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Abstract. We study the free boundary problem for the plasma-vacuum interface in

ideal incompressible magnetohydrodynamics (MHD). In the vacuum region the magnetic

field is described by the div-curl system of pre-Maxwell dynamics, while at the interface

the total pressure is continuous and the magnetic field is tangent to the boundary. Under

a suitable stability condition satisfied at each point of the plasma-vacuum interface, we

prove the well-posedness of the linearized problem in Sobolev spaces.

1. Introduction. We consider the equations of ideal incompressible magnetohy-

drodynamics (MHD), i.e., the equations governing the motion of a perfectly conduct-

ing inviscid incompressible plasma. In the case of homogeneous plasma (the density

ρ(t, x) ≡ const > 0) these equations in a dimensionless form are

∂tv + (v,∇)v − (H,∇)H +∇q = 0 , (1.1a)

∂tH + (v,∇)H − (H,∇)v = 0 , (1.1b)

div v = 0 , (1.1c)

where v = v(t, x) = (v1, v2, v3) denotes the plasma velocity, H = H(t, x) = (H1, H2, H3)

the magnetic field (in Alfvén velocity units), q = p + |H|2/2 the total pressure, and
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p = p(t, x) the pressure (divided by ρ). As the unknown we fix the vector U = (q,W )

with W = (v,H). System (1.1) is supplemented by the divergence constraint

divH = 0 (1.2)

on the initial data W|t=0 = W0.

The classical plasma-vacuum interface problem models confined plasmas in a closed

vessel (see, e.g., [8]). In this model the plasma is confined inside a perfectly conducting

rigid wall and isolated from it by a vacuum region. Until recent times there were no

well-posedness results for full (non-stationary) plasma-vacuum models. The linearized

plasma-vacuum problem in ideal compressible MHD was studied in [13, 16], and the

well-posedness of the original nonlinear free boundary problem was recently proved in

[14] by the Nash-Moser method. Our main goal is to obtain an analogous result for

the plasma-vacuum interface problem for the model of incompressible MHD which can

be used when the characteristic plasma velocity is very small compared to the speed

of sound. In this paper we concentrate on the corresponding linearized problem. It is

noteworthy that the assumption in [13, 14, 16] that the plasma density is strictly positive

up to the free boundary of the plasma region is automatically satisfied in incompressible

MHD. However, the non-hyperbolicity of system (1.1) produces additional difficulties

compared to the analysis in [13, 14, 16].

Regarding the case without magnetic fields, the well-posedness of the free boundary

problem for incompressible Euler equations with a free interface that separates the fluid

region from the vacuum was proved in [10, 6, 18] (see also [7] for a comprehensive review)

under the condition (∂p/∂n)|Γ < 0, where n is the outward normal to the interface Γ.

In [10, 6] the fluid domain was assumed to be bounded whereas in [18] the problem was

set up in an unbounded domain. For our plasma-vacuum problem (see its statement just

below) we consider the case of an unbounded plasma domain and, as in [10], neglect the

influence of gravity because it just contributes with a lower-order term in (1.1a).

Let Ω+(t) and Ω−(t) be space-time domains occupied by the plasma and the vacuum

respectively. That is, in the domain Ω+(t) we consider system (1.1) governing the motion

of an ideal plasma and in the domain Ω−(t) we have the elliptic (div-curl) system

∇×H = 0, divH = 0, (1.3)

describing the vacuum magnetic field H = H(t, x) = (H1,H2,H3) ∈ R3. Here, as in

[3, 8], we consider so-called pre-Maxwell dynamics. That is, as usual in nonrelativistic

MHD, we neglect the displacement current (1/c) ∂tE, where c is the speed of the light

and E is the electric field.

The boundary of the domain Ω+(t) is a hypersurface Γ(t) = {η(t, x) = 0} that is

the interface between plasma and vacuum. It is to be determined and moves with the

velocity of plasma particles at the boundary:

∂tη + (v,∇η) = 0 on Γ(t) (1.4)

(for all t ∈ [0, T ]). As η is an unknown of the problem, this is a free-boundary problem.

For technical simplicity we assume that the space-time domain Ω+(t) (the plasma

region) and Ω−(t) (the vacuum region) are unbounded and the interface Γ(t) has the
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form of a graph: x1 = ϕ(t, x′), x′ = (x2, x3). That is,

Ω±(t) = {x1 ≷ ϕ(t, x′)} (1.5)

and the function ϕ(t, x′) is to be determined. With the choice η(t, x) = x1 − ϕ(t, x′),

(1.4) becomes

∂tϕ = (v,N) on Γ(t), (1.6)

where N = ∇η = (1,−∂2ϕ,−∂3ϕ).

The plasma variable U is connected with the vacuum magnetic field H through the

relations (cf. [3, 8])

[q] = 0, (H,N) = 0 (H, N) = 0, on Γ(t), (1.7)

where [q] = q|Γ − 1
2 |H|

2
|Γ denotes the jump of the total pressure across the interface.

These relations together with (1.6) are the boundary conditions at the interface Γ(t).

From the mathematical point of view, a natural wish is to find conditions on the initial

data

W (0, x) = W0(x), x ∈ Ω+(0), η(0, x) = η0(x), x ∈ Γ(0), (1.8)

H(0, x) = H0(x), x ∈ Ω−(0), (1.9)

providing the local-in-time existence and uniqueness of a solution (U,H, η) of problem

(1.1), (1.3)–(1.9) in Sobolev spaces.

Remark 1.1. In fact, for both the “elliptic” unknowns q andH we do not need to pose

initial data. That is, the initial data (1.9) are not quite necessary because the vector H0

is uniquely defined through η0 from zero-order compatibility conditions. Indeed, after

straightening the interface Γ(0) one can show that the elliptic problem composed by

system (1.3) and the last boundary condition in (1.7) considered at t = 0 has a unique

solution H0 in Sobolev spaces (see [14] for more details).

Remark 1.2. As for current-vortex sheets, see [12], [15], we must regard the second

boundary condition in (1.7) as the restriction on the initial data (1.8). More precisely,

after straightening of the interface and in exactly the same manner as in [12], [15], we

can prove that a solution of (1.1)–(1.7), (1.8), (1.9) (if it exists for all t ∈ [0, T ]) satisfies

divH = 0 in Ω+(t) and (H,N) = 0 on Γ(t)

for all t ∈ [0, T ], if the latter was satisfied at t = 0, i.e., for the initial data (1.8).

In the next section we first reduce the free boundary problem (1.1)–(1.7), (1.8), (1.9)

to that in a fixed domain by a suitable straightening of the unknown interface; then

we linearize the resulting problem around a basic state (“unperturbed flow”). Under a

suitable stability condition1 satisfied at each point of the unperturbed interface, we prove

the well-posedness of the linearized problem in the Sobolev space H1.

The rest of the paper is organized as follows. In Section 2 we obtain the linearized

problem. In Section 3 we introduce the functional setting. In Section 4 we state the

main result. In Section 5 we introduce a suitable “hyperbolic” regularization of the

linearized problem. In Section 6 we derive a priori estimates for the regularized problem.

1Strictly speaking, in this paper by stability we mean the well-posedness of the problem resulting
from the linearization about a given (generally speaking, non-stationary) basic state. This basic state is

not necessarily a solution of the nonlinear problem.
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In Section 7 we prove the well-posedness of the hyperbolic regularized problem. In

Section 8 we prove the well-posedness of the original linearized problem in conormal

Sobolev spaces (see Section 3 for their definition). At last, in Section 9, using as in [12]

a current-vorticity-type linearized system, we estimate missing normal derivatives of the

perturbations of the velocity and the plasma magnetic field and prove the well-posedness

of the linearized problem in Sobolev spaces (more precisely, in weighted Sobolev spaces,

see Section 3), as stated in Section 4.

1.1. Reduction to a fixed domain. We straighten the interface Γ by using the same

change of independent variables as in [13], that is inspired, in its turn, by Lannes [9] (see

also [4]). As in [13], we set

Ω± := R3 ∩ {±x1 > 0} , Γ := R3 ∩ {x1 = 0} . (1.10)

We want to reduce the free boundary problem (1.1)–(1.7), (1.8), (1.9) to the fixed domains

Ω±, by constructing a global diffeomorphism of R3, mapping Ω±(t) onto Ω± and Γ(t)

onto Γ at each time t ∈ [0, T ].

The construction is based on the following lemma that shows how to lift functions

from Γ to R3; the key point is the regularization of one half derivative of the lifting

function Ψ with respect to the given function ϕ on Γ.

Lemma 1.3. Let m ≥ 3 be a fixed integer. For all ε > 0 there exists a continuous linear

map ϕ ∈ Hm−0.5(R2) 7→ Ψ ∈ Hm(R3) such that Ψ(0, x′) = ϕ(x′), ∂1Ψ(0, x′) = 0 on Γ,

and

‖∂1Ψ‖L∞(R3) ≤ ε‖ϕ‖H2(R2) . (1.11)

The following lemma gives the time-dependent version of Lemma 1.3.

Lemma 1.4. Let m ≥ 3 be a fixed integer and let T > 0. For all ε > 0 there exists a con-

tinuous linear map ϕ ∈ ∩m−1
j=0 Cj([0, T ];Hm−j−0.5(R2)) 7→ Ψ ∈ ∩m−1

j=0 Cj([0, T ];Hm−j(R3))

such that Ψ(t, 0, x′) = ϕ(t, x′), ∂1Ψ(t, 0, x′) = 0 on Γ, and

‖∂1Ψ‖C([0,T ];L∞(R3)) ≤ ε‖ϕ‖C([0,T ];H2(R2)) . (1.12)

Furthermore, there exists a constant C > 0, that is independent of T and only depends

on m, such that

∀ϕ ∈ ∩m−1
j=0 Cj([0, T ];Hm−j−0.5(R2)) , ∀ t ∈ [0, T ] ,

‖∂jtΨ(t, ·)‖Hm−j(R3) ≤ C‖∂jtϕ(t, ·)‖Hm−j−0.5(R2), j = 0, . . . ,m− 1 .

(1.13)

For the proof of Lemmata 1.3 and 1.4 the reader is referred to [13]. The diffeomorphism

that reduces the free boundary problem (1.1)–(1.7), (1.8), (1.9) to the fixed domains Ω±

is given by the following lemma.

Lemma 1.5. Let m ≥ 3 be an integer. For all T > 0 and for all ϕ ∈ ∩m−1
j=0 Cj([0, T ];

Hm−j−0.5(R2)) satisfying without loss of generality ‖ϕ‖C([0,T ];H2(R2)) ≤ 1, there exists a

function Ψ ∈ ∩m−1
j=0 Cj([0, T ];Hm−j(R3)) such that the function

Φ(t, x) := (x1 + Ψ(t, x), x′) = (Φ1(t, x), x′) , (t, x) ∈ [0, T ]× R3 (1.14)
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defines a Hm−diffeomorphism of R3 for all t ∈ [0, T ]. Moreover, there holds ∂jt (Φ −
Id) ∈ C([0, T ];Hm−j(R3)) for j = 0, . . . ,m− 1, Φ(t, 0, x′) = (ϕ(t, x′), x′), ∂1Φ(t, 0, x′) =

(1, 0, 0).

Proof. The proof follows from Lemma 1.4, because

∂1Φ1(t, x) = 1 + ∂1Ψ(t, x) ≥ 1− ‖∂1Ψ‖C([0,T ];L∞(R3)) ≥ 1− ε‖ϕ‖C([0,T ];H2(R2)) ≥ 1/2 ,

provided ε is taken sufficiently small, e.g. ε < 1/2. The other properties of Φ follow

directly from Lemma 1.4. �
It is straightforward to check that, at each t ∈ [0, T ], the diffeomorphism Φ(t, x), given

in Lemma 1.5, maps the time-dependent domain Ω±(t) onto the reference domain Ω±

and the unknown interface Γ(t) onto Γ.

We introduce the change of unknown functions induced by (1.14), by setting

Ũ(t, x) := U(t,Φ(t, x)), H̃(t, x) := H(t,Φ(t, x)) . (1.15)

The vector-functions Ũ = (q̃, ṽ, H̃) and H̃ are smooth in the half-spaces Ω+ and Ω−

respectively. Dropping the tildes for convenience, the problem (1.1)–(1.7), (1.8), (1.9)

can be restated in the fixed reference domains Ω± as follows.

Plasma part. System (1.1) is reduced to the following

∂tv +
1

∂1Φ1
{(w,∇)v − (h,∇)H}+∇Φq = 0 ,

∂tH +
1

∂1Φ1
{(w,∇)H − (h,∇)v} = 0 ,

div u = 0 in [0, T ]× Ω+,

(1.16)

where

u = (vn, v2∂1Φ1, v3∂1Φ1), vn = (v, n), n = (1,−∂2Φ1,−∂3Φ1) = (1,−∂2Ψ,−∂3Ψ),

w = u− (∂tΦ1, 0, 0) = u− (∂tΨ, 0, 0), h = (Hn, H2∂1Φ1, H3∂1Φ1), Hn = (H,n),

∇Φq =

(
∂1q

∂1Φ1
,− ∂2Ψ

∂1Φ1
∂1q + ∂2q,−

∂3Ψ

∂1Φ1
∂1q + ∂3q

)
.

Here and below, vectors will be written indifferently in rows or columns in order to

simplify the presentation.

System (1.16) can be shortly rewritten in the following matrix form

P(U,Ψ) :=

(
L(U,Ψ)

div u

)
= 0 in [0, T ]× Ω+ , (1.17)

with

L(U,Ψ) = L(W,Ψ)U = L1(W,Ψ)W +

(
∇Φq

0

)
,

where

L1(W,Ψ) = ∂t + Ã1(W,Ψ)∂1 +A2(W )∂2 +A3(W )∂3 (1.18)

and

Ã1(W,Ψ) =
1

∂1Φ1

(
A1(W )−

3∑
k=2

Ak(W )∂kΨ− I6∂tΨ
)
,
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Ak(W ) =

(
vkI3 −HkI3

−HkI3 vkI3

)
= I3 ⊗

(
vk −Hk

−Hk vk

)
, with k = 1, 2, 3 .

Vacuum part. The elliptic system (1.3) becomes

V(H,Ψ) = 0 in [0, T ]× Ω−,

where

V(H,Ψ) =

(
∇× H

div h

)
(1.19)

and

H = (H1∂1Φ1,Hτ2 ,Hτ3), h = (Hn,H2∂1Φ1,H3∂1Φ1),

Hτk = H1∂kΨ +Hk, k = 2, 3, Hn = (H, n) .

