D 0. For214

the resolution of the elliptic problem (2.11b), (2.11e) the data �; g3 must satisfy the necessary215

compatibility condition216 Z

˝�

� dx D
Z

�

g3 dx0; (2.12)217
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which follows from the double integration by parts
Z

˝�

� dx D
Z

˝�

div Ph dx D
Z

�

Ph1 dx0 D
Z

�

f@2

�bH2'
�

C @3

�bH3'
�

C g3g dx0 D
Z

�

g3 dx0:

We assume that the source terms f; �; � and the boundary datum g vanish in the past and consider218

the case of zero initial data. We postpone the case of nonzero initial data to the nonlinear analysis219

(see e.g. [5, 21]).220

2.3 Reduction to homogeneous constraints in the “vacuum part”221

We decompose PH in (2.11) as PH D H0 C H00 (and accordingly PH D H0 C H00, Ph D h0 C h00), where222

H00 is required to solve for each t the elliptic problem223

r � H00 D �; div h00 D � in ˝�;

h00
1 D H00

N D g3 on �:
(2.13)224

The source term � of the first equation should satisfy the constraint div � D 0. For the resolution of225

(2.13) the data �; g3 must satisfy the necessary compatibility condition (2.12). By classical results226

of the elliptic theory we have the following result.227

LEMMA 2.1 Assume that the data .�; �; g3/ in (2.13), vanishing in appropriate way as x goes to228

infinity, satisfy the constraint div � D 0 and the compatibility condition (2.12). Then there exists a229

unique solution H00 of (2.13) vanishing at infinity.230

REMARK In the statement of the lemma above we intentionally leave unspecified the description231

of the regularity and the behavior at infinity of the data and consequently of the solution. This point232

will be faced in the forthcoming paper on the resolution of the nonlinear problem.233

Given H00, now we look for H0 such that234

r � H0 D 0; div h0 D 0 in Q�
T ;

q D bH � H0 � Œ@1 Oq�' C g0
2;

H0
N D @2

�bH2'
�

C @3

�bH3'
�

on !T ;

(2.14)235

where we have denoted g0
2 D g2 C bH � H00. If H00 solves (2.13) and H0 is a solution of (2.14) then236

PH D H0 C H00 clearly solves (2.11b), (2.11d), (2.11e).237

From (2.11), (2.14), the new form of the reduced linearized problem with unknowns (U; H0)

reads (we drop for convenience the 0 in H0; g0
2)

bA0@t
PU C

3X

j D1

bAj @j
PU CbC PU D f in QC

T ; (2.15a)

r � H D 0; div h D 0 in Q�
T ; (2.15b)

@t ' D PvN � Ov2@2' � Ov3@3' C ' @1 OvN C g1; (2.15c)

Pq D bH � H � Œ@1 Oq�' C g2; (2.15d)

HN D @2

�bH2'
�

C @3

�bH3'
�

on !T ; (2.15e)

. PU ; H; '/ D 0 for t < 0: (2.15f)
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2.4 Reduction to homogeneous constraints in the “plasma part”238

From problem (2.15) we can deduce nonhomogeneous equations associated with the divergence239

constraint div Ph D 0 and the “redundant” boundary conditions PHN jx1D0 D 0 for the nonlinear240

problem. More precisely, with reference to [21, Proposition 2] for the proof, we have the following.241

PROPOSITION 2.2 ( [21]) Let the basic state (2.1) satisfies assumptions (2.2)–(2.7). Then solutions

of problem (2.15) satisfy

div Ph D r in QC
T ; (2.16)

bH 2@2' C bH 3@3' � PHN � ' @1
bH N D R on !T : (2.17)

Here242

Ph D . PHN ; PH2@1
b̊

1; PH3@1
b̊

1/; PHN D PH1 � PH2@2
b	 � PH3@3

b	:243

The functions r D r.t; x/ and R D R.t; x0/, which vanish in the past, are determined by the source

terms and the basic state as solutions to the linear inhomogeneous equations

@t a C 1

@1
b̊

1

f Ow � ra C a div Oug D FH in QC
T ; (2.18)

@t R C Ov2@2R C Ov3@3R C .@2 Ov2 C @3 Ov3/ R D Q on !T ; (2.19)

where a D r=@1
b̊

1; FH D .div fH /=@1
b̊

1,244

fH D .fN ; f6; f7/; fN D f5 � f6@2
b	 � f7@3

b	; Q D
˚
@2

�bH 2g1

�
C @3

�bH 3g1

�
� fN

	ˇ̌
x1D0

:245

Let us reduce (2.15) to a problem with homogeneous boundary conditions (2.15c), (2.15d) (i.e.,

g1 D g2 D 0) and homogeneous constraints (2.16) and (2.17) (i.e., r D R D 0). More precisely,

we describe a “lifting” function as follows:

eU D . Qq; Qv1; 0; 0; eH; 0/;

where Qq D g2; Qv1 D �g1 on !T , and where eH solves the equation for PH contained in (2.15a) with246

Pv D 0:247

@t
eH C 1

@1
b̊

1

n
. Ow � r/eH � . Qh � r/ Ov C eHdiv Ow

o
D fH in QC

T ; (2.20)248

where Qh D .eH 1 �eH 2@2
O	 �eH 3@3

O	; eH 2; eH 3/, fH D .f5; f6; f7/. It is very important that, in view249

of (2.6), we have Ow1jx1D0 D 0; therefore the linear equation (2.20) does not need any boundary250

condition. Then the new unknown251

U \ D PU � eU ; H
\ D H (2.21)252

satisfies problem (2.15) with f D F , where253

F D .F1; : : : ; F8/ D f � P
0
e.bU ;b	/eU :254

In view of (2.20), FH D .F5; F6; F7/ D 0, and it follows from Proposition 2.2 that U \ satisfies255

(2.16) and (2.17) with r D R D 0.256
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Dropping for convenience the indices \ in (2.21), the new form of our reduced linearized problem

now reads

bA0@t U C
3X

j D1

bAj @j U CbCU D F in QC
T ; (2.22a)

r � H D 0; div h D 0 in Q�
T ; (2.22b)

@t ' D vN � Ov2@2' � Ov3@3' C ' @1 OvN ; (2.22c)

q D bH � H � Œ@1 Oq�'; (2.22d)

HN D @2

�bH2'
�

C @3

�bH3'
�

on !T ; (2.22e)

.U; H; '/ D 0 for t < 0: (2.22f)

and solutions should satisfy

div h D 0 in QC
T ; (2.23)

HN D bH 2@2' C bH 3@3' � ' @1
bH N on !T : (2.24)

All the notations here for U and H (e.g., h, H, h, etc.) are analogous to the corresponding ones for257

PU and PH introduced above.258

2.5 An equivalent formulation of (2.22)259

In the following analysis it is convenient to make use of different “plasma” variables and an

equivalent form of equations (2.22a). We define the matrix

O� D

0
B@

1 �@2
b	 �@3

b	
0 @1

b̊
1 0

0 0 @1
b̊

1

1
CA :

It follows that260

u D .vN ; v2@1
b̊

1; v3@1
b̊

1/ D O� v; h D .HN ; H2@1
b̊

1; H3@1
b̊

1/ D O� H: (2.25)261

Multiplying (2.22a) on the left side by the matrix

bR D

0
BB@

1 0 0 0

0T O� 03 0T

0T 03 O� 0T

0 0T 0T 1

1
CCA ;
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after some calculations we get the symmetric hyperbolic system for the new vector of unknowns262

U D .q; u; h; S/ (compare with (1.6), (2.22a)):263

@1
b̊

1

0
BB@

O�p= O� 0 �. O�p= O�/ Oh 0

0T O� Oa0 03 0T

�. O�p= O�/ OhT 03 Oa0 C . O�p= O�/ Oh ˝ Oh 0T

0 0 0 1

1
CCA @t

0
BB@

q

u

h

S

1
CCAC

0
BB@

0 r� 0 0

r 03 03 0T

0T 03 03 0T

0 0 0 0

1
CCA

0
BB@

q

u

h

S

1
CCA

C@1
b̊

1

0
BB@

. O�p= O�/ Ow � r r� �. O�p= O�/ Oh Ow � r 0

r O� Oa0 Ow � r �Oa0
Oh � r 0T

�. O�p= O�/ OhT Ow � r �Oa0
Oh � r . Oa0 C . O�p= O�/ Oh ˝ Oh/ Ow � r 0T

0 0 0 Ow � r

1
CCA

0
BB@

q

u

h

S

1
CCACbC0U D F ;

(2.26)264

where Oa0 is the symmetric and positive definite matrix

Oa0 D . O��1/T O��1;

with a new matrix bC0 in the zero-order term (whose precise form has no importance) and where we265

have set F D @1
b̊

1
bRF: We write system (2.26) in compact form as266

bA0@t U C
3X

j D1

.bAj C E1j C1/@j U CbC0
U D F ; (2.27)267

where268

E12 D

0
BBBBBBB@

0 1 0 0 � � � 0

1 0 0 0 � � � 0

0 0 0 0 � � � 0

0 0 0 0 � � � 0
:::

