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Abstract: We consider the free boundary problem for current-vortex sheets in ideal1

incompressible magneto-hydrodynamics. It is known that current-vortex sheets may be2

at most weakly (neutrally) stable due to the existence of surface waves solutions to the3

linearized equations. The existence of such waves may yield a loss of derivatives in the4

energy estimate of the solution with respect to the source terms. However, under a suit-5

able stability condition satisfied at each point of the initial discontinuity and a flatness6

condition on the initial front, we prove an a priori estimate in Sobolev spaces for smooth7

solutions with no loss of derivatives. The result of this paper gives some hope for proving8

the local existence of smooth current-vortex sheets without resorting to a Nash-Moser9

iteration. Such result would be a rigorous confirmation of the stabilizing effect of the10

magnetic field on Kelvin-Helmholtz instabilities, which is well known in astrophysics.11

1. Introduction12

1.1. The Eulerian description. We consider the equations of incompressible magneto-13

hydrodynamics (MHD), i.e. the equations governing the motion of a perfectly conducting14

inviscid incompressible plasma. In the case of a homogeneous plasma (the density ρ ≡15

const > 0), the equations in a dimensionless form read:16

⎧
⎪⎨

⎪⎩

∂t u + ∇ · (u ⊗ u − H ⊗ H) + ∇q = 0 ,
∂t H − ∇ × (u × H) = 0 ,
div u = 0 , div H = 0 ,

(1)17

where u = (u1, u2, u3) denotes the plasma velocity, H = (H1, H2, H3) is the magnetic18

field (in Alfvén velocity units), q = p+|H |2/2 is the total pressure, p being the pressure.19
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For smooth solutions, system (1) can be written in equivalent form as20

⎧
⎪⎨

⎪⎩

∂t u + (u · ∇)u − (H · ∇)H + ∇q = 0 ,
∂t H + (u · ∇)H − (H · ∇)u = 0 ,
div u = 0 , div H = 0.

(2)21

We are interested in weak solutions of (1) that are smooth on either side of a smooth22

hypersurface �(t) = {x3 = f (t, x ′)} in [0, T ] ×�, where � ⊂ R
3, x ′ = (x1, x2) and23

that satisfy suitable jump conditions at each point of the front �(t). For simplicity we24

assume that the density is the same constant on either side of �(t).25

Let us denote �±(t) = {x3 ≷ f (t, x ′)}, where � = �+(t) ∪ �−(t) ∪ �(t); given26

any function g we denote g± = g in �±(t) and [g] = g+|� − g−
|� the jump across �(t).27

We look for smooth solutions (u±, H±, q±) of (2) in �±(t) such that �(t) is a tan-28

gential discontinuity, namely the plasma does not flow through the discontinuity front29

and the magnetic field is tangent to �(t), see e.g. [8], so that the boundary conditions30

take the form31

σ = u± · n , H± · n = 0 , [q] = 0 on �(t).32

Here n = n(t) denotes the outward unit normal on ∂�−(t) and σ denotes the velocity33

of propagation of the interface �(t). With our parametrization of �(t), an equivalent34

formulation of these jump conditions is35

∂t f = u± · N , H± · N = 0 , [q] = 0 on �(t) , (3)36

with N := (−∂1 f,−∂2 f, 1). Notice that the function f describing the discontinuity37

front is part of the unknown of the problem, i.e. this is a free boundary problem.38

System (2), (3) is supplemented with initial conditions39

u±(0, x) = u±
0 (x) , H±(0, x) = H±

0 (x) , x ∈ �±(0) ,
f (0, x ′) = f0(x ′) , x ′ ∈ �(0), (4)40

where div u±
0 = div H±

0 = 0 in �±(0). The aim of this article is to show a priori esti-41

mates for smooth solutions to (2), (3), (4). This must be seen as a preliminary step before42

proving the existence and uniqueness of solutions to (2), (3), (4). The result of this paper43

gives some hope for proving the local existence of smooth current-vortex sheets without44

resorting to a Nash-Moser iteration. Such result would be a rigorous confirmation of the45

stabilizing effect of the magnetic field on Kelvin-Helmholtz instabilities, which is well46

known in astrophysics.47

Current-vortex sheets have various interesting applications in astrophysics. For48

instance, an accepted model in the literature for the interface region between the unper-49

turbed flows of the interstellar plasma and the supersonic solar wind plasma is given by50

a current-vortex sheet separating the interstellar plasma compressed at the bow shock51

from the solar wind plasma compressed at the termination shock, see [11] and refer-52

ences therein. This current-vortex sheet is called the heliopause, and in some sense can53

be considered as the outer boundary of the solar system.54

In recent years there has been a renewed interest in the analysis of free interface55

problems in fluid dynamics, especially for the Euler equations in vacuum and the water56

waves problem, see [6,7] and the references therein. This fact has produced different57

methodologies for obtaining a priori estimates and the proof of existence of solutions.58

If the interface moves with the velocity of fluid particles, a natural approach consists59

2 2 0 1 3 4 0
Jour. No Ms. No.