Boundary Conditions. Conditions (1.6) and the first and third equations in (1.7) become

B(U,H, ϕ) = 0 on [0, T ]× Γ,

where

B(U,H, ϕ) =

 ∂tϕ− vN
[q]

HN

 (1.20)

and

[q] = q|Γ −
1

2
|H|2|Γ, vN = (v,N) , HN = (H,N) , N = (1,−∂2ϕ,−∂3ϕ) .

Notice that vn|Γ = vN , Hn|Γ = HN .

Final System. To sum up, after the change of unknown functions (1.15), the free boundary

problem (1.1), (1.3)–(1.9) is reduced to the following initial-boundary value problem

P(U,Ψ) = 0 , in [0, T ]× Ω+ , (1.21a)

V(H,Ψ) = 0 , in [0, T ]× Ω− , (1.21b)

B(U,H, ϕ) = 0 , on [0, T ]× Γ, (1.21c)

W |t=0 = W0 , in Ω+, H|t=0 = H0 , in Ω− , ϕ|t=0 = ϕ0 in R2, (1.21d)

where P(U,Ψ),V(H,Ψ),B(U,H, ϕ) are the operators defined in (1.17), (1.19), (1.20)

respectively. We also did not include in our problem the equation

div h = 0 in [0, T ]× Ω+ (1.22)

and the boundary condition

HN = 0 on [0, T ]× Γ , (1.23)

because they are just restrictions on the initial data (1.21d). More precisely, referring to

[15], [12] for the proof, we have the following lemma.

Lemma 1.6. Let the initial data (1.21d) satisfy (1.22) and (1.23). If (U,H, ϕ) is a solution

of problem (1.21a)–(1.21d), then this solution satisfies (1.22) and (1.23) for all t ∈ [0, T ].

2. Linearized problem.
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2.1. Basic state. For T > 0, let us set

Q±T := (−∞, T ]× Ω± , ωT := (−∞, T ]× Γ . (2.1)

Let

(Û(t, x), Ĥ(t, x), ϕ̂(t, x′)) (2.2)

be a given sufficiently smooth vector-function, respectively defined on Q+
T , Q−T , ωT , with

Û = (q̂, v̂, Ĥ), such that

‖Û‖W 2,∞(Q+
T ) + ‖∂1Û‖W 2,∞(Q+

T ) + ‖Ĥ‖W 2,∞(Q−T ) + ‖ϕ̂‖W 3,∞([0,T ]×R2) ≤ K,

‖ϕ̂‖C([0,T ];H2(R2)) ≤ 1 ,

(2.3)

where K > 0 is a constant. Corresponding to ϕ̂, let the function Ψ̂ and the diffeomor-

phism Φ̂ be constructed as in Lemmata 1.4 and 1.5 such that

∂1Φ̂1 ≥ 1/2 .

We assume that the basic state (2.2) satisfies

∂tĤ +
1

∂1Φ̂1

{
(ŵ,∇)Ĥ − (ĥ,∇)v̂

}
= 0, div û = 0 in Q+

T , (2.4a)

div ĥ = 0 in Q−T , (2.4b)

∂tϕ̂− v̂N̂ = 0, [q̂] = 0, ĤN̂ = 0 on ωT , (2.4c)

where all the “hat” values are determined like corresponding values for (U,H, ϕ), i.e.

Ĥ = (Ĥ1∂1Φ̂1, Ĥτ̂2 , Ĥτ̂3), Ĥτ̂k = Ĥ1∂kΨ̂ + Ĥk , k = 2, 3 ,

ĥ = (Ĥn̂, Ĥ2∂1Φ̂1, Ĥ3∂1Φ̂1) , Ĥn̂ = (Ĥ, n̂) ,

ĥ = (Ĥn̂, Ĥ2∂1Φ̂1, Ĥ3∂1Φ̂1) , Ĥn̂ = (Ĥ, n̂) ,

v̂N̂ = (v̂, N̂), ĤN̂ = (Ĥ, N̂) , N̂ = (1,−∂2ϕ̂,−∂3ϕ̂) , n̂ = (1,−∂2Ψ̂,−∂3Ψ̂)

and where

û = (v̂n̂, v̂2∂1Φ̂1, v̂3∂1Φ̂1), v̂n̂ = (v̂, n̂) , ŵ = û− (∂tΨ̂, 0, 0) .

Note that (2.3) yields

‖∇t,xΨ̂‖W 2,∞([0,T ]×R3) ≤ C,

where ∇t,x = (∂t,∇) and C = C(K) > 0 is a constant depending on K.

It follows from (2.4a) that the constraints

div ĥ = 0 inQ+
T , ĤN̂ = 0 on ωT (2.5)

are satisfied for the basic state (2.2), if they hold at t = 0 (see [15], [12] for the proof).

Thus, for the basic state we also require the fulfillment of conditions (2.5) at t = 0.
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2.2. Linearized problem. The linearized equations for (1.21a)-(1.21c) read:

P′(Û , Ψ̂)(δU, δΨ) :=
d

dε
P(Uε,Ψε)|ε=0 = f in Q+

T ,

V′(Ĥ, Ψ̂)(δH, δΨ) :=
d

dε
V(Hε,Ψε)|ε=0 = F in Q−T ,

B′(Û , Ĥ, ϕ̂)(δU, δH, δϕ) :=
d

dε
B(Uε,Hε, ϕε)|ε=0 = g on ωT ,

where Uε = Û + ε δU , Hε = Ĥ + ε δH, ϕε = ϕ̂ + ε δϕ; δΨ is constructed from δϕ as in

Lemma 1.4 and Ψε = Ψ̂ + εδΨ. Here we introduce the source terms f = (f1, . . . , f7),

F = (χ,Ξ), χ = (χ1, χ2, χ3) and g = (g1, g2, g3) to make the interior equations and the

boundary conditions inhomogeneous.

We compute the exact form of the linearized equations (below we drop δ):

P′(Û , Ψ̂)(U,Ψ) =

(
L(Ŵ , Ψ̂)U

div u

)
−


{
L(Ŵ , Ψ̂)Ψ

} ∂1Û

∂1Φ̂1(
∇×

 0

v̂3

−v̂2

 ,∇Ψ
)
 = f, (2.6)

V′(Ĥ, Ψ̂)(H,Ψ) = V(H, Ψ̂) +


∇Ĥ1 ×∇Ψ

(
∇×

 0

−Ĥ3

Ĥ2

 ,∇Ψ
)
 = F , (2.7)

B′(Û , Ĥ, ϕ̂)(U,H, ϕ) =

 ∂tϕ+ v̂2∂2ϕ+ v̂3∂3ϕ− vN̂
q − (Ĥ,H)

HN̂ − Ĥ2∂2ϕ− Ĥ3∂3ϕ

 = g , (2.8)

where

L(Ŵ , Ψ̂)U = L1(Ŵ , Ψ̂)W +

(
∇Φ̂q

0

)
+ C(Ŵ , Ψ̂)W,

u = (vn̂, v2∂1Φ̂1, v3∂1Φ̂1) , vn̂ = (v, n̂),{
L(Û , Ψ̂)Ψ

} ∂1Û

∂1Φ̂1

= L1(Ŵ , Ψ̂)Ψ
∂1Ŵ

∂1Φ̂1

+

(
∇Φ̂Ψ

0

)
∂1q̂

∂1Φ̂1

,

L1(Ŵ , Ψ̂) being the differential operator defined in (1.18) (with (W,Ψ) = (Ŵ , Ψ̂)), and

the matrix C(Ŵ , Ψ̂) is determined as follows:

C(Ŵ , Ψ̂)W =

 C1(Ŵ , Ψ̂)W

C2(Ŵ , Ψ̂)W

 =
1

∂1Φ̂1

(
(u,∇)v̂ − (h,∇)Ĥ

(u,∇)Ĥ − (h,∇)v̂

)
. (2.9)

In order to cancel out the first-order operators in Ψ from the operators P′(Û , Ψ̂) and

V′(Ĥ, Ψ̂), as in [1], the linearized problem is rewritten in terms of the “good unknown”

U̇ := U − Ψ

∂1Φ̂1

∂1Û , Ḣ := H− Ψ

∂1Φ̂1

∂1Ĥ. (2.10)
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Taking into account assumptions (2.4c) and (2.4b) and omitting detailed calculations,

we rewrite our linearized equations (2.6)-(2.8) in terms of the new unknowns (2.10): L(Ŵ , Ψ̂)U̇ +
Ψ

∂1Φ̂1

∂1

{
L(Û , Ψ̂)

}
div u̇

 = f , in Q+
T , (2.11)

V(Ḣ, Ψ̂) +
Ψ

∂1Φ̂1

∂1

{
V(Ĥ, Ψ̂)

}
= F , in Q−T , (2.12)

B′(Û , Ĥ, ϕ̂)(U̇ , Ḣ, ϕ)

:=

 ∂tϕ+ v̂2∂2ϕ+ v̂3∂3ϕ− v̇N̂ − ϕ∂1v̂N̂

q̇ − (Ĥ, Ḣ) + [∂1q̂]ϕ

ḢN̂ − ∂2

(
Ĥ2ϕ

)
− ∂3

(
Ĥ3ϕ

)
 = g, on ωT , (2.13)

where

u̇ = (v̇n̂, v̇2∂1Φ̂1, v̇3∂1Φ̂1), v̇n̂ = (v̇, n̂), v̇N̂ = (v̇, N̂) ,

ḢN̂ = (Ḣ, N̂), [∂1q̂] = ∂1q̂|Γ − (Ĥ, ∂1Ĥ)|Γ.

While writing down the last boundary condition in (2.13) we used (2.4b) taken at x1 = 0.

As in [1, 5, 15], we drop the zeroth-order term in Ψ in (2.11), (2.12) and consider the

effective linear operators

P′e(Û , Ψ̂)U̇ :=

(
L′e(Û , Ψ̂)U̇

div u̇

)
= f ,

V(Ḣ, Ψ̂) =

(
∇× Ḣ

div ḣ

)
= F ,

where

L′e(Û , Ψ̂)U̇ = L(Ŵ , Ψ̂)U̇ = L1(Ŵ , Ψ̂)Ẇ +

(
∇Φ̂q̇

0

)
+ C(Ŵ , Ψ̂)Ẇ (2.14)

and

Ḣ = (Ḣ1∂1Φ̂1, Ḣτ̂2 , Ḣτ̂3), ḣ = (ḢN , Ḣ2∂1Φ̂1, Ḣ3∂1Φ̂1),

ḢN = Ḣ1 − Ḣ2∂2Ψ̂− Ḣ3∂3Ψ̂, Ḣτ̂i = Ḣ1∂iΨ̂ + Ḣi, i = 2, 3.

In the future nonlinear analysis by Nash-Moser iterations the dropped term in (2.11),

(2.12) should be considered as an error term.
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To sum up, under the preceding reductions the linearized problem reads as follows:

L′e(Û , Ψ̂)U̇ =

(
fv
fH

)
, (2.15a)

div u̇ = f7 , in Q+
T , (2.15b)

∇× H = χ , div h = Ξ , in Q−T , (2.15c)

∂tϕ = v̇N̂ − v̂2∂2ϕ− v̂3∂3ϕ+ ϕ∂1v̂N̂ + g1 , (2.15d)

q̇ = (Ĥ, Ḣ)− [∂1q̂]ϕ+ g2 , (2.15e)

ḢN̂ = ∂2(Ĥ2ϕ) + ∂3(Ĥ3ϕ) + g3 , on ωT , (2.15f)

(Ẇ , Ḣ, ϕ) = 0 , for t < 0 , (2.15g)

where we have used the notations f = (fv, fH , f7), fv = (f1, f2, f3), fH = (f4, f5, f6),

F = (χ,Ξ) and g = (g1, g2, g3) for the source terms introduced in (2.6)–(2.8).

The source term χ of the first equation in (2.15c) should satisfy the constraint

divχ = 0 . (2.16)

Moreover, for the resolution of the elliptic problem (2.15c), (2.15f), the data Ξ and g3

must satisfy the necessary compatibility condition∫
Ω−

Ξ dx =

∫
Γ

g3 dx
′ , (2.17)

see [13]. We assume that the source terms (f, χ,Ξ) and the boundary data g vanish in

the past and consider the case of zero initial data. The case of nonzero initial data is

postponed to the nonlinear analysis.

2.3. Reduction to homogeneous data. We can reduce problem (2.15) to that with ho-

mogeneous data fH = 0, f7 = 0, F = 0 and g = 0 (except fv 6= 0) by the following

steps.

2.3.1. Plasma part (f7 = 0 and g1 = 0). We decompose the velocity v̇ as v̇ = v̇′ + ṽ

and the front ϕ as ϕ = ϕ′ + ϕ̃, where ṽ and ϕ̃ are such that

div ũ = f7 and ∂tϕ̃ = ṽN̂ − v̂2∂2ϕ̃− v̂3∂3ϕ̃+ ϕ̃∂1v̂N̂ + g1

(i.e. ṽ satisfies (2.15b) and ϕ̃ satisfies (2.15d) with ṽN̂ instead of v̇N̂ ). Then v̇′ solves the

homogeneous equation

div u̇′ = 0 in Q+
T ,

with u̇′ = (v̇′n̂, v̇
′
2∂1Φ̂1, v̇

′
3∂1Φ̂1) and v̇′n̂ := v̇′1 − v̇′2∂2Ψ̂− v̇′3∂3Ψ̂, and ϕ′ is such that

∂tϕ
′ = v′

N̂
− v̂2∂2ϕ

′ − v̂3∂3ϕ
′ + ϕ′∂1v̂N̂ .

Hence, (q̇, v̇′, Ḣ, ϕ′) satisfies system (2.15) with f7 = 0 and g1 = 0 and new data fv = f ′v,

fH = f ′H , g2 = g′2 and g3 = g′3.
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2.3.2. Vacuum part (χ = 0 and Ξ = g′3 = 0). As in [13], we decompose the vacuum

magnetic field Ḣ as Ḣ = Ḣ′ + H̃ (and accordingly Ḣ = Ḣ′ + H̃ and ḣ = ḣ′ + h̃), where H̃
is a solution, for each t, of the following elliptic problem

∇× H̃ = χ , div h̃ = Ξ in Ω− ,

h̃1 = H̃N̂ = g′3 on Γ .