:::
:::

:::
:::

0 0 0 0 � � � 0

1
CCCCCCCA

; E13 D

0
BBBBBBB@

0 0 1 0 � � � 0

0 0 0 0 � � � 0

1 0 0 0 � � � 0

0 0 0 0 � � � 0
:::

:::
:::

:::
:::

0 0 0 0 � � � 0

1
CCCCCCCA

;269

270

E14 D

0
BBBBBBB@

0 0 0 1 � � � 0

0 0 0 0 � � � 0

0 0 0 0 � � � 0

1 0 0 0 � � � 0
:::

:::
:::

:::
:::

0 0 0 0 � � � 0

1
CCCCCCCA

:271

The formulation (2.27) has the advantage of the form of the boundary matrix of the system bA1CE12,272

with273

bA1 D 0 on !T ; (2.28)274

because Ow1 D Oh1 D 0, and E12 a constant matrix. Thus system (2.27) is symmetric hyperbolic with

characteristic boundary of constant multiplicity (see [18–20] for maximally dissipative boundary
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conditions). Thus, the final form of our reduced linearized problem is

bA0@t U C
3X

j D1

.bAj C E1j C1/@j U CbC0
U D F ; in QC

T ; (2.29a)

r � H D 0; div h D 0 in Q�
T ; (2.29b)

@t ' D u1 � Ov2@2' � Ov3@3' C ' @1 OvN ; (2.29c)

q D bH � H � Œ@1 Oq�'; (2.29d)

HN D @2

�bH2'
�

C @3

�bH3'
�

on !T ; (2.29e)

.U; H; '/ D 0 for t < 0; (2.29f)

under the constraints (2.23), (2.24).275

3. Function spaces276

Now we introduce the main function spaces to be used in the following. Let us denote277

Q˙ WD Rt � ˝˙; ! WD Rt � �: (3.1)278

3.1 Weighted Sobolev spaces279

For  > 1 and s 2 R, we set

�s;.�/ WD .2 C j�j2/s=2

and, in particular, �s;1 WD �s.280

Throughout the paper, for real  > 1 and n > 2, H s
 .Rn/ will denote the Sobolev space of order s,281

equipped with the �depending norm jj � jjs; defined by282

jjujj2s; WD .2�/�n

Z

Rn

�2s;.�/jbu.�/j2d� ; (3.2)283

bu being the Fourier transform of u. The norms defined by (3.2), with different values of the

parameter  , are equivalent each other. For  D 1 we set for brevity jj � jjs WD jj � jjs;1 (and,

accordingly, the standard Sobolev space H s.Rn/ WD H s
1 .Rn/). For s 2 N, the norm in (3.2) turns

to be equivalent, uniformly with respect to  , to the norm jj � jjH s
 .Rn/ defined by

jjujj2
H s

 .Rn/
WD

X

j˛j6s

2.s�j˛j/jj@˛ujj2
L2.Rn/

:

For functions defined over Q�
T we will consider the weighted Sobolev spaces H m

 .Q�
T / equipped

with the  -depending norm

jjujj2H m
 .Q�

T
/ WD

X

j˛j6m

2.m�j˛j/jj@˛ujj2
L2.Q�

T
/
:

Similar weighted Sobolev spaces will be considered for functions defined on Q�.284
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3.2 Conormal Sobolev spaces285

Let us introduce some classes of function spaces of Sobolev type, defined over the half-space QC
T .286

For j D 0; : : : ; 3, we set287

Z0 D @t ; Z1 WD �.x1/@1 ; Zj WD @j ; for j D 2; 3 ;288

where �.x1/ 2 C 1.RC/ is a monotone increasing function such that �.x1/ D x1 in a neighborhood289

of the origin and �.x1/ D 1 for x1 large enough. Then, for every multi-index ˛ D .˛0; : : : ; ˛3/ 2290

N
4, the conormal derivative Z˛ is defined by291

Z˛ WD Z
˛0

0 : : : Z
˛3

3 I292

we also write @˛ D @
˛0

0 : : : @
˛3

3 for the usual partial derivative corresponding to ˛.293

Given an integer m > 1, the conormal Sobolev space H m
tan.QC

T / is defined as the set of294

functions u 2 L2.QC
T / such that Z˛u 2 L2.QC

T /, for all multi-indices ˛ with j˛j 6 m (see295

[15, 16]). Agreeing with the notations set for the usual Sobolev spaces, for  > 1, H m
tan; .QC

T / will296

denote the conormal space of order m equipped with the  -depending norm297

jjujj2
H m

tan;.Q
C

T
/

WD
X

j˛j6m

2.m�j˛j/jjZ˛ujj2
L2.Q

C

T
/

(3.3)298

and we have H m
tan.QC

T / WD H m
tan;1.QC

T /. Similar conormal Sobolev spaces with  -depending299

norms will be considered for functions defined on QC.300

We will use the same notation for spaces of scalar and vector-valued functions.301

4. The main result302

We are now in a position to state the main result of this paper. Recall that U D .q; u; h; S/, where303

u and h were defined in (2.25).304

MAIN THEOREM 4.1 Let T > 0. Let the basic state (2.1) satisfies assumptions (2.2)–(2.7) and305

jbH � bHj > ı > 0 on !T ; (4.1)306

where ı is a fixed constant. There exists 0 > 1 such that for all  > 0 and for all F 2
H 1

tan; .QC
T /, vanishing in the past, namely for t < 0, problem (2.29) has a unique solution

.U ; H ; ' / 2 H 1
tan; .QC

T / � H 1
 .Q�

T / � H 1
 .!T / with trace .q ; u1 ; h1 /j!T

2 H
1=2
 .!T /,

H j!T
2 H

1=2
 .!T /. Moreover, the solution obeys the a priori estimate



�
kU k2

H 1
tan;.Q

C

T
/

C kH k2

H 1
 .Q�

T
/

C k.q ; u1 ; h1 /j!T
k2

H
1=2
 .!T /

C kH j!T
k2

H
1=2
 .!T /

�

C 2k' k2

H 1
 .!T /

6
C


kF k2

H 1
tan;.Q

C

T
/
; (4.2)

where we have set U D e�t U; H D e�t H; ' D e�t ' and so on. Here C D C.K; T; ı/ >307

0 is a constant independent of the data F and  .308
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The a priori estimate (4.2) improves the similar estimate firstly proved in [23].309

REMARK Strictly speaking, the uniqueness of the solution to problem (2.29) follows from the a310

priori estimate (42) derived in [23], provided that our solution belongs to H 2. We do not present311

here a formal proof of the existence of solutions with a higher degree of regularity (in particular,312

H 2) and postpone this part to the future work on the nonlinear problem (see e.g. [5, 21]).313

The remainder of the paper is organized as follows. In Section 5 we introduce a fully hyperbolic314

regularization of the coupled hyperbolic-elliptic system (2.29). In Section 6 we show an a priori315

estimate of solutions uniform in the small parameter " of regularization. In Section 7 we show316

the well-posedness of the hyperbolic regularization and in Section 8 we conclude the proof of317

Theorem 4.1 by passing to the limit as " ! 0. Sections 9, 10, and 11 are devoted to the proof318

of some technical results.319

5. Hyperbolic regularization of the reduced problem320

The problem (2.29) is a nonstandard initial-boundary value problem for a coupled hyperbolic-321

elliptic system. For its resolution we introduce a “hyperbolic” regularization of the elliptic system322

(2.29b). We will prove the existence of solutions for such regularized problem by referring to323

the well-posedness theory for linear symmetric hyperbolic systems with characteristic boundary324

and maximally nonnegative boundary conditions [19, 20]. After showing suitable a priori estimate325

uniform in ", we will pass to the limit as " ! 0, to get the solution of (2.29).326

The regularization of problem (2.29) is inspired by a corresponding problem in relativistic MHD327

[24]. In our non-relativistic case the displacement current .1=c/@t E is neglected in the vacuum328

Maxwell equations, where c is the speed of light and E is the electric field. Now, in some sense, we329

restore this neglected term. Namely, we consider a “hyperbolic” regularization of the elliptic system330

(2.29b) by introducing a new auxiliary unknown E" which plays a role of the vacuum electric field,331

and the small parameter of regularization " is associated with the physical parameter 1=c. We also332

regularize the second boundary condition in (2.29d) and introduce two boundary conditions for the333

unknown E".334

Let us denote V " D .H"; E"/. Given a small parameter " > 0, we consider the following

regularized problem for the unknown .U"; V "; '"/:

bA0@t U
" C

3X

j D1

.bAj C E1j C1/@j U
" CbC0

U
" D F in QC

T ; (5.1a)

"@th
" C r � E" D 0; "@t e

" � r � H" D 0 in Q�
T ; (5.1b)

@t '
" D u"

1 � Ov2@2'" � Ov3@3'" C '"@1 OvN ; (5.1c)

q" D bH � H
" � Œ@1 Oq�'" � "bE � E"; (5.1d)

E"
�2

D " @t .bH3'"/ � " @2.bE1'"/; (5.1e)

E"
�3

D �" @t .bH2'"/ � " @3.bE1'"/ on !T ; (5.1f)

.U"; V "; '"/ D 0 for t < 0; (5.1g)
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where

E" D .E"
1; E"

2; E"
3/; bE D .bE1;bE2;bE3/; E" D .E"

1@1
b̊

1; E"
�2

; E"
�3

/;

e" D .E"
N ; E"

2@1
b̊

1; E"
3@1

b̊
1/; E"

N D E"
1 � E"

2@2
b	 � E"

3@3
b	;

E"
�k

D E"
1@k

b	 C E"
k; k D 2; 3;

the coefficients bEj are given functions which will be chosen later on. All the other notations for H"
335

(e.g., H", h") are analogous to those for H.336

If 	 D 0; ˚1 D x1, then h" D H" D H" ; e" D E" D E", and when " D 1 (5.1b) turns out to be337

nothing else than the Maxwell equations.338

It is noteworthy that solutions to problem (5.1) satisfy339

div h" D 0 in QC
T ; (5.2)340

div h" D 0; div e" D 0 in Q�
T ; (5.3)341

h"
1 D bH 2@2'" C bH 3@3'" � '"@1

bH N ; (5.4)342

H
"
N D @2

�bH2'"
�

C @3

�bH3'"
�

on !T ; (5.5)343

because (5.2)–(5.5) are just restrictions on the initial data which are automatically satisfied in view344

of (5.1g). Indeed, the derivation of (5.2) and (5.4) is absolutely the same as that of (2.23) and345

(2.24). Equations (5.3) trivially follow from (5.1b), (5.1g). Moreover, condition (5.5) is obtained by346

considering the first component of the first equation in (5.1b) at x1 D 0 and taking into account347

(5.1e)–(5.1g).348

5.1 An equivalent formulation of (5.1)349

In the following analysis it is convenient to make use of a different formulation of the approximating350

problem (5.1), as far as the vacuum part is concerned.351

First we introduce the matrices which are coefficients of the space derivatives in (5.1b) (for352

" D 1 the matrices below are those for the vacuum Maxwell equations):353

B"
1 D "�1

0
BBBBBB@

0 0 0 0 0 0

0 0 0 0 0 �1

0 0 0 0 1 0

0 0 0 0 0 0

0 0 1 0 0 0

0 �1 0 0 0 0

1
CCCCCCA

; B"
2 D "�1

0
BBBBBB@

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 �1 0 0

0 0 �1 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

1
CCCCCCA

;354

355

B"
3 D "�1

0
BBBBBB@

0 0 0 0 �1 0

0 0 0 1 0 0

0 0 0 0 0 0

0 1 0 0 0 0

�1 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCA

:356
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Then system (5.1b) can be written in terms of the “curved” unknown W " D .H";E"/ as357

B0@t W
" C

3X

j D1

B"
j @j W " C B4W " D 0; (5.6)358

where359

B0 D .@1
b̊

1/�1 KKT > 0; K D I2 ˝ O�; B4 D @t B0;360

and the matrices B0 and K are found from the relations361

h" D O� H
" D .@1

b̊
1/�1 O� O�T H"; e" D O� E" D .@1

b̊
1/�1 O� O�T E";362

so that �
h"

e"

�
D .@1

b̊
1/�1

� O� O�T 03

03 O� O�T

��
H"

E"

�
D B0W ":

System (5.6) is symmetric hyperbolic. The convenience of the use of variables .H";E"/ rather than363

.H"; E"/ stays mainly in that the matrices B"
j of (5.6), containing the singular multiplier "�1, are364

constant.365

Finally, we write the boundary conditions (5.1c)–(5.1f) in terms of .U"; W "/, where we observe366

that (recalling that @1
b̊

1 D 1 on !T ):367

bH � H
" D bHN H

"
1 C bH2H

"
�2

C bH3H
"
�3

D Oh � H";

bE � E" D bEN E"
1 C bE2E"

�2
C bE3E"

�3
D Oe � E":

(5.7)368

Concerning the first line above in (5.7) we notice that Oh1 D bHN D 0 on !T , so that H"
1 does not369

appear in the boundary condition.370

From (5.6), (5.7) we get the new formulation of problem (5.1) for the unknowns .U"; W "/:

bA0@t U
" C

3X

j D1

.bAj C E1j C1/@j U
" CbC0

U
" D F ; in QC

T ; (5.8a)

B0@t W
" C

3X

j D1

B"
j @j W " C B4W " D 0 in Q�

T ; (5.8b)

@t '
" C Ov2@2'" C Ov3@3'" � '"@1 OvN � u"

1 D 0; (5.8c)

q" C Œ@1 Oq�'" � Oh � H" C " Oe � E" D 0; (5.8d)

E"
2 � " @t .bH3'"/ C " @2.bE1'"/ D 0; (5.8e)

E"
3 C " @t .bH2'"/ C " @3.bE1'"/ D 0 on !T ; (5.8f)

.U"; W "; '"/ D 0 for t < 0: (5.8g)

From (5.2)–(5.5) we get that solutions .U"; W "/ to problem (5.8) satisfy371

div h" D 0 in QC
T ; (5.9)372

div h" D 0; div e" D 0 in Q�
T ; (5.10)373

h"
1 D bH 2@2'" C bH 3@3'" � '"@1

bH N ; (5.11)374

h"
1 D @2

�bH2'"
�

C @3

�bH3'"
�

on !T : (5.12)375
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REMARK The invertible part of the boundary matrix of a system allows to control the trace at376

the boundary of the so-called noncharacteristic component of the vector solution. Thus, with the377

system (5.8a) (whose boundary matrix is �E12, because of (2.28)) we have the control of q"; u"
1 at378

the boundary; therefore the components of U" appearing in the boundary conditions (5.8c), (5.8d)379

are well defined.380

The same holds true for (5.8b) where we can get the control of H"
2;H"

3;E"
2;E"

3. The control of381

E"
1 (which appears in (5.8d)) is not given from the system (5.8b), but from the constraint (5.10), as382

will be shown later on. We recall that H"
1 does not appear in the boundary condition (5.8d) because383

Oh1 D OHN D 0.384

Before studying problem (5.8) (or equivalently (5.1)), we should be sure that the number of385

boundary conditions is in agreement with the number of incoming characteristics for the hyperbolic386

systems (5.8). Since one of the four boundary conditions (5.8c)–(5.8f) is needed for determining the387

function '".t; x0/, the total number of “incoming” characteristics should be three. Let us check that388

this is true.389

PROPOSITION 5.1 If 0 < " < 1 system (5.8a) has one incoming characteristic for the boundary !T390

of the domain QC
T . If " > 0 is sufficiently small, system (5.8b) has two incoming characteristics for391

the boundary !T of the domain Q�
T .392

Proof. Consider first system (5.8a). In view of (2.28), the boundary matrix on !T is �E12 which has393

one negative (incoming in the domain QC
T ) and one positive eigenvalue, while all other eigenvalues394

are zero.395

Now consider system (5.8b). The boundary matrix B"
1 has eigenvalues �1;2 D �"�1; �3;4 D396