(2.18)

Provided the data (χ,Ξ, g′3) vanish at infinity in an appropriate way and satisfy (2.16),

(2.17) (with g3 = g′3), the classical results of the elliptic theory ensure the existence of a

unique solution of (2.18) vanishing at infinity.

Once H̃ is given, we look for Ḣ′ as a solution to the problem

∇× Ḣ′ = 0 , div ḣ′ = 0 , in Q−T ,

q̇ = (Ĥ, Ḣ′)− [∂1q̂]ϕ
′ + g′′2 ,

Ḣ′
N̂

= ∂2(Ĥ2ϕ
′) + ∂3(Ĥ3ϕ

′) on ωT ,

(2.19)

where

g′′2 = g′2 + (Ĥ, H̃) . (2.20)

If H̃ and Ḣ′ solve (2.18) and (2.19) respectively, then it is clear that Ḣ = Ḣ′ + H̃ solves

(2.15c), (2.15e) and (2.15f) with ϕ = ϕ′, g2 = g′2 and g3 = g′3.

Collecting the changes of unknowns performed above and dropping for convenience

the primes in v̇′, Ḣ′, ϕ′, g′′2 , f ′v and f ′H , we obtain the linearized problem (2.15) with

f7 = 0, F = 0 and g1 = g3 = 0:

L′e(Û , Ψ̂)U̇ =

(
fv
fH

)
,

div u̇ = 0 , in Q+
T ,

V(Ḣ, Ψ̂) = 0 , in Q−T ,

B′(Û , Ĥ, ϕ̂)(U̇ , Ḣ, ϕ) :=

 0

g2

0

 , on ωT .

(2.21)

2.3.3. Plasma-vacuum interface (fH = 0 and g2 = 0). From system (2.21) we can

deduce nonhomogeneous equations which are a linearized counterpart of the divergence

constraint (1.22) and the “redundant” boundary condition (1.23). More precisely, with

reference to [15, Proposition 2] and [12] for the proof, we have the following.

Lemma 2.1 ([15]). Let the basic state (2.2) satisfies assumptions (2.3)–(2.5). Then

solutions of problem (2.21) satisfy

div ḣ = r in Q+
T , (2.22)

Ĥ2∂2ϕ+ Ĥ3∂3ϕ− ḢN̂ − ϕ∂1ĤN̂ = G on ωT . (2.23)

Here

ḣ = (Ḣn̂, Ḣ2∂1Φ̂1, Ḣ3∂1Φ̂1), Ḣn̂ = Ḣ1 − Ḣ2∂2Ψ̂− Ḣ3∂3Ψ̂ (ḢN̂ |x1=0 = Ḣn̂|x1=0).
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The functions r = r(t, x) and G = G(t, x′), which vanish in the past, are determined by

the source terms and the basic state as solutions to the linear inhomogeneous transport

equations

∂tr + v̂2∂2r + v̂3∂3r + (∂2v̂2 + ∂3v̂3) r = divfH in Q+
T , (2.24)

where fH := (fH,n̂, ∂1Φ̂1f5, ∂1Φ̂1f6), fH,n̂ := (fH , n̂) = f4 − ∂2Ψ̂f5 − ∂3Ψ̂f6 and

∂tG+ v̂2∂2G+ v̂3∂3G+ (∂2v̂2 + ∂3v̂3)G = fH,n̂ | x1=0 on ωT . (2.25)

Equations (2.24), (2.25) do not need boundary conditions at {x1 = 0}.

Following [15], we now perform a further change of unknowns to make fH and g2 equal

to zero (in view of Lemma 2.1, r and G in (2.22), (2.23) will become zero as well). Let

χ ∈ C∞0 (R+) be a cut-off function equal to 1 on [0, 1]. We define

q̃ = χ(x1)g2 (2.26)

and H̃ solves the equation for Ḣ contained in (2.21) with v̇ = 0, namely

∂tH̃ +
1

∂1Φ̂1

(ŵ,∇)H̃ + C2(Ŵ , Ψ̂)

(
0

H̃

)
= fH in Q+

T . (2.27)

We define the new unknowns

U \ :=

 q\

v\

H\

 =

 q̇ − q̃
v̇

Ḣ − H̃

 , H\ := Ḣ . (2.28)

One can check that (U \,H\) satisfies problem (2.21) with fH = 0 and g2 = 0 (and a

new fv). Dropping for convenience the indices \ in (2.28), the final form of our reduced

linearized problem reads

L′e(Û , Ψ̂)U =

(
fv
0

)
,

div u = 0 , in Q+
T ,

V(H, Ψ̂) = 0 , in Q−T ,

B′(Û , Ĥ, ϕ̂)(U,H, ϕ) = 0 , on ωT .

(2.29)



PLASMA-VACUUM INTERFACE PROBLEM IN IDEAL INCOMPRESSIBLE MHD 13

Recall that the operators L′e(Û , Ψ̂), V(H, Ψ̂) and B′(Û , Ĥ, ϕ̂) are defined in (2.14), (1.19)

and (2.13) respectively. We also write down problem (2.29) in the component-wise form

∂tv +
1

∂1Φ̂1

{
(ŵ,∇)v − (ĥ,∇)H

}
+∇Φ̂q + C1(Ŵ , Ψ̂)W = fv , (2.30a)

∂tH +
1

∂1Φ̂1

{
(ŵ,∇)H − (ĥ,∇)v

}
+ C2(Ŵ , Ψ̂)W = 0 , (2.30b)

div u = 0 in Q+
T , (2.30c)

∇× H = 0 , div h = 0 in Q−T , (2.30d)

∂tϕ = vN̂ − v̂2∂2ϕ− v̂3∂3ϕ+ ϕ∂1v̂N̂ , (2.30e)

q = (Ĥ,H)− [∂1q̂]ϕ , (2.30f)

HN̂ = ∂2(Ĥ2ϕ) + ∂3(Ĥ3ϕ) on ωT , (2.30g)

(W,H, ϕ) = 0 for t < 0 . (2.30h)

Clearly, for problem (2.30) we get (2.22) and (2.23) with r = 0 and G = 0. That is,

solutions to problem (2.30) satisfy

div h = 0 in Q+
T , (2.31)

HN̂ = Ĥ2∂2ϕ+ Ĥ3∂3ϕ− ϕ∂1ĤN̂ on ωT . (2.32)

3. Function Spaces. The purpose of this section is to introduce the main function

spaces to be used in the following and collect their basic properties.

Let us denote

Q± := Rt × Ω± , ω := Rt × Γ . (3.1)

3.1. Weighted Sobolev spaces. For γ ≥ 1 and s ∈ R, we set

λs,γ(ξ) := (γ2 + |ξ|2)s/2 (3.2)

and, in particular, λs := λs,1.

Throughout the paper, for real γ ≥ 1, Hs
γ(Rn) will denote the Sobolev space of order

s, equipped with the γ−depending norm ‖ · ‖s,γ defined by

‖u‖2s,γ := (2π)−n
∫
Rn
λ2s,γ(ξ)|û(ξ)|2dξ , (3.3)

û being the Fourier transform of u. The norms defined by (3.3), with different values of

the parameter γ, are equivalent each other. For γ = 1 we set for brevity ‖ · ‖s := ‖ · ‖s,1
(and, accordingly, Hs(Rn) := Hs

1(Rn) for the standard Sobolev space).

For s ∈ N, the norm in (3.3) turns to be equivalent, uniformly with respect to γ, to

the norm ‖ · ‖Hsγ(Rn) defined by

‖u‖2Hsγ(Rn) :=
∑
|α|≤s

γ2(s−|α|)‖∂αu‖2L2(Rn) , (3.4)

where, for every multi-index α = (α1, . . . , αn) ∈ Nn, we set ∂α := ∂α1
1 . . . ∂αnn and

|α| := α1 + · · ·+ αn as usual.
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For functions defined over Q+
T we will consider the weighted Sobolev spaces Hm

γ (Q+
T )

equipped with the natural γ-depending norm

‖u‖2
Hmγ (Q+

T )
:=

∑
|α|≤m

γ2(m−|α|)‖∂αu‖2
L2(Q+

T )
,

where ∂α := ∂α0
0 ∂α1

1 ∂α2
2 ∂α3

3 with ∂0 = ∂t. An useful remark is that

‖u‖s,γ ≤ γs−r‖u‖r,γ , (3.5)

for arbitrary s ≤ r and γ ≥ 1.

Similar weighted Sobolev spaces will be considered for functions defined on Q−

3.2. Conormal Sobolev spaces. Let us introduce some classes of function spaces of

Sobolev type, defined over Q+
T . Let σ = σ(x1) be a monotone increasing function in

C∞(R+), such that σ(x1) = x1 in a neighborhood of the origin and σ(x1) = 1 for x1

large enoungh. Then, for every multi-index α = (α0, α1, α2, α3) ∈ N4, the conormal

derivative ∂αtan is defined by

∂αtan := ∂α0
0 (σ(x1)∂1)α1∂α2

2 ∂α3
3 ,

where ∂0 = ∂t.

Given an integer m ≥ 1 the conormal Sobolev space Hm
tan(Q+

T ) is defined as the set of

functions u ∈ L2(Q+
T ) such that ∂αtanu ∈ L2(Q+

T ), for all multi-indices α with |α| ≤ m.

Agreeing with the notations set for the usual Sobolev spaces, for γ ≥ 1, Hm
tan,γ(Q+

T ) will

denote the conormal space of order m equipped with the γ−depending norm

‖u‖2
Hmtan,γ(Q+

T )
:=

∑
|α|≤m

γ2(m−|α|)‖∂αtanu‖2L2(Q+
T )

(3.6)

and we have Hm
tan(Q+

T ) := Hm
tan,1(Q+

T ).

Similar conormal Sobolev spaces with γ−depending norms will be considered for func-

tions defined on Q−. We will use the same notation for spaces of scalar and vector-valued

functions.

3.3. Homogeneous Sobolev space. Because of the presence of the “elliptic” unknown q

we will have also to use the homogeneous function space

Ḣ1(Q+
T ) := {u ∈ L1

loc(Q
+
T ) | ∇u ∈ L2(Q+

T )}.

4. The main result. We are now in the position to state the main result of the paper.

Recall that U = (q, v,H), where we drop the dot from the variables for simplicity. The

main result of the paper reads as follows.

Theorem 4.1. Let T > 0. Let the basic state (2.2) satisfy assumptions (2.3)-(2.5) and

|Ĥ × Ĥ| ≥ δ > 0 , on ωT , (4.1)

where δ is a fixed constant. Then there exists γ0 ≥ 1 such that for all γ ≥ γ0 and for

all fv ,γ ∈ H1
γ(Q+

T ) vanishing in the past, namely for t < 0, problem (2.29) has a unique
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solution (Uγ ,Hγ , ϕγ) such that (qγ ,Wγ ,Hγ , ϕγ) ∈ Ḣ1(Q+
T )×H1

γ(Q+
T )×H1

γ(Q−T )×H1
γ(ωT )

with the trace (qγ , u1, γ , h1, γ ,Hγ)|ωT ∈ H
1/2
γ (ωT ) and obeys the a priori estimate

γ
(
‖Wγ‖2H1

γ(Q+
T )

+ ‖∇qγ‖2L2(Q+
T )

+ ‖Hγ‖2H1
γ(Q−T )

+ ‖ (qγ , u1, γ , h1, γ ,Hγ) |ωT ‖2H1/2
γ (ωT )

)
+ γ2‖ϕγ‖2H1

γ(ωT ) ≤
C

γ
‖fv,γ‖2H1

γ(Q+
T )
, (4.2)

where we have set Uγ := e−γtU , Hγ := e−γtH, ϕγ := e−γtϕ and so on, and where

C = C(K,T, δ) > 0 is a constant independent of the data fv and the parameter γ.

5. Hyperbolic regularization of the reduced problem. Problem (2.29) (or

(2.30)) is a nonstandard initial-boundary value problem. For its resolution we intro-

duce a fully hyperbolic approximation. Concerning the plasma part, we replace the

incompressible MHD equations with their “compressible” counterpart by introducing an

evolution equation for the total pressure involving a small parameter ε which corresponds

to the reciprocal of the sound speed in the fluid. As for the vacuum part, we consider a

“hyperbolic” regularization of the elliptic system (2.30d) by introducing a new auxiliary

unknown E which plays the role of the vacuum electric field, and the same small pa-

rameter of regularization ε as above is now associated with the physical parameter 1/c,

being c the speed of light. We also regularize the second boundary condition (2.30f) and

introduce two boundary conditions for the unknown E.

Plasma part. Let us denote Uε = (qε, vε, Hε) (we also set W ε = (vε, Hε)). The regular-

ized system for the plasma part reads

ε2

{
∂tq

ε − (∂tĤ,H
ε)− (Ĥ, ∂tH

ε) +
1

∂1Φ̂1

(ŵ,∇qε)

− 1

∂1Φ̂1

(
ŵ, (∇Ĥ,Hε)

)
− 1

∂1Φ̂1

(
ŵ, (Ĥ,∇Hε)

)}
+

1

∂1Φ̂1

div uε = 0 , (5.1a)

∂tv
ε +

1

∂1Φ̂1

{
(ŵ,∇)vε − (ĥ,∇)Hε

}
+∇Φ̂q

ε + C1(Ŵ , Ψ̂)W ε = fv , (5.1b)

∂tH
ε +

1

∂1Φ̂1

{
(ŵ,∇)Hε − (ĥ,∇)vε

}
+ C2(Ŵ , Ψ̂)W ε +

Ĥ

∂1Φ̂1

div uε = 0 in Q+
T , (5.1c)

where the matrices C1 and C2 were defined in (2.9), and uε is defined through vε like u

is defined through v.

In the matrix form, system (5.1) can be shortly written as

Âε0∂tUε +

3∑
j=1

Âεj∂jUε + ĈUε = F in Q+
T , (5.2)
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where the matrix-valued coefficients Âεj , j = 0, 1, 2, 3, and Ĉ are easily computed in terms

of the basic state (Ŵ , Ψ̂) and F = (0, fv, 0). The latter system with ε = 1 looks like the

linearized system of compressible isentropic MHD equations reduced to a dimensionless

form.

Vacuum part. Let us denote V ε = (Hε, Eε). We consider the following regularized system

for the unknown V ε:

ε ∂th
ε +∇× Eε = 0, (5.3a)

ε ∂te
ε −∇× Hε = 0 in Q−T , (5.3b)

where

Eε = (Eε1 , E
ε
2 , E

ε
3), Eε = (Eε1∂1Φ̂1, E

ε
τ̂2 , E

ε
τ̂3),

eε = (Eεn̂, E
ε
2∂1Φ̂1, E

ε
3∂1Φ̂1), Eεn̂ = Eε1−Eε2∂2Ψ̂−Eε3∂3Ψ̂, Eετ̂k = Eε1∂kΨ̂+Eεk, k = 2, 3 .

All the other notations for Hε (i.e. hε and Hε) are analogous of those for H.

We rewrite (5.3) in the matrix form

∂tV
ε + B̃ε1∂1V

ε +

3∑
k=2

Bεk∂kV
ε + B̂4V

ε = 0,

where

B̃ε1 =
1

∂1Φ̂1

(
Bε1 −

3∑
k=2

Bεk∂kΨ̂
)
, B̂4 = I2 ⊗ B̂, (5.4)

B̂ =


0 −∂t∂2Ψ̂ + ∂2Ψ̂

∂t∂1Ψ̂

∂1Φ̂1

−∂t∂3Ψ̂ + ∂3Ψ̂
∂t∂1Ψ̂

∂1Φ̂1

0
∂t∂1Ψ̂

∂1Φ̂1

0

0 0
∂t∂1Ψ̂

∂1Φ̂1


, (5.5)

I2 is the unit matrix of order 2, and the symmetric matrices Bεj (j = 1, 2, 3) coincide

with the corresponding ones for the vacuum Maxwell equations if ε = 1:

Bε1 = ε−1



0 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 1 0

0 0 0 0 0 0

0 0 1 0 0 0

0 −1 0 0 0 0


, Bε2 = ε−1



0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 −1 0 0

0 0 −1 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0


,

Bε3 = ε−1



0 0 0 0 −1 0

0 0 0 1 0 0

0 0 0 0 0 0

0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 0


.

(5.6)
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Boundary conditions. We couple equations (5.1) and (5.3) with the following regularized

boundary conditions

∂tϕ
ε = vε

N̂
− v̂2∂2ϕ

ε − v̂3∂3ϕ
ε + ϕε∂1v̂N̂ ,

qε = (Ĥ,Hε)− [∂1q̂]ϕ
ε − ε(Ê, Eε)

Eετ̂2 = ε ∂t(Ĥ3ϕ
ε)− ε ∂2(Ê1ϕ

ε),

Eετ̂3 = −ε ∂t(Ĥ2ϕ
ε)− ε ∂3(Ê1ϕ

ε) on ωT ,

(5.7)

where Ê = (Ê1, Ê2, Ê3) and the coefficients Êj are given functions which will be chosen

later on. Again, vε
N̂

= (vε, N̂).

Final form of the regularized problem. Collecting the previous equations we obtain the

regularized problem given by (5.1), (5.3) and (5.7).

5.1. An equivalent formulation for the regularized problem.

5.1.1. Plasma part. We derive an equivalent form for system (5.2) in two steps. First

we write down this system in terms of the new unknown q′ ε = εqε and then we pass to

the ”curved unknowns” uε, hε.

Step 1. To symmetrize system (5.2), we derive div uε from (5.1a) and rewrite the equation

for the magnetic field in (5.1c) as

∂tH
ε +

1

∂1Φ̂1

{
(ŵ,∇)Hε − (ĥ,∇)vε

}
+ C2(Ŵ , Ψ̂)W ε

− ε2Ĥ

{
∂tq

ε − (∂tĤ,H
ε)− (Ĥ, ∂tH

ε) +
1

∂1Φ̂1

(ŵ,∇qε)

− 1

∂1Φ̂1

(
ŵ, (∇Ĥ,Hε)

)
− 1

∂1Φ̂1

(
ŵ, (Ĥ,∇Hε)

)}
= 0. (5.8)

Substituting (5.8) in (5.1) gives a symmetric system. Unfortunately, the matrix-valued

coefficient by the t–derivative of Uε is not uniformly positive-definite with respect to ε

that makes inconvenience because we are interested in obtaining an uniform in ε a priori

estimate for smooth solutions of (5.1). Therefore, we make the change of unknown

q′ ε = εqε , (5.9)

and restate system (5.2) in terms of the new unknown (q′ ε, vε, Hε). Just for simplicity

we again denote Uε = (q′ ε, vε, Hε). In the matrix form, system (5.2) becomes

Â0∂tU
ε +

˜̂
A
ε

1∂1U
ε +

3∑
j=2

Âεj∂jU
ε + ĈεUε = F in Q+

T , (5.10)

where the new coefficients are the symmetric matrices

Âε0 =



1 0 0 0 −εĤ1 −εĤ2 −εĤ3

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

−εĤ1 0 0 0 1 + ε2Ĥ2
1 ε2Ĥ1Ĥ2 ε2Ĥ1Ĥ3

−εĤ2 0 0 0 ε2Ĥ1Ĥ2 1 + ε2Ĥ2
2 ε2Ĥ2Ĥ3

−εĤ3 0 0 0 ε2Ĥ1Ĥ3 ε2Ĥ2Ĥ3 1 + ε2Ĥ2
3


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=

 1 0 −εĤT

0 I3 0

−εĤ 0 I3 + ε2Ĥ ⊗ Ĥ

 ,

Âε1 =



v̂1 ε−1 0 0 −εv̂1Ĥ1 −εv̂1Ĥ2 −εv̂1Ĥ3

ε−1 v̂1 0 0 −Ĥ1 0 0

0 0 v̂1 0 0 −Ĥ1 0

0 0 0 v̂1 0 0 −Ĥ1

−εv̂1Ĥ1 −Ĥ1 0 0 v̂1 + ε2v̂1Ĥ
2
1 ε2v̂1Ĥ1Ĥ2 ε2v̂1Ĥ1Ĥ3

−εv̂1Ĥ2 0 −Ĥ1 0 ε2v̂1Ĥ1Ĥ2 v̂1 + ε2v̂1Ĥ
2
2 ε2v̂1Ĥ1Ĥ3

−εv̂1Ĥ3 0 0 −Ĥ1 ε2v̂1Ĥ1Ĥ3 ε2v̂1Ĥ2Ĥ3 v̂1 + ε2v̂1Ĥ
2
3


,

Âε2 =



v̂1 0 ε−1 0 −εv̂2Ĥ1 −εv̂2Ĥ2 −εv̂2Ĥ3

0 v̂2 0 0 −Ĥ2 0 0

ε−1 0 v̂2 0 0 −Ĥ2 0

0 0 0 v̂2 0 0 −Ĥ2

−εv̂2Ĥ1 −Ĥ2 0 0 v̂2 + ε2v̂2Ĥ
2
1 ε2v̂2Ĥ1Ĥ2 ε2v̂2Ĥ1Ĥ3

−εv̂2Ĥ2 0 −Ĥ2 0 ε2v̂2Ĥ1Ĥ2 v̂2 + ε2v̂2Ĥ
2
2 ε2v̂2Ĥ1Ĥ3

−εv̂2Ĥ3 0 0 −Ĥ2 ε2v̂2Ĥ1Ĥ3 ε2v̂2Ĥ2Ĥ3 v̂2 + ε2v̂2Ĥ
2
3


,

Âε3 =



v̂3 0 0 ε−1 −εv̂3Ĥ1 −εv̂3Ĥ2 −εv̂3Ĥ3

0 v̂3 0 0 −Ĥ3 0 0

0 0 v̂3 0 0 −Ĥ3 0

ε−1 0 0 v̂3 0 0 −Ĥ3

−εv̂3Ĥ1 −Ĥ3 0 0 v̂3 + ε2v̂3Ĥ
2
1 ε2v̂3Ĥ1Ĥ2 ε2v̂3Ĥ1Ĥ3

−εv̂3Ĥ2 0 −Ĥ3 0 ε2v̂3Ĥ1Ĥ2 v̂3 + ε2v̂3Ĥ
2
2 ε2v̂3Ĥ1Ĥ3

−εv̂3Ĥ3 0 0 −Ĥ3 ε2v̂3Ĥ1Ĥ3 ε2v̂3Ĥ2Ĥ3 v̂3 + ε2v̂3Ĥ
2
3


,

and the coefficient
˜̂
A
ε

1 is

˜̂
A
ε

1 =
1

∂1Φ̂1

Âε1 − 3∑
j=2

∂jΨ̂Â
ε
j − ∂tΨ̂Âε0

 ,

while

ĈεUε =

 −ε(D̂,Hε)

C1(Ŵ , Ψ̂)W ε

C2(Ŵ , Ψ̂)W ε + ε2(D̂,Hε)Ĥ

 , F =

 0

fv
0

 ,

and

D̂ = ∂tĤ +
1

∂1Φ̂1

(ŵ,∇)Ĥ .

Note that the coefficients Âεj , for j = 1, 2, 3 and Cε can be shortly rewritten as

Âεj =

 v̂j ε−1eTj −εv̂jĤT

ε−1ej v̂jI3 −ĤjI3
−εv̂jĤ −ĤjI3 v̂j(I3 + ε2Ĥ ⊗ Ĥ)

 ,
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with

ej =

 δ1,j
δ2,j
δ3,j

 , Ĥ ⊗ Ĥ = ĤĤT

and

Cε =

 0

C1(Ŵ , Ψ̂)

C2(Ŵ , Ψ̂)

+

0 0 −εD̂T

0 0 0

0 0 ε2Ĥ ⊗ D̂

 .

Moreover, an explicit calculation gives for
˜̂
A
ε

1 the following expression

˜̂
A
ε

1 =
1

∂1Φ̂1

 ŵ1 ε−1n̂T −εŵ1Ĥ
T

ε−1n̂ ŵ1I3 −ĥ1I3
−εŵ1Ĥ −ĥ1I3 ŵ1(I3 + ε2Ĥ ⊗ Ĥ)

 , (5.11)

where we recall that

n̂T =
(

1 −∂2Ψ̂ −∂3Ψ̂
)
, ŵ1 = v̂n̂ − ∂tΨ̂ , ĥ1 = Ĥn̂ .

System (5.10) is symmetric hyperbolic because the matrix Âε0 is uniformly definite pos-

itive for ε sufficiently small. Unfortunately, the matrix in (5.11) contains the singular

factor ε−1. Fortunately, this potential difficulty will not prevent obtaining an uniform in

ε a priori estimate.

Step 2. For overcoming the difficulty connected with the appearance of ε−1 in (5.11) we

rewrite system (5.10) in terms of the new vector unknown Y ε = (q′ ε, uε, hε). Observing

that Uε = JY ε, where the matrix J is

J =

1 0 0

0 Ĵ 0

0 0 Ĵ

 , Ĵ =


1

∂2Ψ̂

∂1Φ̂1

∂3Ψ̂

∂1Φ̂1

0
1

∂1Φ̂1

0

0 0
1

∂1Φ̂1


, (5.12)

we obtain the new system

Ǎε0∂tY
ε +

3∑
j=1

Ǎεj∂jY
ε + Ǎε4Y

ε = F̃ , (5.13)

where

Ǎε0 = ∂1Φ̂1J
T Âε0J, Ǎε1 = ∂1Φ̂1J

T ˜̂Aε1J, Ǎεk = ∂1Φ̂1J
T ÂεkJ (k = 2, 3),

Ǎε4 = ∂1Φ̂1

(
JT Âε0∂tJ + JT

˜̂
A
ε

1∂1J +
3∑
k=2

JT Âεk∂kJ + JT ĈεJ
)
,

(5.14)

F̃ = ∂1Φ̂1J
TF =

 0

f̃v
0

 , f̃v = ∂1Φ̂1J̃
T fv . (5.15)

Direct calculations show that

Ǎεj = Âεj + ε−1E1,j+1 , j = 1, 2, 3 , (5.16)
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where

Âεj =

 ŵj 0 −εŵjĤT Ĵ

0 ŵj Ĵ
T Ĵ −ĥj ĴT Ĵ

−εŵj ĴT Ĥ −ĥj ĴT Ĵ ŵj Ĵ
T (I3 + ε2Ĥ ⊗ Ĥ)Ĵ

 ,

E1,j+1 =

 0 eTj 0

ej 0 0

0 0 0

 , j = 1, 2, 3 .

(5.17)

Compared to (5.10), the equivalent formulation (5.13) has the advantage that the

factor ε−1 appears only by the constant matrices E1,j+1 and that the boundary matrix

Ǎε1 takes the form

Ǎε1 = Âε1 + ε−1E1,2 , (5.18)

where

Âε1|ωT = 0 (5.19)

(since ŵ1|ωT = ĥ1|ωT = 0, see (2.4c), (2.5)). Moreover, an explicit calculation shows

that Ǎε0 and Ǎε4 do not contain the singular multiplier ε−1 (their elements are bounded

as ε→ 0).

5.1.2. Vacuum part. System (5.3) can be written in terms of the “curved” unknown

Wε = (Hε,Eε) as

B0∂tWε +

3∑
j=1

Bεj∂jWε +B4Wε = 0, (5.20)

where

B0 =
1

∂1Φ̂1

KKT , K = I2 ⊗ K̂ , B4 = ∂tB0 , (5.21)

K̂ = Ĵ−1 =

 1 −∂2Ψ̂ −∂3Ψ̂

0 ∂1Φ̂1 0

0 0 ∂1Φ̂1

 , (5.22)

and the matrices Ĵ and Bεj are defined in (5.12) and (5.6) respectively, see [13] for more

details.

System (5.20) is symmetric hyperbolic. The main advantage of the usage of the

variables Wε rather than V ε is that the matrices Bεj in (5.20) containing the singular

multiplier ε−1 are constant.

5.1.3. Boundary conditions. We restate the boundary conditions above in terms of

the unknown (Y ε,Wε) by using the relations (recall that ∂1Φ̂1 = 1 on ωT )

(Ĥ,Hε) = ĤN̂Hε1 + Ĥ2Hετ̂2 + Ĥ3Hετ̂3 = (ĥ,Hε) ,

(Ê, Eε) = ÊN̂E
ε
1 + Ê2E

ε
τ̂2

+ Ê3E
ε
τ̂3

= (̂e,Eε) .

(5.23)
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Regarding the first line in (5.23), we notice that ĥ1 = ĤN̂ = 0 on ωT , so that Hε1 does

not appear in the boundary condition. Then the boundary conditions become

∂tϕ
ε = uε1 − v̂2∂2ϕ

ε − v̂3∂3ϕ
ε + ϕε∂1v̂N̂ ,

ε−1q′ ε = (ĥ,Hε)− [∂1q̂]ϕ
ε − ε(̂e,Eε)

Eε2 = ε ∂t(Ĥ3ϕ
ε)− ε ∂2(Ê1ϕ

ε),

Eε3 = −ε ∂t(Ĥ2ϕ
ε)− ε ∂3(Ê1ϕ

ε) on ωT .