"�1; �5;6 D 0: Thus, system (5.8b) has indeed two incoming characteristics in the domain Q�
T397

(�1;2 < 0).398

6. Basic a priori estimate for the hyperbolic regularized problem399

Our goal now is to justify rigorously the formal limit " ! 0 in (5.1)–(5.5), or alternatively in (5.8)–400

(5.12). To this end we will prove the existence of solutions to problem (5.8)–(5.12) and a uniform401

in " a priori estimate. This work will be done in several steps.402

6.1 The boundary value problem403

Assuming that all coefficients and data appearing in (5.8) are extended for all times to the whole

real line, let us consider the boundary value problem (recall the definition of Q˙; ! in (3.1))

bA0@t U
" C

3X

j D1

.bAj C E1j C1/@j U
" CbC0

U
" D F ; in QC; (6.1a)

B0@t W
" C

3X

j D1

B"
j @j W " C B4W " D 0 in Q�; (6.1b)

@t '
" C Ov2@2'" C Ov3@3'" � '"@1 OvN � u"

1 D 0; (6.1c)

q" C Œ@1 Oq�'" � Oh � H" C " Oe � E" D 0; (6.1d)

E"
2 � " @t .bH3'"/ C " @2.bE1'"/ D 0; (6.1e)
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E"
3 C " @t .bH2'"/ C " @3.bE1'"/ D 0 on !; (6.1f)

.U"; W "; '"/ D 0 for t < 0: (6.1g)

In this section we prove a uniform in " a priori estimate of smooth solutions of (6.1).404

THEOREM 6.1 Let the basic state (2.1) satisfies assumptions (2.2)–(2.7) and (4.1) for all times.

There exist "0 > 0; 0 > 1 such that if 0 < " < "0 and  > 0 then all sufficiently smooth

solutions .U"; W "; '"/ of problem (6.1) obey the estimate


�
kU

"
 k2

H 1
tan;.QC/

C kW "
 k2

H 1
 .Q�/

C k.q"
 ; u"

1 ; h"
1 /j!k2

H
1=2
 .!/

C kW "
 j!k2

H
1=2
 .!/

�

C 2k'"
 k2

H 1
 .!/

6
C


kF k2

H 1
tan;.QC/

; (6.2)

where we have set U"
 D e�t U"; W "

 D e�t W "; '"
 D e�t '" and so on, and where C D405

C.K; ı/ > 0 is a constant independent of the data F and the parameters ";  .406

Passing to the limit " ! 0 in this estimate will give the a priori estimate (4.2).407

Since problem (6.1) looks similar to a corresponding one in relativistic MHD [24], for the408

deduction of estimate (6.2) we use the same ideas as in [24]. On the one hand, we even have409

an advantage, in comparison with the problem in [24], because the coefficients bEj in (6.1b),410

(6.1d)–(6.1f) are still arbitrary functions whose choice will be crucial to make boundary conditions411

dissipative. On the other hand, we should be more careful with lower-order terms than in [24],412

because we must avoid the appearance of terms with "�1 (otherwise, our estimate will not be413

uniform in "). Also for this reason we are using the variables .U"; W "/ rather than .U "; V "/.414

For the proof of (6.2) we will need a secondary symmetrization of the transformed Maxwell415

equations in vacuum (5.1b), (5.3).416

6.2 A secondary symmetrization417

In order to show how to get the secondary symmetrization, for the sake of simplicity we consider

first a planar unperturbed interface, i.e., the case O' � 0. For this case (5.1b), (5.3) become

@t V
" C

3X

j D1

B"
k@kV " D 0; (6.3)

div H
" D 0; div E" D 0: (6.4)

We write for system (6.3) the following secondary symmetrization (for a similar secondary418

symmetrization of the Maxwell equations in vacuum see [24]):419

B"
0@t V

" C
3X

j D1

B"
0B"

j @j V " C R1div H
" C R2div E" D B"

0@t V
" C

3X

j D1

B"
j @j V " D 0; (6.5)420
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where

B"
0 D

0
BBBBBB@

1 0 0 0 "�3 �"�2

0 1 0 �"�3 0 "�1

0 0 1 "�2 �"�1 0

0 �"�3 "�2 1 0 0

"�3 0 �"�1 0 1 0

�"�2 "�1 0 0 0 1

1
CCCCCCA

; (6.6)

B"
1 D

0
BBBBBB@

�1 �2 �3 0 0 0

�2 ��1 0 0 0 �"�1

�3 0 ��1 0 "�1 0

0 0 0 �1 �2 �3

0 0 "�1 �2 ��1 0

0 �"�1 0 �3 0 ��1

1
CCCCCCA

; B"
2 D

0
BBBBBB@

��2 �1 0 0 0 "�1

�1 �2 �3 0 0 0

0 �3 ��2 �"�1 0 0

0 0 �"�1 ��2 �1 0

0 0 0 �1 �2 �3

"�1 0 0 0 �3 ��2

1
CCCCCCA

;

B"
3 D

0
BBBBBB@

��3 0 �1 0 �"�1 0

0 ��3 �2 "�1 0 0

�1 �2 �3 0 0 0

0 "�1 0 ��3 0 �1

�"�1 0 0 0 ��3 �2

0 0 0 �1 �2 �3

1
CCCCCCA

; R1 D

0
BBBBBB@

�1

�2

�3

0

0

0

1
CCCCCCA

; R2 D

0
BBBBBB@

0

0

0

�1

�2

�3

1
CCCCCCA

:

The arbitrary functions �i .t; x/ will be chosen in appropriate way later on. It may be useful to notice421

that system (6.5) can also be written as422

.@t H
" C 1

"
r � E"/ � E� � ."@t E

" � r � H
"/ C E� div H

" D 0;

.@t E
" � 1

"
r � H

"/ C E� � ."@t H
" C r � E"/ C E� div E" D 0;

(6.7)423

with the vector-function E� D .�1; �2; �3/. The symmetric system (6.5) (or (6.7)) is hyperbolic if424

B"
0 > 0, i.e. for425

"jE�j < 1: (6.8)426

The last inequality is satisfied for any given � and small ". We compute2
427

det.B"
1/ D �2

1

�
jE�j2 � 1=�2

�2
:428

Therefore the boundary is noncharacteristic for system (6.5) (or (6.7)) provided (6.8) and �1 6D 0429

hold.430

Consider now a nonplanar unperturbed interface, i.e., the general case when O' is not identically431

zero. Similarly to (6.5), from (5.6), (5.3) we get the secondary symmetrization432

KB"
0K�1

�
B0@t W

" C
3X

j D1

B"
j @j W " C B4W "

�
C 1

@1
b̊

1

K
�
R1div h" C R2div e"

�
D 0:433

2 The manual computation of the determinants is definitely too long. Here we used a free program for symbolic calculus,

with the help of PS’s son Martino.
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We write this system as434

M "
0 @t W

" C
3X

j D1

M "
j @j W " C M "

4 W " D 0; (6.9)435

where436

M "
0 D 1

@1
b̊

1

KB"
0KT > 0; M "

j D 1

@1
b̊

1

KB"
j KT .j D 2; 3/;

M "
1 D 1

@1
b̊

1

KeB"
1KT; eB"

1 D 1

@1
b̊

1

�
B"

1 �
3X

kD2

B"
k@k

b	
�
;

M "
4 D K

�
B"

0@t C eB"
1@1 C B"

2@2 C B"
3@3 C B"

0B4

� � 1

@1
b̊

1

KT

�
:

(6.10)437

System (6.9) is symmetric hyperbolic provided that (6.8) holds. We compute438

det.M "
1 / D

�
1 C .@2 O'/2 C .@3 O'/2

�2
.�1 � �2@2 O' � �3@3 O'/2

�
jE�j2 � 1=�2

�2
; (6.11)439

and so the boundary is noncharacteristic for system (6.9) if and only if (6.8) holds and �1 6D440

�2@2 O' C �3@3 O'. System (6.9) originates from a linear combination of equations (5.1b) similar to441

(6.7), namely from442

.@th
" C 1

"
r � E"/ � O�

�
E� � O��1."@te

" � r � H"/
�

C O� E�
@1
b̊

1

divh" D 0;

.@t e
" � 1

"
r � H"/ C O�

�
E� � O��1."@th

" C r � E"/
�

C O� E�
@1
b̊

1

div e" D 0:

(6.12)443

We need to know which is the behavior of the above matrices in (6.10) w.r.t. " as " ! 0. In view444

of this, let us denote a generic matrix which is bounded w.r.t. " by O.1/. Looking at (6.12) we445

immediately find446

M "
0 D O.1/; M "

j D B"
j C O.1/ .j D 1; 2; 3/; M "

4 D O.1/: (6.13)447

As the matrices M "
0 and M "

4 do not contain the multiplier "�1, their norms are bounded as " ! 0.448

Recalling that the matrices B"
j are constant, we deduce as well that all the possible derivatives (with449

respect to t and xj ) of the matrices M "
j have bounded norms as " ! 0.450

6.3 Proof of Theorem 6.1451

For the proof of our basic a priori estimate (6.2) we will apply the energy method to the symmetric452

hyperbolic systems (6.1a) and (6.9). In the sequel 0 > 1 denotes a generic constant sufficiently453

large which may increase from formula to formula, and C is a generic constant that may change454

from line to line.455

First of all we provide some preparatory estimates. In particular, to estimate the weighted456

conormal derivative Z1 D �@1 of U" (recall the definition (3.3) of the  -dependent norm of457

H 1
tan; ) we do not need any boundary condition because the weight � vanishes on !. Applying458

to system (6.1a) the operator Z1 and using standard arguments of the energy method,3 yields the459

3 We multiply Z1(6.1a) by e�t Z1U"
 and integrate by parts over QC, then we use the Cauchy-Schwarz inequality.
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inequality460

kZ1U
"
 k2

L2.QC/
6

C



n
kF k2

H 1
tan;.QC/

C kU
"
 k2

H 1
tan;.QC/

C kE12@1U
"
 k2

L2.QC/

o
; (6.14)461

for  > 0. On the other hand, directly from the equation (6.1a) we have462

kE12@1U
"
 k2

L2.QC/
6 C

˚
kF k2

L2.QC/
C kU

"
 k2

H 1
tan;.QC/

	
; (6.15)463

where C is independent of ";  . Thus from (6.14), (6.15) we get464

kZ1U
"
 k2

L2.QC/
6

C



˚
kF k2

H 1
tan;.QC/

C kU
"
 k2

H 1
tan;.QC/

	
;  > 0; (6.16)465

where C is independent of ";  . Furthermore, using the special structure of the boundary matrix in466

(6.1a) (see (2.28)) and the divergence constraint (5.9), we may estimate the normal derivative of the467

noncharacteristic part U"
n D e�t .q"; u"

1; h"
1/ of the “plasma” unknown U"

 :468

k@1U
"
n k2

L2.QC/
6 C

˚
kF k2

L2.QC/
C kU

"
 k2

H 1
tan;.QC/

	
; (6.17)469

where C is independent of ";  . In a similar way we wish to express the normal derivative of W "
470

through its tangential derivatives. Here it is convenient to use system (6.1b) rather than (6.9). We471

multiply (6.1b) by " and find from the obtained equation an explicit expression for the normal472

derivatives of H"
2;H"

3;E"
2;E"

3. An explicit expression for the normal derivatives of H"
1;E"

1 is found473

through the divergence constraints (5.10). Thus we can estimate the normal derivatives of all the474

components of W " through its tangential derivatives:475

k@1W "
 k2

L2.Q�/ 6 C
n
2kW "

 k2
L2.Q�/ C k@t W

"
 k2

L2.Q�/ C
3X

kD2

k@kW "
 k2

L2.Q�/

o
; (6.18)476

where C does not depend on " and  , for all " 6 "0.477

As for the front function '� we easily obtain from (6.1c) the L2 estimate478

k'"
 k2

L2.!/
6

C


ku"

1 k2
L2.!/

;  > 0; (6.19)479

where C is independent of  . Furthermore, thanks to our basic assumption (4.1)4 we can resolve480

(5.11), (5.12) and (6.1c) for the space-time gradient rt;x0'"
 D .@t '

"
 ; @2'"

 ; @3'"
 /:481

rt;x0'"
 D Oa1h"

1 C Oa2h
"
1 C Oa3u"

1 C Oa4'"
 C  Oa5'"

 ; (6.20)482

where the vector-functions Oa˛ D a˛.bU j! ;bHj!/ of coefficients can be easily written in explicit form.483

From (6.20) we get484

krt;x0'"
 kL2.!/ 6 C

�
kU

"
n j!kL2.!/ C kW "

 j!kL2.!/ C k'"
 kL2.!/

�
: (6.21)485

4 Under the conditions OHN D OHN D 0 one has j OH � OHj2 D . OH2
OH3 � OH3

OH2/2hr0 O'i2 on !, where we have set

hr0 O'i WD .1 C j@2 O'j2 C j@3 O'j2/1=2.
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Now we prove a L2 energy estimate for .U"; W "/. We multiply (6.1a) by e�t U"
 and (6.9) by

e�t W "
 , integrate by parts over Q˙, then we use the Cauchy-Schwarz inequality. We easily obtain



Z

QC

.bA0U
"
 ; U

"
 / dxdt C 

Z

Q�

.M "
0 W "

 ; W "
 /dxdt C

Z

!

A
" dx0dt

6 C
n 1


kF k2

L2.QC/
C kU

"
 k2

L2.QC/
C kW "

 k2
L2.Q�/

o
; (6.22)

where we have denoted486

A
" D �1

2
.E12U

"
 ; U

"
 /j! C 1

2
.M "

1 W "
 ; W "

 /j! :487

Thanks to the properties of the matrices M "
˛ (˛ D 0; 4) described in (6.13), the constant C in (6.22)488

is uniformly bounded in " and  . Let us calculate the quadratic form A" for the following choice of489

the functions �j in the secondary symmetrization5:490

�1 D Ov2@2 O' C Ov3@3 O'; �k D Ovk ; k D 2; 3: (6.23)491

After long calculations we get (for simplicity we drop the index  )492

A
" D �q"u"

1 C "�1.H"
3E

"
2 � H"

2E
"
3/ C . Ov2H

"
2 C Ov3H

"
3/H"

N C . Ov2E
"
2 C Ov3E

"
3/E"

N ; on !: (6.24)493

Now we insert the boundary conditions (5.12), (6.1c)–(6.1f) in the quadratic form A", recalling also494

OHN j! D 0 and noticing that495

Oe � E" D bE1E"
N C bE�2

E"
2 C bE�3

E"
3 D OE � e":496

Again after long calculations we get

A
" D

�bE1 C Ov2
bH3 � Ov3

bH2

��
"E"

N @t '
" C H"

2@3'" � H"
3@2'"

�

C
�
"bE�2

E"
2 C "bE�3

E"
3

��
@t '

" C Ov2@2'" C Ov3@3'"
�

C '"
˚

� q" C Œ@1 Oq� u"
1 � @1 OvN .q" C Œ@1 Oq�'"/ C . OH3 C @t

OH3 � @2
OE1/.H"

3 C " Ov2E"
N /

C . OH2 C @t
OH2 C @3

OE1/.H"
2 � " Ov3E"

N / C .@2
OH2 C @3

OH3/. Ov2H
"
2 C Ov3H

"
3/
	

on ! : (6.25)

Thanks to the multiplicative factor " in the boundary condition (6.1e), (6.1f), the critical term with

the multiplier "�1 in (6.24) has been dropped out. We make the following choice of the coefficients
bEj in the boundary conditions (6.1d)–(6.1f):

bE D bH � E�;

where E� is that of (6.23). For this choice497

bE1 C Ov2
bH3 � Ov3

bH2 D 0; bE�2
D 0; bE�3

D 0; (6.26)498

5 Notice that the choice (6.23) makes the boundary characteristic, see (6.11).
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and this leaves us with

A
" D '"

˚
� .q" C Œ@1 Oq�'"/ C Œ@1 Oq� .u"

1 C '"@1 OvN / C @1 OvN q"

C . OH3 C @t
OH3 � @2

OE1/.H"
3 C " Ov2E"

N / C . OH2 C @t
OH2 C @3

OE1/.H"
2 � " Ov3E"

N /

C .@2
OH2 C @3

OH3/. Ov2H
"
2 C Ov3H

"
3/
	

on ! :

Then we write in more convenient form the terms with coefficient  substituting from (6.1d)499

�.q" C Œ@1 Oq�'"/ C OH2H
"
2 C OH3H

"
3 D " Oe � E";500

and we notice that501

Oe � E" C . Ov2
OH3 � Ov3

OH2/E"
N D OE � e" C . Ov2

OH3 � Ov3
OH2/e"