(5.24)

5.1.4. Full equivalent regularized problem. To sum up, we consider the following reg-

ularized problem for the unknown (Y ε,Wε, ϕε):

Ǎε0∂tY
ε +

3∑
j=1

Ǎεj∂jY
ε + Ǎε4Y

ε = F̃ in Q+
T (5.25a)

B0∂tWε +

3∑
j=1

Bεj∂jWε +B4Wε = 0 in Q−T (5.25b)

∂tϕ
ε = uε1 − v̂2∂2ϕ

ε − v̂3∂3ϕ
ε + ϕε∂1v̂N̂ , (5.25c)

ε−1q′ ε = (ĥ,Hε)− [∂1q̂]ϕ
ε − ε(̂e,Eε) , (5.25d)

Eε2 = ε ∂t(Ĥ3ϕ
ε)− ε ∂2(Ê1ϕ

ε) , (5.25e)

Eε3 = −ε ∂t(Ĥ2ϕ
ε)− ε ∂3(Ê1ϕ

ε) on ωT , (5.25f)

(Y ε,Wε, ϕε) = 0 for t < 0. (5.25g)

It is noteworthy that solutions to problem (5.25) satisfy

div hε = 0 in Q+
T , (5.26a)

div hε = 0, div eε = 0 in Q−T , (5.26b)

Hε
N̂

= Ĥ2∂2ϕ
ε + Ĥ3∂3ϕ

ε − ϕε∂1ĤN̂ on ωT , (5.26c)

Hε
N̂

= ∂2

(
Ĥ2ϕ

ε
)

+ ∂3

(
Ĥ3ϕ

ε
)

on ωT (5.26d)

because (5.26) are just restrictions on the initial data which are automatically satisfied in

view of (5.25g). Equations (5.26b) trivially follow from (5.25b) and (5.25g). Condition

(5.26d) is obtained by considering the first scalar equation in (5.25b) at x1 = 0 and taking

into account (5.25c)-(5.25g). As we already noticed, (5.25a), (5.25b) is a symmetric

hyperbolic system.

Remark 5.1. The invertible part of the boundary matrix of a system allows to control

the trace at the boundary of the so called noncharacteristic component of the vector solu-

tion. Thus, with system (5.25a) (whose boundary matrix is −Ǎε1|ωT = −ε−1E1,2, because

of (5.19)), we have the control of q′ ε, uε1 at the boundary; therefore the components of

Y ε appearing in the boundary conditions (5.25c), (5.25d) are well defined.

The same holds true for (5.25b), where we can get the control of Hε2, Hε3, Eε2, Eε3. The

control of Eε1, which appears in (5.25d), is not given from system (5.25b), but from the

constraints (5.26b), as will be shown later on. We recall that Hε1 does not appear in the

boundary condition (5.25d), because ĥ1 = ĤN̂ = 0 on ωT .
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Before studying problem (5.25) we should be sure that the number of boundary con-

ditions in (5.25c)-(5.25f) is in agreement with the number of incoming characteristics for

the hyperbolic systems (5.25a), (5.25b). Since one of the four boundary conditions in

(5.25c)-(5.25f) is needed for determining the function ϕε(t, x′), the common number of

incoming characteristics should be three. Let us prove that this is true.

Lemma 5.2. If ε > 0 is sufficiently small, system (5.25a) has one incoming characteristic

for the boundary ωT of the domain Q+
T . If ε > 0 is sufficiently small, system (5.25b) has

two incoming characteristics for the boundary ωT of the domain Q−T .

Proof. In view of (5.18) and (5.19) we obtain

(Ǎε1Y
ε, Y ε) = ε−1(E1,2Y ε, Y ε) = 2ε−1q′ εuε1 on ωT . (5.27)

Hence, the boundary matrix Ǎε1 at the boundary ωT has one negative eigenvalue λ− =

−ε−1 (“incoming” in the domain Q+
T ) and one positive eigenvalue λ+ = ε−1, and other

eigenvalues are zeros.

Let us consider system (5.25b). The boundary matrix Bε1 has eigenvalues λ1,2 = −ε−1,

λ3,4 = ε−1, λ5,6 = 0. Thus, system (5.25b) has two incoming characteristics in the

domain Q−T . �

6. A BVP associated to the regularized hyperbolic problem: a priori esti-

mates. Let T > 0. Let the basic state (2.2) satisfy assumptions (2.3)-(2.5) and (4.1).

Our next goal is to prove the existence of solutions (Y ε,Wε, ϕε) to problem (5.25) and

a uniform in ε a priori estimate in H1
tan(Q+

T )×H1(Q−T )×H1(ωT ). This will be done in

several steps.

6.1. The boundary value problem. We assume that all the coefficients and data ap-

pearing in (5.25) are extended to the whole real line with respect to the time, and recall

that Q± = Rt × Ω± and ω = Rt × Γ (see (3.1)).

The first step of our analysis is to prove a uniform in ε estimate for smooth solutions

to the boundary value problem (5.25a)–(5.25g) in Q±, i.e., to the problem

Ǎε0∂tY
ε +

∑3
j=1 Ǎ

ε
j∂jY

ε + Ǎε4Y
ε = F̃ in Q+,

B0∂tWε +
∑3
j=1B

ε
j∂jWε +B4Wε = 0 in Q− ,

∂tϕ
ε = uε1 − v̂2∂2ϕ

ε − v̂3∂3ϕ
ε + ϕε∂1v̂N̂ ,

ε−1q′ ε = (ĥ,Hε)− [∂1q̂]ϕ
ε − ε(̂e,Eε)

Eε2 = ε ∂t(Ĥ3ϕ
ε)− ε ∂2(Ê1ϕ

ε),

Eε3 = −ε ∂t(Ĥ2ϕ
ε)− ε ∂3(Ê1ϕ

ε) on ω,

(Y ε,Wε, ϕε) = 0 for t < 0 .

(6.1)

Recall that Y ε = (q′ ε, uε, hε) and Wε = (Hε,Eε).

In this section, we prove a uniform in ε a priori estimate of smooth solutions of (6.1).
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Theorem 6.1. Let the basic state (2.2) satisfy assumptions (2.3)-(2.5) and (4.1) for all

times. There exist ε0 > 0, γ0 ≥ 1 such that if 0 < ε < ε0 and γ ≥ γ0, then all sufficiently

smooth solutions (Y ε,Wε, ϕε) of problem (6.1) obey the estimate

γ
(
‖Y εγ ‖2H1

tan,γ(Q+) + ‖Wε
γ‖2H1

γ(Q−) + ‖Y εn,γ |ω‖2H1/2
γ (ω)

+ ‖Wε
γ |ω‖2H1/2

γ (ω)

)
+ γ2‖ϕεγ‖2H1

γ(ω) ≤
C

γ
‖F̃γ‖2H1

tan,γ(Q+) , (6.2)

where we have set Y εγ = e−γtY ε, Y εn,γ = e−γt(ε−1q′ ε, uε1, h
ε
1),Wε

γ = e−γtWε, ϕεγ = e−γtϕε

and so on, and where C = C(K, δ) > 0 is a constant independent of the data F̃ and the

parameters ε, γ.

In order to obtain the energy estimate (6.2), we use the same ideas as in [13] (see

also [17]). We underline that the coefficients Êj in the boundary conditions in (6.1)

are still arbitrary functions whose choice will be crucial to make boundary conditions

dissipative. Moreover, we have to be careful with lower order terms, because we must

avoid the appearance of terms with ε−1 (otherwise our estimate will not be uniform in

ε). Also for this reason we use the unknown (Y ε,Wε) rather than (Uε, V ε).

For the proof of the energy estimate (6.2) we need a secondary symmetrization of the

transformed Maxwell equations in vacuum (5.3).

6.2. Secondary symmetrization for the vacuum part. Let us perform a new symmetriza-

tion of the vacuum part (see [17]), that consists of replacing the original system (5.3)

with the equivalent system

K̂−1(∂th
ε +

1

ε
∇× Eε) + K̂−1(∂te

ε − 1

ε
∇× Hε)× εν +

ν

∂1Φ̂1

div hε = 0,

K̂−1(∂te
ε − 1

ε
∇× Hε)− K̂−1(∂th

ε +
1

ε
∇× Eε)× εν +

ν

∂1Φ̂1

div eε = 0,

(6.3)

where K̂ is defined in (5.22), while ν = (ν1, ν2, ν3) and νi = νi(t, x) (i = 1, 2, 3) are

arbitrary functions that will be chosen in an appropriate way later on. We refer to [13,

Lemma 16] for the detailed proof of the equivalence between systems (5.3) and (6.3), for

an arbitrary ν 6= 0.

Step 1. With respect to the variable V ε = (Hε, Eε) system (6.3) reads

Bε
0∂tV

ε + B̃ε
1∂1V

ε +

3∑
k=2

Bε
k∂kV

ε + Bε
4V

ε = 0, (6.4)

where

Bε
0 =



1 0 0 0 εν3 −εν2

0 1 0 −εν3 0 εν1

0 0 1 εν2 −εν1 0

0 −εν3 εν2 1 0 0

εν3 0 −εν1 0 1 0

−εν2 εν1 0 0 0 1


=

(
I3 B̂ε0

B̂ε0
T

I3

)
,
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Bε
1 =



ν1 ν2 ν3 0 0 0

ν2 −ν1 0 0 0 −ε−1

ν3 0 −ν1 0 ε−1 0

0 0 0 ν1 ν2 ν3

0 0 ε−1 ν2 −ν1 0

0 −ε−1 0 ν3 0 −ν1


=

(
B̂1 B̂ε1

B̂ε1
T

B̂1

)
,

Bε
2 =



−ν2 ν1 0 0 0 ε−1

ν1 ν2 ν3 0 0 0

0 ν3 −ν2 −ε−1 0 0

0 0 −ε−1 −ν2 ν1 0

0 0 0 ν1 ν2 ν3

ε−1 0 0 0 ν3 −ν2


=

(
B̂2 B̂ε2

B̂ε2
T

B̂2

)
,

Bε
3 =



−ν3 0 ν1 0 −ε−1 0

0 −ν3 ν2 ε−1 0 0

ν1 ν2 ν3 0 0 0

0 ε−1 0 −ν3 0 ν1

−ε−1 0 0 0 −ν3 ν2

0 0 0 ν1 ν2 ν3


=

(
B̂3 B̂ε3

B̂ε3
T

B̂3

)
,

B̃ε
1 =

1

∂1Φ̂1

(
Bε

1 −
3∑
k=2

Bε
k∂kΨ̂

)
,

Bε
4 = Bε

0B̂4,

where B̂4 is defined in (5.4).

Note that

B̂j

T
= B̂j (j = 1, 2, 3), B̂εj

T
= −B̂εj (j = 0, 1, 2, 3), Bε

4|ε=0 = B̂4.

Step 2. Again, to avoid the appearance of the “dangerous” multiplier ε−1 in the energy

integral for problem (6.1) we pass in system (6.4) from the unknown V ε to the “curved”

unknown Wε = (Hε,Eε):

Mε
0∂tWε + M̃ε

1∂1Wε +

3∑
k=2

Mε
k∂kWε +Mε

4Wε = 0, (6.5)

where

Mε
0 = − 1

∂1Φ̂1

KBε
0K

T > 0,

M̃ε
1 = − 1

∂1Φ̂1

KB̃ε
1K

T, Mε
k = − 1

∂1Φ̂1

KBε
kK

T (k = 2, 3),

Mε
4 = M̂ε

4 + M̃4, M̂ε
4 = − 1

∂1Φ̂1

KBε
4K

T −KBε
0∂t(L

−1),

M̃4 = −K
(
B̃ε

1∂1(L−1) + Bε
2∂2(L−1) + Bε

3∂3(L−1)
)
,

(6.6)

the matrices L and K are obtained from the relations

Wε = LV ε, L−1 =
1

∂1Φ̂1

KT , K = I2 ⊗ K̂ ,
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and the matrix K̂ was defined in (5.22). The symmetric system (6.5) is hyperbolic if

Mε
0 > 0, i.e.

ε|ν| < 1 .

The last inequality is satisfied for small ε.

We need to know the behavior of the above matrices in (6.6) as ε → 0. To this end,

we find that

Mε
0 = O(1), M̃ε

1 = −Bε1 +O(1) ,

Mε
k = −Bεk +O(1) (k = 2, 3), Mε

4 = O(1) ,

(6.7)

where by O(1) we denote a generic matrix bounded w.r.t. ε and the matrices Bεj were

defined in (5.6). As the matrices Mε
0 and Mε

4 do not contain the multiplier ε−1, their

norms are bounded as ε→ 0. Recalling that the matrices Bεj are constant, we deduce as

well that all the possible derivatives (with respect to t and x) of the matrices M̃ε
1 , Mε

k

have bounded norms as ε→ 0.

6.3. Final form of the regularized problem. After all the changes of unknowns de-

scribed above the regularized problem (6.1) takes the new form

Ǎε0∂tY
ε +

3∑
j=1

Ǎεj∂jY
ε + Ǎε4Y

ε = F̃ in Q+ , (6.8a)

Mε
0∂tWε + M̃ε

1∂1Wε +

3∑
k=2

Mε
k∂kWε +Mε

4Wε = 0 in Q− , (6.8b)

∂tϕ
ε = uε1 − v̂2∂2ϕ

ε − v̂3∂3ϕ
ε + ϕε∂1v̂N̂ , (6.8c)

ε−1q′ ε = (ĥ,Hε)− [∂1q̂]ϕ
ε − ε(̂e,Eε) , (6.8d)

Eε2 = ε ∂t(Ĥ3ϕ
ε)− ε ∂2(Ê1ϕ

ε) , (6.8e)

Eε3 = −ε ∂t(Ĥ2ϕ
ε)− ε ∂3(Ê1ϕ

ε) on ω, (6.8f)

(Y ε,Wε, ϕε) = 0 for t < 0, (6.8g)

where for the readers convenience we recall that equation (6.8a) is the “compressible”

regularization of the plasma system written in terms of the unknown Y ε = (q′ ε, uε, hε)

while equation (6.8b) is the “hyperbolic” regularization of the div-curl vacuum system

written, after the secondary symmetrization, in terms of Wε = (Hε,Eε).

6.4. Proof of Theorem 6.1. To obtain the a priori estimate (6.2) we apply the energy

methods to the symmetric hyperbolic systems (6.8a), (6.8b). In the sequel γ0 ≥ 1 denotes

a generic constant sufficiently large which may increase from formula to formula, and C

is a generic constant that may change from line to line.
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First of all let us restate systems (6.8a), (6.8b) in terms of the γ-weighted unknowns

Y εγ ,Wε
γ . The equations take the equivalent form

γǍε0Y
ε
γ + Ǎ0∂tY

ε
γ +

3∑
j=1

Ǎεj∂jY
ε
γ + Ǎε4Y

ε
γ = F̃γ in Q+ , (6.9a)

γMε
0Wε

γ +Mε
0∂tWε

γ + M̃ε
1∂1Wε

γ +

3∑
k=2

Mε
k∂kWε

γ +Mε
4Wε

γ = 0 in Q− . (6.9b)

The arguments below are, with suitable modifications, analogous to those from [13]. How-

ever, for the readers convenience we do not drop them and start with some preparatory

estimates.

Conormal derivative of the plasma unknown. First of all we estimate the conormal de-

rivative σ∂1 of Y ε. Applying to system (6.9a) the operator σ∂1, multiplying by σ∂1Y
ε
γ

and integrating by parts over Q+ gives the inequality

γ‖σ∂1Y
ε
γ ‖2L2(Q+)

≤ C

γ

{
‖F̃γ‖2H1

tan, γ(Q+) + ‖Y εγ ‖2H1
tan,γ(Q+) + ‖ε−1∂1

(
E1,2Y εγ

)
‖2L2(Q+)

}
, (6.10)

for γ ≥ γ0. On the other hand, directly from equation (6.9a) we get

‖ε−1∂1

(
E1,2Y εγ

)
‖2L2(Q+) ≤ C

{
‖F̃γ‖2L2(Q+) + ‖Y εγ ‖2H1

tan,γ(Q+)

}
, (6.11)

where the constant C is independent of ε and γ (recall the definition of the matrix E1,2
in (5.17)). From (6.10), (6.11) we obtain

γ‖σ∂1Y
ε
γ ‖2L2(Q+) ≤

C

γ

{
‖F̃γ‖2H1

tan, γ(Q+) + ‖Y εγ ‖2H1
tan,γ(Q+)

}
, γ ≥ γ0 , (6.12)

where C is independent of ε and γ.

Normal derivative of the noncharacteristic part of the plasma unknown. Also, using the

structure of the boundary matrix in (6.9a) (see (5.19)) and the divergence constraint

(5.26a) allows us to get an estimate of the noncharacteristic part Y εn,γ = e−γt(ε−1q′ ε, uε1,

hε1) of the “plasma” unknown:

‖∂1Y
ε
n,γ‖2L2(Q+) ≤ C

{
‖F̃γ‖2L2(Q+) + ‖Y εγ ‖2H1

tan,γ(Q+)

}
, (6.13)

where C is independent of ε and γ.

Normal derivative of the vacuum unknown. As in [13], from system (6.9b) and the diver-

gence constraints (5.26b) we can express the normal derivative of all components of the

“vacuum” unknown Wε
γ through its tangential derivatives. This gives the estimate

‖∂1Wε
γ‖2L2(Q−) ≤ C

{
γ2‖Wε

γ‖2L2(Q−) + ‖∂tWε
γ‖2L2(Q−) +

3∑
k=2

‖∂kWε
γ‖2L2(Q−)

}
, (6.14)

where C is independent of ε and γ, for all ε ≤ ε0.
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L2–estimate of the front. Writing the first boundary condition (6.8c) for ϕγ , that is

γϕεγ + ∂tϕ
ε
γ = uε1,γ − v̂2∂2ϕ

ε
γ − v̂3∂3ϕ

ε
γ + ϕεγ∂1v̂N̂ ,

multiplying it by ϕεγ and integrating by parts over ω yields

γ‖ϕεγ‖2L2(ω) ≤
C

γ
‖uε1,γ‖2L2(ω) , γ ≥ γ0 , (6.15)

where C is independent of γ.

Tangential derivatives of the front. As in [13], assumption (4.1) on the basic state (Û , Ĥ)

allows to solve the system of the boundary conditions (5.26c), (5.26d) and (6.8c) (stated

in terms of ϕγ) as an algebraic system for the space-time gradient ∇t,x′ϕεγ = (∂tϕ
ε
γ , ∂2ϕ

ε
γ ,

∂3ϕ
ε
γ)

∇t,x′ϕεγ = â1h
ε
1,γ + â2h

ε
1,γ + â3u

ε
1,γ + â4ϕ

ε
γ + γâ5ϕ

ε
γ , (6.16)

where the vector-functions âα = âα(Û |ω, Ĥ|ω) could be written explicitly.2 From (6.16)

we may estimate ∇t,x′ϕεγ through the trace on the boundary ω of the noncharacteristic

part of the unknowns (Y εγ ,Wε
γ) and ϕεγ itself:

‖∇t,x′ϕεγ‖L2(ω) ≤ C
{
‖Y εn,γ |ω‖L2(ω) + ‖Wε

γ |ω‖L2(ω) + γ‖ϕεγ‖L2(ω)

}
, γ ≥ γ0 , (6.17)

where C is independent of ε and γ.

L2–estimate. Now we are going to derive an L2–energy estimate for (Y ε,Wε). To this

end, we multiply system (6.9a) by Y εγ and (6.9b) by Wε
γ , integrate by parts over Q± to

find

γ

∫
Q+

(Ǎε0Y
ε
γ , Y

ε
γ ) dx dt+ γ

∫
Q−

(Mε
0Wε

γ ,Wε
γ) dx dt+

∫
ω

Aεdx′ dt

=
1

2

∫
Q+

((
∂tǍ

ε
0 +

3∑
j=1

∂jǍ
ε
j − 2Ǎε4

)
Y εγ , Y

ε
γ

)
dx dt

+
1

2

∫
Q−

((
∂tM

ε
0 + ∂1M̃

ε
1 +

3∑
k=2

∂kM
ε
k − 2Mε

4

)
Wε
γ ,Wε

γ

)
dx dt

+

∫
Q+

(F̃γ , Y
ε
γ ) dx dt , (6.18)

where we have denoted

Aε = −1

2
(Ǎε1Y

ε
γ , Y

ε
γ )|ω +

1

2
(M̃ε

1Wε
γ ,Wε

γ)|ω . (6.19)

Recalling that Ǎε0 and Mε
0 are positive definite matrices uniformly in ε for ε ≤ ε0, using

the Cauchy-Schwarz and Young inequalities, and the fact that

∂tǍ
ε
0 +

3∑
j=1

∂jǍ
ε
j − 2Ǎε4 = O(1), ∂tM

ε
0 + ∂1M̃

ε
1 +

3∑
k=2

∂kM
ε
k − 2Mε

4 = O(1),

2Under the conditions about the basic state ĤN̂ = ĤN̂ = 0 on ω, one computes |Ĥ×Ĥ|2 = (Ĥ2Ĥ3−
Ĥ3Ĥ2)2〈∇′ϕ̂〉2, where 〈∇′ϕ̂〉 = (1 + |∂2ϕ̂|2 + |∂3ϕ̂|2)1/2 and Ĥ2Ĥ3 − Ĥ3Ĥ2 is just the determinant of
the 2× 2 algebraic system for ∂2ϕε, ∂3ϕε made from the boundary conditions (5.26c), (5.26d).
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from (6.18) we derive the L2 estimate

γ‖Y εγ ‖2L2(Q+) + γ‖Wε
γ‖2L2(Q−) +

∫
ω

Aε dx′ dt

≤ C
{

1

γ
‖F̃γ‖2L2(Q+) + ‖Y εγ ‖2L2(Q+) + ‖Wε

γ‖2L2(Q−)

}
, (6.20)

where C is independent of ε and γ.

Using (5.27), we obtain

(Ǎε1Y
ε
γ , Y

ε
γ ) = ε−1(E1,2Y εγ , Y εγ ) = e−2γt2ε−1q′ εuε1 on ω .

Following [13], we choose the functions νj in the secondary symmetrization (6.3) by

setting

ν1 = v̄1 = v̂2∂2ϕ̂+ v̂3∂3ϕ̂, νk = v̂k, k = 2, 3. (6.21)

After long calculations we get

Aε = e−2γt
{
−ε−1q′ εuε1 + ε−1(Hε3E

ε
2 − Hε2E

ε
3)

+ (v̂2H
ε
2 + v̂3H

ε
3)Hε

N̂
+ (v̂2E

ε
2 + v̂3E

ε
3)Eε

N̂

}
on ω . (6.22)

Now we use the boundary conditions in (6.1) and the assumption ĤN̂ |ω = 0 for

calculating the quadratic form Aε. Thanks to the multiplicative factor ε in the boundary

conditions (6.8e), (6.8f), we get rid of the singular multiplier ε−1 appearing in the second

term of the right-hand side of (6.22). The factor ε−1 multiplying q′ ε in the right-hand side

of (6.22) is not dangerous because it is included in the definition of the noncharacteristic

component Y εn = (ε−1q′ ε, uε1, h
ε
1) of the vector function Y ε = (q′ ε, uε, hε) to be estimated

(see (6.2) in Theorem 6.1).

After long calculations we get

Aε = e−2γt
{(
Ê1 + v̂2Ĥ3 − v̂3Ĥ2

)(
εEε

N̂
∂tϕ

ε + Hε2∂3ϕ
ε − Hε3∂2ϕ

ε
)

+ ε
(
Êτ̂2E

ε
2 + Êτ̂3E

ε
3

)(
∂tϕ

ε + v̂2∂2ϕ
ε + v̂3∂3ϕ

ε
)

+ ϕε
{

[∂1q̂] v
ε
N̂
− ∂1v̂N̂ (ε−1q′ ε + [∂1q̂]ϕ

ε) + (∂tĤ3 − ∂2Ê1)(Hε3 + εv̂2E
ε
N̂

)

+(∂tĤ2 + ∂3Ê1)(Hε2 − εv̂3E
ε
N̂

) + (∂2Ĥ2 + ∂3Ĥ3)(v̂2H
ε
2 + v̂3H

ε
3)
}}

. (6.23)

Now we make the following choice of the coefficients Êj in the boundary conditions

(6.8d)-(6.8f):

Ê = −v̄ × Ĥ, (6.24)

where v̄ = (v̄1, v̂2, v̂3). For this choice

Ê1 + v̂2Ĥ3 − v̂3Ĥ2 = 0, Êτ̂2 = 0, Êτ̂3 = 0,
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and this leaves us with

Aε = e−2γt
{
ϕε
{

[∂1q̂]u
ε
1 − ∂1v̂N̂ (ε−1q′ ε + [∂1q̂]ϕ

ε)

+ (∂tĤ3 − ∂2Ê1)(Hε3 + εv̂2E
ε
N̂

)

+(∂tĤ2 + ∂3Ê1)(Hε2 − εv̂3E
ε
N̂

) + (∂2Ĥ2 + ∂3Ĥ3)(v̂2H
ε
2 + v̂3H

ε
3)
}}

= ϕεγ
{

[∂1q̂]u
ε
1,γ − ∂1v̂N̂ (ε−1q′ εγ + [∂1q̂]ϕ

ε
γ)

+ (∂tĤ3 − ∂2Ê1)(Hε3,γ + εv̂2E
ε
N̂,γ

) + (∂tĤ2 + ∂3Ê1)(Hε2,γ − εv̂3E
ε
N̂,γ

)

+ (∂2Ĥ2 + ∂3Ĥ3)(v̂2H
ε
2,γ + v̂3H

ε
3,γ)
}
, (6.25)

where we restore the usage of the subscript γ.

Substituting (6.25) into (6.20) and using the Cauchy-Schwarz and Young inequalities,

from (6.20) we get

γ‖Y εγ ‖2L2(Q+) + γ‖Wε
γ‖2L2(Q−) ≤

C

γ

{
‖F̃γ‖2L2(Q+) + ‖Y εn,γ |ω‖2L2(ω)

+ ‖Wε
γ |ω‖2L2(ω)

}
+ C

{
‖Y εγ ‖2L2(Q+) + ‖Wε

γ‖2L2(Q−)

}
+ Cγ‖ϕεγ‖2L2(ω) , (6.26)

where C is independent of ε and γ. Thus, if γ0 is large enough, we obtain from (6.26)

and (6.15)

γ‖Y εγ ‖2L2(Q+) + γ‖Wε
γ‖2L2(Q−)

≤ C

γ

{
‖F̃γ‖2L2(Q+) + ‖Y εn,γ |ω‖2L2(ω) + ‖Wε

γ |ω‖2L2(ω)

}
, 0 < ε ≤ ε0 , γ ≥ γ0 , (6.27)

where C is independent of ε and γ.

Tangential derivatives. Now we are going to derive an a priori estimate for the tangential

time-space derivatives of Y ε, Wε. For simplicity, let us denote by Yεγ , Wε
γ the vectors

Yεγ = e−γt

 ∂tY
ε

∂2Y
ε

∂3Y
ε

 , Wε
γ = e−γt

 ∂tWε

∂2Wε

∂3Wε

 . (6.28)

Below it will be sometimes convenient to write ∂0 instead of ∂t. Applying ∂l to (6.9a),

(6.9b) for l = 0, 2, 3, we easily find that the vector-functions Yεγ , Wε
γ must solve the

following system

γǍε0Yεγ + Ǎε0∂tYεγ +
3∑
j=1

Ǎεj∂jYεγ + Ǎε4Yεγ = Fγ in Q+,

γMε
0Wε

γ +Mε
0∂tWε

γ + M̃ε
1∂1Wε

γ +
3∑
k=2

Mε
k∂kWε

γ +Mε
4Wε

γ = Gγ in Q− ,
(6.29)

where

Ǎεj =

 Ǎεj
. . .

Ǎεj

 , j = 0, · · · , 3 ,



30 A. MORANDO, Y. TRAKHININ, AND P. TREBESCHI

Ǎε4 =

 Ǎε4 + ∂tǍ
ε
0 ∂tǍ

ε
2 ∂tǍ

ε
3

∂2Ǎ
ε
0 Ǎε4 + ∂2Ǎ

ε
2 ∂2Ǎ

ε
3

∂3Ǎ
ε
0 ∂3Ǎ

ε
2 Ǎε4 + ∂3Ǎ

ε
3

 ,

Fγ = e−γt

 ∂tF̃ − ∂tǍε1∂1Y
ε − ∂tǍε4Y ε

∂2F̃ − ∂2Ǎ
ε
1∂1Y

ε − ∂2Ǎ
ε
4Y

ε

∂3F̃ − ∂3Ǎ
ε
1∂1Y

ε − ∂3Ǎ
ε
4Y

ε


and

M̃ε
1 =


M̃ε

1

. . .