1 D 0; on !;502

again by (6.26). Thus we get

A
" D '"

˚
Œ@1 Oq� .u"

1 C '"@1 OvN / C @1 OvN q"

C .@t
OH3 � @2

OE1/.H"
3 C " Ov2E"

N / C .@t
OH2 C @3

OE1/.H"
2 � " Ov3E"

N /

C .@2
OH2 C @3

OH3/. Ov2H
"
2 C Ov3H

"
3/
	

on ! : (6.27)

From (6.22), (6.27) we obtain (we restore the index  )


�
kU

"
 k2

L2.QC/
C kW "

 k2
L2.Q�/

�
6

C



n
kF k2

L2.QC/
C kU

"
n j!k2

L2.!/
C kW "

 j!k2
L2.!/

o

C C
�
kU

"
 k2

L2.QC/
C kW "

 k2
L2.Q�/

�
C k'"

 k2
L2.!/

; (6.28)

where C is independent of ";  . Thus if 0 is large enough we obtain from (6.19), (6.28) the

inequality


�
kU

"
 k2

L2.QC/
C kW "

 k2
L2.Q�/

�

6
C



n
kF k2

L2.QC/
C kU

"
n j!k2

L2.!/
C kW "

 j!k2
L2.!/

o
; 0 < " < "0;  > 0; (6.29)

where C is independent of ";  .503

Now we derive the a priori estimate of tangential derivatives. Differentiating systems (6.1a) and

(6.9) with respect to x0 D t , x2 or x3, using standard arguments of the energy method, and applying

(6.17), (6.18), gives the energy inequality



Z

QC

.bA0Z`U "
 ; Z`U "

 / dxdt C 

Z

Q�

.M "
0 Z`W "

 ; Z`W "
 /dxdt C

Z

!

A
"
` dx0dt

6
C



n
kF k2

H 1
tan; .QC/

C kU
"
 k2

H 1
tan;.QC/

C kW "
 k2

H 1
 .Q�/

o
; (6.30)

where ` D 0; 2; 3, and where we have denoted

A
"
` D �1

2
.E12Z`U "

 ; Z`U "
 /j! C 1

2
.M "

1 Z`W "
 ; Z`W "

 /j! :
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Thanks to the properties of the matrices M "
˛ (˛ D 0; 4) described in (6.13), the constant C in (6.30)

is uniformly bounded in " and  . We repeat for A
"
` the calculations leading to (6.27) for A

". Clearly,

for the same choices as in (6.23) and (6.26) we obtain (for simplicity we drop again the index  )

A
"
` D Z`'"

˚
Œ@1 Oq� .Z`u"

1 C Z`'"@1 OvN / C @1 OvN Z`q"

C .@t
OH3 � @2

OE1/.Z`H
"
3 C " Ov2Z`E"

N / C .@t
OH2 C @3

OE1/.Z`H
"
2 � " Ov3Z`E"

N /

C .@2
OH2 C @3

OH3/. Ov2Z`H
"
2 C Ov3Z`H

"
3/
	

C l:o:t:; on !; (6.31)

where l.o.t. is the sum of lower-order terms. Using (6.20) we reduce the above terms to those like504

Oc h"
1Z`u"

1; Oc h"
1Z`'"; Oc h"

1Z`H
"
j ; Oc h"

1Z`E
"
j ; : : : on !;505

terms as above with h"
1; u"

1 instead of h"
1, or even “better” terms like506

 Oc'"Z`u"
1;  Oc'"Z`'":507

Here and below Oc is the common notation for a generic coefficient depending on the basic state508

(2.1). By integration by parts such “better” terms can be reduced to the above ones and terms of509

lower order.510

The terms like Oc h"
1Z`u"

1jx1D0
are estimated by passing to the volume integral and integrating

by parts:

Z

!

Oc h"
1Z`u"

1jx1D0 dx0 dt

D �
Z

QC

@1

�
Qch"

1Z`u"
1

�
dx dt

D
Z

QC

n
.Z` Qc/h"

1.@1u"
1/ C Qc.Z`h"

1/@1u"
1 � .@1 Qc/h"

1Z`u"
1 � Qc.@1h"

1/Z`u"
1

o
dx dt;

where Qcjx1D0 D Oc. Estimating the right-hand side by the Hölder’s inequality and (6.17) gives511

ˇ̌
ˇ̌
Z

!

Oc h"
1Z`u"

1jx1D0 dx0 dt

ˇ̌
ˇ̌ 6 C

n
kF k2

L2.QC/
C kU

"
 k2

H 1
tan;.QC/

o
: (6.32)512

In the same way we estimate the other similar terms Oc h"
1Z`H

"
j ; Oc h"

1Z`E
"
j ; etc. Notice that we513

only need to estimate normal derivatives either of components of U"
n or W "

 . For terms like514

Oc h"
1Z`u"

1; Oc h"
1Z`E

"
j , etc. we use (6.18) instead of (6.17).515

We treat the terms like Oc h"
1jx1D0

Z`'" by substituting (6.20) again:

ˇ̌
ˇ̌
Z

!

Oc h"
1Z`'" dx0 dt

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
Z

!

Oc h"
1

�
Oa1h"

1 C Oa2h
"
1 C Oa3u"

1 C Oa4'" C  Oa5'"
�

dx dt

ˇ̌
ˇ̌

6 C
�
kU

"
nj!k2

L2.!/
C kW "j!k2

L2.!/
C 2k'"k2

L2.!/

�
: (6.33)

Combining (6.30), (6.32), (6.33) and similar inequalities for the other terms of (6.31) yields (we
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restore the index  )


�
kZ`U

"
 k2

L2.QC/
C kZ`W "

 k2
L2.Q�/

�

6 C
n 1


kF k2

H 1
tan;.QC/

C kU
"
 k2

H 1
tan; .QC/

C kW "
 k2

H 1
 .Q�/

C 
�
kU

"
n j!k2

L2.!/
C kW "

 j!k2
L2.!/

� o
; 0 < " < "0;  > 0; (6.34)

where C is independent of ";  . Then from (6.16), (6.18), (6.29), (6.34) we obtain


�
kU

"
 k2

H 1
tan;.QC/

C kW "
 k2

H 1
 .Q�/

�

6 C
n 1


kF k2

H 1
tan;.QC/

C kU
"
 k2

H 1
tan; .QC/

C kW "
 k2

H 1
 .Q�/

C 
�
kU

"
n j!k2

L2.!/
C kW "

 j!k2
L2.!/

� o
; 0 < " < "0;  > 0; (6.35)

where C is independent of ";  . We need the following estimates for the trace of U"
n; W ".516

LEMMA 6.2 The functions U"
n; W " satisfy

kU
"
n j!k2

L2.!/
C kU

"
n j!k2

H
1=2
 .!/

6 C
�
kF k2

L2.QC/
C kU

"
 k2

H 1
tan;.QC/

�
; (6.36)

kW "
 j!k2

L2.!/
C kW "

 j!k2

H
1=2
 .!/

6 C kW "
 k2

H 1
 .Q�/

: (6.37)

The proof of Lemma 6.2 is given in Section 11 at the end of this article. Substituting (6.36),517

(6.37) in (6.35) and taking 0 large enough yields518


�
kU

"
 k2

H 1
tan;.QC/

C kW "
 k2

H 1
 .Q�/

�
6

C


kF k2

H 1
tan;.QC/

; 0 < " < "0;  > 0; (6.38)519

where C is independent of ";  . Finally, from (6.21), (6.36) and (6.38) we get520



�
kU

"
n j!k2

H
1=2
 .!/

C kW "
 j!k2

H
1=2
 .!/

�
C 2k'"k2

H 1
 .!/

6
C


kF k2

H 1
tan;.QC/

: (6.39)521

Adding (6.38), (6.39) gives (6.2). The proof of Theorem 6.1 is complete.522

7. Well-posedness of the hyperbolic regularized problem523

In this section we prove the existence of the solution of (6.1). Its restriction to the time interval524

.�1; T � will provide the solution of problem (5.8). From now on, in the proof of the existence of525

the solution, " is fixed and so we omit it and we simply write U instead of U", W instead of W ", '526

instead of '".527

In view of the result of Lemma 9.1 (see Section 9) we can consider system (6.9) instead of (6.1b).528