M̃ε
1

 , Mε
l =

 Mε
l

. . .

Mε
l

 , l = 0, 2, 3 ,

Mε
4 =

 Mε
4 + ∂tM

ε
0 ∂tM

ε
2 ∂tM

ε
3

∂2M
ε
0 Mε

4 + ∂2M
ε
2 ∂2M

ε
3

∂3M
ε
0 ∂3M

ε
2 Mε

4 + ∂3M
ε
3

 ,

Gγ = e−γt

 −∂tM̃ε
1∂1Wε − ∂tMε

4Wε

−∂2M̃
ε
1∂1Wε − ∂2M

ε
4Wε

−∂3M̃
ε
1∂1Wε − ∂3M

ε
4Wε

 .

Arguing as for (6.9), we derive from (6.29) that

γ
∑

l=0,2,3

∫
Q+

e−2γt(Ǎε0∂lY
ε, ∂lY

ε) dx dt

+ γ
∑

l=0,2,3

∫
Q−

e−2γt(Mε
0∂lWε, ∂lWε) dx dt

+
∑

l=0,2,3

1

2

∫
ω

e−2γt
{

(M̃ε
1∂lWε, ∂lWε)− (Ǎε1∂lY

ε, ∂lY
ε)
}
dx′ dt

=
1

2

∫
Q+

 3∑
j=0

∂jǍεj − 2Ǎε4

Yεγ ,Yεγ

 dx dt

+
1

2

∫
Q−

((
∂tMε

0 + ∂1M̃ε
1 +

3∑
k=2

∂kMε
k − 2Mε

4

)
Wε
γ ,Wε

γ

)
dx dt

+

∫
Q+

(Fγ ,Yεγ) dx dt+

∫
Q−

(Gγ ,Wε
γ) dx dt . (6.30)

The source terms Fγ , Gγ appearing in the right-hand sides of (6.29) contain the deriva-

tives of the functions Y εγ , Wε
γ .

Since the normal derivative of the full vacuum unknown Wε
γ is estimated through its

tangential derivatives by (6.14), using also the structure of the matrices Mε
j (cf. (6.7))
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we get∫
Q−

(
Gγ ,Wε

γ

)
dx dt =

∑
l=0,2,3

∫
Q−

e−2γt∂lM̃
ε
1∂1Wε∂lWε dx dt

−
∑

l=0,2,3

∫
Q−

e−2γt∂lM
ε
4Wε∂lWε dx dt

≤ C

γ2‖Wε
γ‖2L2(Q−) +

∑
l=0,2,3

‖∂lWε
γ‖2L2(Q−)

 , (6.31)

where C is independent of ε and γ.

Since the normal derivative of only the noncharacteristic part of the plasma unknown

Y εγ is estimated in (6.13), the source term Fγ requires more attention. Firstly, from the

definition of Fγ we get∫
Q+

(Fγ ,Yεγ) dx dt =
∑

l=0,2,3

∫
Q+

e−2γt∂lF̃ ∂lY
ε dx dt

−
∑

l=0,2,3

∫
Q+

e−2γt∂lǍ
ε
1∂1Y

ε∂lY
ε dx dt−

∑
l=0,2,3

∫
Q+

e−2γt∂lǍ
ε
4Y

ε∂lY
ε dx dt . (6.32)

The first and last integrals in the right-hand side of (6.32) involve only tangential deriva-

tives of Y ε and F̃ . The second integral in the right-hand side of (6.32) contains the

normal derivative of Y ε. But, it follows from the special structure of the matrix Ǎε1 given

in (5.18) that

∂lǍ
ε
1 = ∂lÂε1, l = 0, 2, 3, (6.33)

and (5.19) implies

‖∂lÂε1∂1Y
ε‖L2(Q+) ≤ C‖σ∂1Y

ε‖L2(Q+). (6.34)

By the Cauchy-Schwarz and Young inequalities, (6.32)–(6.34) give the estimate∫
Q+

(Fγ ,Yεγ) dx dt ≤ C

γ

∑
l=0,2,3

‖∂lF̃γ‖2L2(Q+) +
γ

2
‖Y εγ ‖2H1

tan,γ(Q+) , γ ≥ γ0 , (6.35)

where C is independent of ε and γ.

Using the fact that the matrices Ǎε0 and Mε
0 are positive definite uniformly in ε for

ε ≤ ε0, from (6.30), (6.31) and (6.35) we derive

γ
∑

l=0,2,3

‖∂lY εγ ‖2L2(Q+) + γ
∑

l=0,2,3

‖∂lWε
γ‖2L2(Q−)

+
∑

l=0,2,3

∫
ω

Aεl dx′ dt ≤
γ

2
‖Y εγ ‖2H1

tan,γ(Q+)

+ C

 1

γ
‖F̃γ‖2H1

tan,γ(Q+) + γ2‖Wε
γ‖2L2(Q−) +

∑
l=0,2,3

‖∂lWε
γ‖2L2(Q−)

 , γ ≥ γ0 , (6.36)
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where C is independent of ε and γ and, for each l = 0, 2, 3,

Aεl = e−2γt 1

2

{
−(Ǎε1∂lY

ε, ∂lY
ε)|ω + (M̃ε

1∂lWε, ∂lWε)|ω
}

= e−2γt 1

2

{
−ε−1(E1,2∂lY ε, ∂lY ε)|ω + (M̃ε

1∂lWε, ∂lWε)|ω
}

= e−2γt

{
1

2
(M̃ε

1∂lWε, ∂lWε)|ω − ε−1∂lq
′ ε∂lu

ε
1|ω
}
. (6.37)

For the same choices as in (6.21) and (6.24), we obtain for Aεl the following expression

Aεl = e−2γt∂lϕ
ε
{

[∂1q̂](∂lu
ε
1 + ∂1v̂N̂∂lϕ

ε + ε−1∂1v̂N̂∂lq
′ ε

+ (v̂2∂lH
ε
2 + v̂3∂lH

ε
3)(∂2Ĥ2 + ∂3Ĥ3)

+ (∂tĤ2 + ∂3Ê1)(∂lH
ε
2 − εv̂3∂lE

ε
N̂

)

+ (∂tĤ3 − ∂2Ê1)(∂lH
ε
3 + εv̂2∂lE

ε
N̂

)
}

+ l.o.t. , on ω , (6.38)

where l.o.t. is the sum of lower-order terms. The presence of ε−1 in the right-hand side

of (6.38) is not dangerous because ε−1q′ ε is a component of the noncharacteristic part

Y εn of the vector function Y ε. Using (6.16), we reduce the terms involved in (6.38) to

those like

ĉhε1∂lu
ε
1 , ĉhε1∂lϕ

ε , ĉhε1∂lH
ε
j , ĉhε1∂lE

ε
j , . . . on ω ,

terms as above with hε1, uε1 instead of hε1, or even “better” terms like

γĉϕε∂lu
ε
1 , γĉϕε∂lϕ

ε .

Here and below, ĉ denotes a generic coefficient depending on the basic state (2.2). In-

tegrating by parts, such “better” terms can be reduced to the above ones and terms of

lower order.

Concerning the terms like ĉhε1∂lu
ε
1| x1=0, they are estimated by passing to the volume

integral and again integrating by parts:∫
ω

e−2γtĉhε1∂lu
ε
1| x1=0 dx

′ dt = −
∫
Q+

e−2γt∂1 (c̃hε1∂lu
ε
1) dx dt

=

∫
Q+

e−2γt
{

(∂lc̃)h
ε
1(∂1u

ε
1) + c̃(∂lh

ε
1)∂1u

ε
1 − (∂1c̃)h

ε
1∂lu

ε
1 − c̃(∂1h

ε
1)∂lu

ε
1

}
dx dt ,

where c̃|x1=0 = ĉ. To estimate the volume integrals in the right-hand side of the equality

above we only need to control normal derivatives of the noncharacteristic unknown Y εn,γ .

Thus, applying the Cauchy-Schwarz inequality and using (6.13) gives∣∣∣∣∫
ω

e−2γtĉhε1∂lu
ε
1| x1=0 dx

′ dt

∣∣∣∣ ≤ C {‖F̃γ‖2L2(Q+) + ‖Y εγ ‖2H1
tan,γ(Q+)

}
. (6.39)

In the same way we estimate the other similar terms ĉhε1∂lH
ε
j| x1=0, ĉhε1∂lE

ε
j| x1=0,

ĉhε1∂lu
ε
1| x1=0, ĉhε1∂lE

ε
j| x1=0, where, after an integration by parts, again we only need to
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estimate normal derivatives either of components of Y εn,γ or Wε
γ , by using (6.13) and

(6.14).

We treat the terms like ĉhε1| x1=0∂lϕ
ε again by substituting (6.16):

∣∣∣∣∫
ω

e−2γtĉhε1∂lϕ
ε dx′ dt

∣∣∣∣
=

∣∣∣∣∫
ω

ĉhε1,γ
(
â1h

ε
1,γ + â2h

ε
1,γ + â3u

ε
1,γ + â4ϕ

ε
γ + γâ5ϕ

ε
γ

)
dx′ dt

∣∣∣∣
≤ C

{
‖Y εn,γ |ω‖2L2(ω) + ‖Wε

γ |ω‖2L2(ω) + γ2‖ϕεγ‖2L2(ω)

}
. (6.40)

Final estimate. Combining (6.36), (6.39), (6.40), (6.15) and similar estimates for the

other terms in (6.38) yields

γ
∑

l=0,2,3

‖∂lY εγ ‖2L2(Q+) + γ
∑

l=0,2,3

‖∂lWε
γ‖2L2(Q−)

≤ γ

2
‖Y εγ ‖2H1

tan,γ(Q+) + C

{
1

γ
‖F̃γ‖2H1

tan,γ(Q+) + ‖Wε
γ‖2H1

γ(Q−)

+ ‖Y εn,γ |ω‖2L2(ω) + ‖Wε
γ |ω‖2L2(ω)

}
, 0 < ε < ε0 , γ ≥ γ0 , (6.41)

where C is independent of ε, γ. Then adding (6.12), (6.14), (6.27), (6.41) we obtain

γ‖Y εγ ‖2H1
tan,γ(Q+) + γ‖Wε

γ‖2H1
γ(Q−) ≤ C

{
1

γ
‖F̃γ‖2H1

tan,γ(Q+) + ‖Y εγ ‖2H1
tan,γ(Q+)

+ ‖Wε
γ‖2H1

γ(Q−) + γ
(
‖Y εn,γ |ω‖2L2(ω) + ‖Wε

γ |ω‖2L2(ω)

)}
, 0 < ε < ε0 , γ ≥ γ0 , (6.42)

where C is independent of ε, γ.

It remains to produce an estimate for the traces on ω of Y εn,γ and Wε
γ . This is done

following the same arguments of [13].

Lemma 6.2. The functions Y εn,γ and Wε
γ satisfy

γ‖Y εn,γ |ω‖2L2(ω) + ‖Y εn,γ |ω‖2H1/2
γ (ω)

≤ C
(
‖F̃γ‖2L2(Q+) + ‖Y εγ ‖2H1

tan,γ(Q+)

)
,

γ‖Wε
γ |ω‖2L2(ω) + ‖Wε

γ |ω‖2H1/2
γ (ω)

≤ C‖Wε
γ‖2H1

γ(Q−) .

(6.43)

Substituting (6.43) in (6.42) and taking γ0 sufficiently large yields

γ‖Y εγ ‖2H1
tan,γ(Q+) + γ‖Wε

γ‖2H1
γ(Q−)

≤ C

γ
‖F̃γ‖2H1

tan,γ(Q+) , 0 < ε < ε0 , γ ≥ γ0 , (6.44)
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where C is independent of ε, γ. Finally, from (6.15), (6.17), (6.43) we get

γ
(
‖Y εn,γ |ω‖2H1/2

γ (ω)
+ ‖Wε

γ |ω‖2H1/2
γ (ω)

)
+ γ2‖ϕεγ‖2H1

γ(ω)

≤ C

γ
‖F̃γ‖2H1

tan,γ(Q+) , 0 < ε < ε0 , γ ≥ γ0 . (6.45)

Adding (6.44), (6.45) gives (6.2). This completes the proof of Theorem 6.1.

Remark 6.3. For the sequel it is convenient to reformulate Theorem 6.1 in terms of

the original variable qε for the BVP corresponding to (5.1), (5.3), (5.7) when the time

belongs to R, i.e., for the problem

ε2

{
∂tq

ε − (∂tĤ,H
ε)− (Ĥ, ∂tH

ε) +
1

∂1Φ̂1

(ŵ,∇qε)

− 1

∂1Φ̂1

(
ŵ, (∇Ĥ,Hε)

)
− 1

∂1Φ̂1

(
ŵ, (Ĥ,∇Hε)

)}
+

1

∂1Φ̂1

div uε = 0 ,

∂tv
ε +

1

∂1Φ̂1

{
(ŵ,∇)vε − (ĥ,∇)Hε

}
+∇Φ̂q

ε + C1(Ŵ , Ψ̂)W ε = fv ,

∂tH
ε +

1

∂1Φ̂1

{
(ŵ,∇)Hε − (ĥ,∇)vε

}
+C2(Ŵ , Ψ̂)W ε +

Ĥ

∂1Φ̂1

div uε = 0 in Q+ ,

ε ∂th
ε +∇× Eε = 0

ε ∂te
ε −∇× Hε = 0 inQ−,

∂tϕ
ε = uε1 − v̂2∂2ϕ

ε − v̂3∂3ϕ
ε + ϕε∂1v̂N̂ ,

qε = (ĥ,Hε)− [∂1q̂]ϕ
ε − ε(̂e,Eε),

Eε2 = ε ∂t(Ĥ3ϕ
ε)− ε ∂2(Ê1ϕ

ε),

Eε3 = −ε ∂t(Ĥ2ϕ
ε)− ε ∂3(Ê1ϕ

ε) on ω .

(6.46)

Theorem 6.4. Let the basic state (2.2) satisfies assumptions (2.3)-(2.5) and (4.1) for all

times. There exist ε0 > 0, γ0 ≥ 1 such that if 0 < ε < ε0 and γ ≥ γ0 then all sufficiently

smooth solutions (qε, uε, hε,Wε, ϕε) of problem (6.46) obey the estimate

γ
(
‖εqεγ‖2H1

tan,γ(Q+) + ‖(uεγ , hεγ)‖2H1
tan,γ(Q+) + ‖Wε

γ‖2H1
γ(Q−)

+ ‖(qεγ , uε1,γ , hε1,γ)|ω‖2H1/2
γ (ω)

+ ‖Wε
γ |ω‖2H1/2

γ (ω)

)
+ γ‖∇qεγ‖2L2(Q+) + γ2‖ϕεγ‖2H1

γ(ω) ≤
C

γ
‖F̃γ‖2H1

tan,γ(Q+) , (6.47)

where we have set Wε
γ = e−γtWε, ϕεγ = e−γtϕε and so on, and where C = C(K, δ) > 0

is a constant independent of the data F̃ and the parameters ε, γ.
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Proof. From the regularized interior equation (6.46)2 we can express ∇Φ̂q
ε through

conormal derivatives of (u, h) (since ŵ1 = ĥ1 = 0 on ω) by

∇Φ̂q
ε = fv − ∂tvε −

1

∂1Φ̂1

{
(ŵ,∇)vε − (ĥ,∇)Hε

}
− C1(Ŵ , Ψ̂)W ε ,

and we use

∇qε = ∂1Φ̂1Ĵ
T∇Φ̂q

ε.

The rest of the estimate (6.47) comes from (6.2). �

7. Well posedness of the hyperbolic regularized problem. In this section, we

focus on the existence of the solution to the regularized problem (5.25). Here, we follow

a general strategy that is usual for initial-boundary value problems for linear hyperbolic

systems (see e.g. [2], [13]). One firstly reduces the time-dependent problem (5.25) to the

boundary value problem (6.1) (where the time spans the whole real line) by a suitable

time-extension of the data F̃ .3 Then one proves the existence of the solution of the

boundary value problem (6.1) with such an extended data. The restriction to the time

interval (−∞, T ] of the solution to (6.1) will provide the solution of problem (5.25),

(5.26).

As a first step, we prove the existence of the solution of (6.1). Here we rely on

the result obtained by Secchi and Trakhinin in [13], where the plasma-vacuum problem

for the compressible MHD equations was studied. Indeed, for a fixed ε, problem (6.1)

coincides with that in [13] up to the passage to new “scaled” unknowns.4 By applying

[13, Theorem 15] to (6.1) for fixed ε (0 < ε < ε0), we get the following result.

Lemma 7.1. There exist γ0 ≥ 1, ε0 > 0 such that for all γ ≥ γ0, 0 < ε < ε0 and

F̃γ = (0, f̃v , γ , 0) ∈ H1
tan,γ(Q+), vanishing in the past, problem (6.1) has a unique solution

(Y εγ ,Wε
γ , ϕ

ε
γ) ∈ H1

tan,γ(Q+)×H1
γ(Q−)×H3/2

γ (ω) with (Y εn, γ ,Wε
γ)|ω ∈ H1/2

γ (ω).

Remark 7.2. In view of the proof of Theorem 4.1, that will be given in the Section 8,

it is convenient also to restate Lemma 7.1 in terms of the variable qε for the regularized

BVP (6.46).

Lemma 7.3. There exist γ0 ≥ 1, ε0 > 0 such that for all γ ≥ γ0, 0 < ε < ε0 and F̃γ =

(0, f̃v , γ , 0) ∈ H1
tan,γ(Q+), vanishing in the past, problem (6.46) has a unique solution

(qεγ , u
ε
γ , h

ε
γ ,Wε

γ , ϕ
ε
γ) ∈ Ḣ1

γ(Q+)×H1
tan,γ(Q+)×H1

γ(Q−)×H3/2
γ (ω) with εqεγ ∈ H1

tan,γ(Q+)

and (qεγ , u
ε
1,γ , h

ε
1,γ ,Wε

γ)|ω ∈ H1/2
γ (ω).

As we announced before, the existence of a unique solution to the evolution problem

(5.1), (5.3), (5.7) for fixed 0 < ε < ε0 and given data F̃γ ∈ H1
tan,γ(Q+

T ), vanishing in

the past, comes directly from Lemma 7.3 applied to the time-extension of F̃γ . Since

3The extension of the data F̃ beyond T is made by the use of reflection methods of Lions-Magenes,
see [11] and [2] for details. This kind of time-extension keeps the regularity of original data on (−∞, T ].

In particular, it defines a continuous operator from H1
tan,γ(Q+

T ) into H1
tan,γ(Q+), uniformly with respect

to γ.
4More precisely, they coincide if without loss of generality we set ε = 1 and reduce the regularized

linear problem in [13] to a suitable dimensionless form.
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the solution of the BVP (6.46) enjoys the a priori estimate (6.47), then the solution

(qεγ , u
ε
γ , h

ε
γ ,Wε

γ , ϕ
ε
γ) ∈ Ḣ1

γ(Q+
T )×H1

tan,γ(Q+
T )×H1

γ(Q−T )×H3/2
γ (ωT ) to (5.1), (5.3), (5.7)

satisfies the following estimate

γ
(
‖εqεγ‖2H1

tan,γ(Q+
T )

+ ‖(uεγ , hεγ)‖2
H1
tan,γ(Q+

T )
+ ‖Wε

γ‖2H1
γ(Q−T )

+ ‖(qεγ , uε1,γ , hε1,γ)|ωT ‖2H1/2
γ (ωT )

+ ‖Wε
γ |ωT ‖2H1/2

γ (ωT )

)
+ γ‖∇qεγ‖2L2(Q+

T )
+ γ2‖ϕεγ‖2H1

γ(ωT ) ≤
C

γ
‖F̃γ‖2H1

tan,γ(Q+
T )
, (7.1)

where the constant C = CT is independent of ε and γ.

8. Well-posedness of the original linearized problem in conormal Sobolev

spaces. We first prove the well-posedness of problem (2.29) in conormal Sobolev spaces.

Lemma 8.1. Let T > 0. Let the basic state (2.2) satisfy assumptions (2.3)-(2.5) and

(4.1). Then there exists γ0 ≥ 1 such that for all γ ≥ γ0 and for all fv ,γ ∈ H1
tan ,γ(Q+

T )

vanishing in the past, namely for t < 0, problem (2.29) has a unique solution (Uγ ,Hγ , ϕγ)

such that (qγ ,Wγ ,Hγ , ϕγ) ∈ Ḣ1
γ(Q+

T )×H1
tan ,γ(Q+

T )×H1
γ(Q−T )×H1

γ(ωT ) with the trace

(qγ , u1, γ , h1, γ ,Hγ)|ωT ∈ H
1/2
γ (ωT ) and obeys the a priori estimate

γ
(
‖Wγ‖2H1

tan ,γ(Q+
T )

+ ‖∇qγ‖2L2(Q+
T )

+ ‖Hγ‖2H1
γ(Q−T )

+ ‖(qγ , u1, γ , h1, γ ,Hγ)|ωT ‖2H1/2
γ (ωT )

)
+ γ2‖ϕγ‖2H1

γ(ωT ) ≤
C

γ
‖fv,γ‖2H1

tan ,γ(Q+
T )
, (8.1)

where C = C(K,T, δ) > 0 is a constant independent of the data fv and the parameter

γ.

Proof. For every ε > 0, such that 0 < ε < ε0, γ ≥ γ0 (where ε0 and γ0 are given by

Lemma 7.3) and fv, γ ∈ H1
tan,γ(Q+

T ), let (qεγ , u
ε
γ , h

ε
γ ,Wε

γ , ϕ
ε
γ) ∈ Ḣ1

γ(Q+
T )×H1

tan, γ(Q+
T )×

H1
γ(Q−T ) × H

3/2
γ (ωT ) be the unique solution to the ε-regularized problem (5.1), (5.3),

(5.7) with data F̃γ = (0, ∂1Φ̂1Ĵ
T fv, γ , 0).

The a priori estimate (7.1) yields that {∇qεγ , uεγ , hεγ ,Wε
γ , ϕ

ε
γ}0<ε<ε0 and {(qεγ , uε1,γ , hε1,γ ,

Wε
γ)|ωT }0<ε≤ε0 are bounded sequences respectively in L2(Q+

T )×H1
tan, γ(Q+

T )×H1
γ(Q−T )×

H1
γ(ωT ) and H

1/2
γ (ωT ). Thus, one can pass to the weak limit as ε → 0, up to subse-

quences.

In particular,

(∇qεγ , uεγ , hεγ ,Wε
γ , ϕ

ε
γ) ⇀ (rγ , uγ , hγ ,Wγ , ϕγ)

in L2(Q+
T )×H1

tan,γ(Q+
T )×H1

γ(Q−T )×H1
γ(ωT ) , with

rγ = ∇qγ , qγ ∈ Ḣ1
γ(Q+

T ), (uγ , hγ) ∈ H1
tan, γ(Q+

T ),

Wγ = (Hγ ,Eγ) ∈ H1
γ(Q−T ), ϕγ ∈ H1

γ(ωT ).

We also define vγ = Ĵuγ and, similarly, we define Hγ , Hγ , Eγ through hγ , Hγ , Eγ .
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Firstly, we pass to the limit as ε→ 0 in (5.1a), restated for q′ ε = εqε. Using that q′ ε

is bounded in H1
tan,γ(Q+

T ) from estimate (7.1), we get that the limit u of {uε} satisfies

div u = 0 in Q+
T . (8.2)

Secondly, passing to the limit as ε→ 0 in the other equations of problem (5.1), (5.3), (5.7)

we get that (v,H,H, ϕ) solves the original problem (2.30), and one has that E = E = 0.

Passing to the limit as ε → 0 in the a priori estimate (7.1), we get estimate (8.1) of

(∇q, v,H,H, ϕ) (recall that v = Ĵu, H = Ĵh). This estimate gives the uniqueness of the

solution. �

9. Current-vorticity-type linearized system: proof of Theorem 4.1. Just as

in (6.13), from (2.30a) and (2.31) we can estimate the normal derivatives of the normal

components of the velocity and the plasma magnetic field through conormal derivatives

and the source term:

‖∂1(u1, γ , h1, γ)‖2L2(Q+) ≤ C
{
‖Wγ‖2H1

tan ,γ(Q+) + ‖qγ‖2Ḣ1
tan(Q+)

+ ‖fv,γ‖2L2(Q+)

}
,

with

‖u‖2
Ḣ1
tan(Q+)

=
∑
|α|=1

‖∂αtanu‖2L2(Q+).

Then, it follows from Lemma 8.1 that there exist ∂1u1, γ ∈ L2(Q+
T ) and ∂1h1, γ ∈ L2(Q+

T )

obeying the estimate

‖∂1(u1, γ , h1, γ)‖L2(Q+) ≤
C

γ
‖fv,γ‖H1

tan ,γ(Q+
T ). (9.1)

To prove the existence of missing normal derivatives of Wγ (and obtain estimates

for them) we use arguments similar to those in [12] for incompressible current-vortex

sheets. That is, we write down a current-vorticity-type linearized system which is a

linear symmetric hyperbolic system for the linearized vorticity ξγ = ∇× Uγ and current

zγ = ∇×Bγ , where

Uγ = e−γtU, U = (v1∂1Φ̂1, vτ̂2 , vτ̂3), vτ̂i = v1∂iΨ̂ + vi, i = 2, 3,

Bγ = e−γtB, B = (H1∂1Φ̂1, Hτ̂2 , Hτ̂3), Hτ̂i = H1∂iΨ̂ +Hi, i = 2, 3.

For obtaining this system we rewrite equations (2.30a) and (2.30b) as

∂tUγ + γUγ +
1

∂1Φ̂1

{
(ŵ,∇)Uγ − (ĥ,∇)Bγ

}
+∇qγ + l.o.t.(1) = f̃v,γ ,

∂tBγ + γBγ +
1

∂1Φ̂1

{
(ŵ,∇)Bγ − (ĥ,∇)Uγ

}
+ l.o.t.(2) = 0 in Q+

T ,

(9.2)

where

f̃v,γ = e−γtf̃v, f̃v = (f1∂1Φ̂1, fτ̂2 , fτ̂3), fτ̂i = f1∂iΨ̂ + fi, i = 2, 3,

and l.o.t.(k) (k = 1, 2) represent lower-order terms whose exact forms have no meaning

(they are linear combinations of components of Wγ).
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Applying the curl operator to (9.2) and using the fact that ∂1u1, γ and ∂1h1, γ can be

expressed through conormal derivatives, we obtain the current-vorticity-type system

∂tZγ + γZγ +
1

∂1Φ̂1

(
ŵ · ∇ −ĥ · ∇
−ĥ · ∇ ŵ · ∇

)
Zγ + C(Ŵ , Ψ̂)Zγ = F in Q+

T , (9.3)

where

Zγ =

(
ξγ
zγ

)
, F =

(
∇× f̃v,γ + l.o.t.(1)

l.o.t.(2)

)
,

the coefficients of the matrix C = C(Ŵ , Ψ̂) are of no interest and l.o.t.(k) (k = 1, 2)

represent linear combinations of components of Wγ and its conormal derivatives. Clearly,

(9.3) is a symmetric hyperbolic system for the vector Zγ , provided the right-hand side

F is given. It is worth noting that, in view of Lemma 8.1, F ∈ L2(Q+
T ). Since ŵ1|ωT =

ĥ1|ωT = 0 (see (2.4c), (2.5)), the linear symmetric hyperbolic system (9.3) does not need

any boundary conditions on ωT . Thanks to classical results the Cauchy problem for this

system has a unique strong solution Zγ ∈ L2(Q+
T ) obeying the estimate

‖Zγ‖2 ≤
C

γ2
‖F‖2

L2(Q+
T )
≤ C

γ2

{
‖Wγ‖2H1

tan ,γ(Q+) + ‖fv,γ‖2H1
γ(Q+)

}
. (9.4)

Since the components of W can be expressed through u1, h1 and the components of

U and B, we can express ∂1Wγ through ∂1u1, γ , ∂1h1, γ , ξγ and zγ . Hence, there exists

∂1Wγ ∈ L2(Q+
T ). Moreover, estimates (8.1), (9.1) and (9.4) imply the a priori estimate

(4.2). This completes the proof of Theorem 4.1.
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