First of all, we write the boundary conditions in different form, by eliminating the derivatives of '.529
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We substitute (6.1c) in the boundary conditions for E2;E3 and take account of the constraint (5.12)530

and the choices (6.23), (6.26). We get531

q � Oh2H2 � Oh3H3 C " OE1EN C Œ@1 Oq�' D 0;

E2 � "bH3u1 C " Ov3HN C "a1' D 0;

E3 C "bH2u1 � " Ov2HN C "a2' D 0; on !;

(7.1)532

where the precise form of the coefficients a1; a2 is not important. For later use we observe that533

(5.12), (6.1c)–(6.1f) is equivalent to (5.12), (6.1c), (7.1). Notice that the last two equations in (7.1)534

yield535

" OE1u1 C Ov2E2 C Ov3E3 C "a3' D 0; (7.2)536

where a3 D a1 Ov2 C a2 Ov3.537

Let us write the system (6.1a), (6.9), (7.1) in compact form as538

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

L

 
U

W

!
D
 

F

0

!
on QC � Q�;

M

 
U

W

!
C b ' D 0; in !;

.U; W; '/ D 0 for t < 0;

(7.3)539

where the matrix M and the vector b are implicitly defined by (7.1).540

Let us multiply (7.3) by e�t with  > 1; according to the rule e�t @t u D . C@t /e
�t u, (7.3)541

becomes equivalent to542

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

L

 
U

W

!
D
 

F

0

!
on QC � Q�;

M

 
U

W

!
C b ' D 0 in !;

.U ; W ; ' / D 0 for t < 0:

(7.4)543

where544

L WD 

� OA0 0

0 M "
0

�
C L;545

U D e�t U; W D e�t W; ' D e�t ', etc.546

First we solve (7.4) under the assumption that ' is given.547

LEMMA 7.1 There exists 0 > 0 such that for all  > 0 and for all given F 2 etH 1
tan; .QC/

and ' 2 etH
3=2
 .!/ vanishing in the past, the problem (7.4) has a unique solution .U; W / 2
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et H 1
tan; .QC/ � etH 1

 .Q�/ with .q; u1h1; W /j! 2 etH
1=2
 .!/, such that

ke�t .U; W /kH 1
tan;.QC/�H 1

 .Q�/ C ke�t .q; u1; h1; W/j!k
H

1=2
 .!/

6
C



�
ke�t

F kH 1
tan;.QC/ C ke�t 'k

H
3=2
 .!/

�
: (7.5)

Proof. We insert the new boundary conditions (7.1), (7.2) in the quadratic form A" (see (6.24)) and548

we get549

A
" WD �1

2
. OA1 CE12/ U�UC 1

2
M "

1 W �W D .Œ@ Oq�u1 C a2H2 � a1H3 � "a3EN / ' on !: (7.6)550

If we consider the boundary conditions (7.1), (7.2) in homogeneous form, namely if we set ' D 0,551

then from (7.6)552

A
" D 0 on !:553

We deduce that the boundary conditions (7.1) are nonnegative for L . As the number of boundary

conditions in (7.1) is in agreement with the number of incoming characteristics for the operator L

(see Proposition 5.1) we infer that the boundary conditions (7.1) are maximally nonnegative (but not

strictly dissipative). Then we reduce the problem to one with homogeneous boundary conditions by

subtracting from .U ; W / a function .U0
 ; W 0

 / 2 H 2
 .QC/ � H 2

 .Q�/ such that

M

�
U0

W 0

�
C b ' D 0 on !:

Finally, as the boundary is characteristic of constant multiplicity [18], we may apply the result554

of [19, 20] and we get the solution with the prescribed regularity.555

The well-posedness of (6.1) in H 1
tan � H 1 is given by the following theorem.556

THEOREM 7.2 There exists 0 > 0 such that for all  > 0 and F 2 et H 1
tan; .QC/ vanishing557

in the past, the problem (6.1) has a unique solution .U; W / 2 et H 1
tan; .QC/ � et H 1

 .Q�/ with558

.q; u1h1; W /j! 2 et H
1=2
 .!/, ' 2 et H

3=2
 .!/.559

Proof. We prove the existence of the solution to (6.1) by a fixed point argument. Let ' 2560

et H
3=2
 .!T / vanishing in the past. By Lemma 7.1, for  sufficiently large there exists a unique561

solution .U; W / 2 et H 1
tan; .QC/ � etH 1

 .Q�/, with .q; u1; h1; W /j! 2 et H
1=2
 .!/ of562

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

L

 
U

W

!
D
 

F

0

!
on QC � Q�;

M

 
U

W

!
D �b ' on !;

.U ; W / D 0 for t < 0;

(7.7)563

enjoying the a priori estimate (7.5) with ' instead of '. Now consider the equation564

' C @t ' C Ov2@2' C Ov3@3' � ' @1 OvN D u1 ; on !; (7.8)565
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where u1 2 H
1=2
 .!/ is the trace of the component of U given in the previous step, vanishing for566

t < 0. For  sufficiently large there exists a unique solution ' 2 H
1=2
 .!/, vanishing in the past,567

such that568

k' k
H

1=2
 .!/

6
C


ku1 k

H
1=2
 .!/

: (7.9)569

From the plasma equation in (7.7) and from (7.8) we deduce the boundary constraint570

h1 D bH 2@2' C bH 3@3' � ' @1
bH N on !: (7.10)571

Since in the right-hand side of (7.7) we have ' instead of ' we are not able to deduce the similar572

boundary constraint for the vacuum magnetic field. Instead, we obtain573

h1 � @2

�bH2'

�
� @3

�bH3'

�
D G on !; (7.11)574

where G solves575

Qd
dt

G C a2@2.' � ' / � a1@3.' � ' / C .@2a2 � @3a1/.' � ' / D 0 on !; (7.12)576

for Qd=dt D  C@t C@2. Ov2�/C@3. Ov3�/ and where the coefficients a1; a2 are the same of (7.1). (7.12)577

is derived from the first equation of the vacuum part of (7.7), (7.8) and the boundary conditions for578

E2;E3 in (7.7).579

Let us consider the linear system for rt;x0' provided by equations (7.8), (7.10) and (7.11). By580

the stability condition (4.1) we can express rt;x0' through .h1 ; h1 ; u1 /j! ; ' ; G , that is581

rt;x0' D a0
1h1 C a0

2h1 C a0
3u1 C a0

4' C a0
5G ; (7.13)582

where the precise form of the coefficients a0
i has no interest. Then, substituting into (7.12) yields583

Qd
dt

G Cb0G D b1h1 Cb2h1 Cb3' Ca2@2' �a1@3' C.@2a2 �@3a1/' on !; (7.14)584

with suitable coefficients bi .585

From (7.14), for  sufficiently large, we get the estimate

kG k
H

1=2
 .!/

6
C



�
k.h1 ; h1 /k

H
1=2
 .!/

C k' k
H

1=2
 .!/

C k' k
H

3=2
 .!/

�

6
C



�
kF kH 1

tan;.QC/ C k' k
H

3=2
 .!/

�
; (7.15)

where we have applied (7.5) (with ' in place of ') and (7.9). Thus, from (7.13) again, we obtain the

estimate

krt;x0'k
H

1=2
 .!/

6 C
�
k.u1 ; h1 ; h1 /k

H
1=2
 .!/

C k' k
H

1=2
 .!/

C kG k
H

1=2
 .!/

�

6
C



�
kF kH 1

tan;.QC/ C k' k
H

3=2
 .!/

�
: (7.16)
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Combining (7.5) (with ' in place of '), (7.9) and (7.16) gives586

k' k
H

3=2
 .!/

6
C



�
kF kH 1

tan;.QC/ C k' k
H

3=2
 .!/

�
: (7.17)587

This defines a map ' ! ' in etH
3=2
 .!T /. Let '1; '2 2 et H

3=2
 .!T /, and .U1; W 1/; .U2; W 2/,588

'1; '2 be the corresponding solutions of (7.7), (7.8), respectively. Thanks to the linearity of the589

problems (7.7), (7.8) we obtain, as for (7.17),590

k'1
 � '2

 k
H

3=2
 .!/

6
C


k'1

 � '2
 k

H
3=2
 .!/

:591

Then there exists 0 > 0 such that for all  > 0 the map ' ! ' has a unique fixed point, by the592

contraction mapping principle. The fixed point ' D ', together with the corresponding solution of593

(7.7), provides the solution of (7.4), (7.8), that is a solution of (6.1). As for the boundary conditions,594

we have already observed that (5.12), (6.1c)-(6.1f) is equivalent to (5.12), (6.1c), (7.1). The proof is595

complete.596

8. Proof of Theorem 4.1597

For all " sufficiently small, problem (5.8) admits a unique solution with the regularity described598

in Theorem 7.2. Due to the uniform a priori estimate (6.2) we can estract a subsequence599

weakly convergent to functions .U; W; '/ with .U ; W / 2 H 1
tan; .QC

T / � H 1
 .Q�

T / and600

.q ; u1 ; h1 /j!T
2 H

1=2
 .!T /, W j!T

2 H 1
 .!T / and ' 2 H 1

 .!T / (we use obvious notations).601

Let us decompose W D .H;E/ and perform a inverse change of unknown with respect to that of602

Section 5.1 to define .H; E/ from .H;E/. Passing to the limit in (5.1b), (5.8)–(5.12) as " ! 0603

immediately gives that .U; H; '/ is a solution to (2.29), (2.23), (2.24) and E D E D 0. Passing to604

the limit in (6.2) gives the a priori estimate (4.2). The proof of Theorem 4.1 is complete.605

9. Equivalence of systems (5.1b) and (6.12)606

We prove the equivalence of systems (5.1b) and (6.12) for every E� 6D 0. This is the same as the607

equivalence of (5.8b) and (6.9), or (6.1b) and (6.9).608

LEMMA 9.1 Assume that systems (5.1b) and (6.12) have common initial data satisfying the609

constraints610

div h" D 0; div e" D 0 in ˝� for t D 0:611

Assuming that the corresponding Cauchy problems for (5.1b) and (6.12) have a unique classical612

solution on a time interval Œ0; T �, then these solutions coincide on Œ0; T � for all " sufficiently small.613

Proof. Let us set614

A D O��1.@th
" C "�1r � E"/; B D O��1.@t e

" � "�1r � H"/:615

Then (6.12) can be written as616

A � " E� � B C E�
@1
b̊

1

div h" D 0; B C " E� � A C E�
@1
b̊

1

div e" D 0: (9.1)617
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Taking the vector product of E� with the systems in (9.1) gives618

E� � A � " E� � .E� � B/ D 0; E� � B C " E� � .E� � A/ D 0; (9.2)619

that is620

E� � A � " .E� � B/E� C " jE�j2B D 0; E� � B C " .E� � A/E� � " jE�j2A D 0: (9.3)621

We take the vector product of " E� with the first system in (9.3) and get622

" .E� � A/E� � " jE�j2A C "2 jE�j2 E� � B D 0: (9.4)623

For any choice of E� 6D 0 we may assume that " jE�j 6D 1 (this is true for " definitely small). Then624

by comparison of (9.4) and the second equation in (9.3) we infer E� � B D 0, and from (9.2) also625

E� � A D 0.626

Thus (6.12) may be rewritten as

@th
" C 1

"
r � E" C O� E�

@1
b̊

1

div h" D 0; @t e
" � 1

"
r � H" C O� E�

@1
b̊

1

div e" D 0:

Applying the div operator to the equations gives the transport equation627

@t u C div.uEa/ D 0 in Q�
T ;628

for both u D divh" and u D div e", where Ea D O�E�=@1
b̊

1. Noticing that the first component of Ea629

vanishes at x1 D 0, the transport equation doesn’t need any boundary condition. As ujtD0 D 0, by630

a standard argument we deduce u D 0 for t > 0. This fact shows the equivalence of (5.1b) and631

(6.12).632

10. Proof of Lemma 1.1633

Given an even function � 2 C 1
0 .R/, with � D 1 on Œ�1; 1�, we define634

	.x1; x0/ WD �
�
x1hDi

�
'.x0/ ; (10.1)635

where �.x1hDi/ is the pseudo-differential operator with hDi D .1 C jDj2/1=2 being the Fourier636

multiplier in the variables x0. From the definition it readily follows that 	.0; x0/ D '.x0/ for all637

x0 2 R
2. Moreover,638

@1	.x1; x0/ D �0
�
x1hDi

�
hDi '.x0/ ; (10.2)639

which vanishes if x1 D 0. We compute

k	.x1; �/k2
H m.R2/

D
Z

R2

h� 0i2m�2.x1h� 0i/j O'.� 0/j2d� 0 ;

where O'.� 0/ denotes the Fourier transform in x0 of '. It follows that

k	k2

L2
x1

.H m.R2//
D
Z

R

Z

R2

h� 0i2m�2.x1h� 0i/j O'.� 0/j2d� 0 dx1

D
Z

R

Z

R2

h� 0i2m�1�2.s/j O'.� 0/j2d� 0 ds 6 C k'k2
H m�0:5.R2/

:
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In a similar way, from (10.2), we obtain

k@1	k2

L2
x1

.H m�1.R2//
D
Z

R

Z

R2

h� 0i2m�2j�0.x1h� 0i/h� 0ij2j O'.� 0/j2d� 0 dx1

D
Z

R

Z

R2

h� 0i2m�1j�0.s/j2j O'.� 0/j2d� 0 ds 6 C k'k2
H m�0:5.R2/

:

Iterating the same argument yields

k@
j
1	k2

L2
x1

.H m�j .R2//
6 C k'k2

H m�0:5.R2/
; j D 0; : : : ; m :

Adding over j D 0; : : : ; m finally gives 	 2 H m.R3/ and the continuity of the map ' 7! 	 .640

We now show that the cut-off function �, and accordingly the map ' 7! 	 , can be chosen to

give (1.14). From (10.2) we have

@1	.x1; x0/ D .2�/�2

Z

R2

ei�0�x0

�0.x1h� 0i/ h� 0i O'.� 0/ d� 0:

By the Cauchy–Schwarz inequality and a change of variables we get

j@1	.x/j 6 C k'kH 2.R2/

�Z

R2

j�0.x1h� 0i/j2 h� 0i�2 d� 0

�1=2

D C k'kH 2.R2/

�Z 1

0

j�0.x1h�i/j2 h�i�2 � d�

�1=2

:

We change variables again in the integral above by setting s D x1h�i. It follows that

j@1	.x/j 6 C k'kH 2.R2/

�Z 1

x1

j�0.s/j2 x1

s

ds

x1

�1=2

6 C k'kH 2.R2/

�Z 1

1

j�0.s/j2 ds

s

�1=2

:

(10.3)

Given any M > 1, we choose � such that �.s/ D 0 for jsj > M , and j�0.s/j 6 2=M for every s.

Then from (10.3) one gets

j@1	.x/j 6
Cp
M

k'kH 2.R2/:

Given any � > 0, if M is such that C=
p

M < �, then (1.14) immediately follows.641

The proof of Lemma 1.2 follows from Lemma 1.1, with t as a parameter. Notice also that the642

map ' ! 	 , defined by (10.1), is linear and that the time regularity is conserved because, with643

obvious notation, 	.@
j
t '/ D @

j
t 	.'/. The conclusions of Lemma 1.2 follow directly.644

11. Proof of Lemma 6.2645

We write U"
n on ! as646

jU"
n j2jx1D0 D �2

Z 1

0

U
"
n � @1U

"
n dx1;647
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which gives648

kU
"
n j!k2

L2.!/
6 2kU

"
 kL2.QC/k@1U

"
n kL2.QC/: (11.1)649

Estimating the right-hand side of (11.1) with (6.17) and using the  -homogeneity of the H 1
tan;650

norm gives651

kU
"
n j!k2

L2.!/
6 C

�
kF k2

L2.QC/
C kU

"
 k2

H 1
tan;.QC/

�
:652

Thus the first part of (6.36) is proved. To show the second part of (6.36) we compute for ` D 0; 2; 3,

Z

!

jZ`U
"
n j2jx1D0 dx0dt D �2

Z 1

0

Z

!

Z`U
"
n � @1Z`U

"
n dxdt

D 2

Z 1

0

Z

!

Z2
` U

"
n � @1U

"
n dxdt;

which gives653

kU
"
n j!k2

H 1
 .!/

6 2kU
"
 kH 2

tan;.QC/k@1U
"
n kL2.QC/: (11.2)654

Interpolating between (11.1) and (11.2) gives

kU
"
n j!k2

H
1=2
 .!/

6 2kU
"
 kH 1

tan;.QC/k@1U
"
n kL2.QC/:

Applying (6.17) eventually gives the second part of (6.36). We do the same for (6.37).655
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