B Dispatch: 15/9/2011
Total pages: 29
Disk Received
Disk Used

Journal: Commun. Math. Phys.
Not Used
Corrupted
Mismatch



R
ev

is
ed

 P
ro

of

Incompressible Current-Vortex Sheets

in the introduction of Lagrangian coordinates, that reduces the original problem to a60

new one on a fixed domain. This approach has been recently employed with success61

in a series of papers by Coutand and Shkoller on the incompressible and compressible62

Euler equations in vacuum, see [6,7]. However, this method seems hardly applicable to63

problem (2), (3), (4).64

In the present paper we follow a different approach. To reduce our free boundary65

problem to the fixed domain, we consider a change of variables inspired from Lannes66

[9]. The control of the function describing the free interface follows from a stability67

condition introduced by Trakhinin in [14]. The a priori estimate in Sobolev norm of68

the solution is then obtained by showing the boundedness of a higher-order energy69

functional.70

1.2. The reference domain�. To avoid using local coordinate charts necessary for arbi-71

trary geometries, and for simplicity, we will assume that the space domain � occupied72

by the fluid is given by73

� := {(x1, x2, x3) ∈ R
3 | x ′ = (x1, x2) ∈ T

2 , x3 ∈ (−1, 1)} ,74

where T
2 denotes the 2-torus, which can be thought of as the unit square with periodic75

boundary conditions. This permits the use of one global Cartesian coordinates system.76

We also set77

�± := � ∩ {x3 ≷ 0} , � := � ∩ {x3 = 0}.78

On the top and bottom boundaries79

�± := {(x ′,±1) , x ′ ∈ T
2}80

of the domain �, we prescribe the usual boundary conditions81

u3 = H3 = 0 on [0, T ] × �±. (5)82

The moving discontinuity front is given by83

�(t) := {(x ′, x3) ∈ T
2 × R , x3 = f (t, x ′)} ,84

where it is assumed that −1 < f (t, ·) < 1.85

1.3. An equivalent formulation in the fixed domain �. To reduce the free boundary86

problem (2), (3), (4), (5) to the fixed domain �, we introduce a suitable change of vari-87

ables that is inspired from [9]. This choice is motivated below. In all that follows, Hs(ω)88

denotes the Sobolev space of order s on a domain ω. We recall that on the torus T
2,89

Hs(T2) can be defined by means of the Fourier coefficients and coincides with the set90

of distributions u such that91

∑

n∈Z2

(
1 + |n|2)s |cn(u)|2 < +∞ ,92

cn(u) denoting the nth Fourier coefficient of u. The following lemma shows how to lift93

functions from � to �.94
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Lemma 1 ([9]). Let m ≥ 1 be an integer. Then there exists a continuous linear map95

f ∈ Hm−0.5(�) �→ ψ ∈ Hm(�) such that ψ(x ′, 0) = f (x ′) on �, ψ(x ′,±1) = 0 on96

�±, and moreover ∂3ψ(x ′, 0) = 0 if m ≥ 2.97

For the sake of completeness, we recall the proof of Lemma 1 in Sect. 7 at the end98

of this article. The following lemma gives the time-dependent version of Lemma 1.99

Lemma 2. Let m ≥ 1 be an integer and let T > 0. Then there exists a continuous linear100

map101

f ∈ ∩m−1
j=0 C j ([0, T ]; Hm− j−0.5(T2)) �→ ψ ∈ ∩m−1

j=0 C j ([0, T ]; Hm− j (�))102

such that ψ(t, x ′, 0) = f (t, x ′), ψ(t, x ′,±1) = 0, and moreover ∂3ψ(t, x ′, 0) = 0 if103

m ≥ 2. Furthermore, there exists a constant C > 0 that is independent of T and only104

depends on m, such that105

∀ f ∈ ∩m−1
j=0 C j ([0, T ]; Hm− j−0.5(T2)) , ∀ j = 0, . . . ,m − 1 , ∀t ∈ [0, T ] ,106

‖∂ j
t ψ(t, ·)‖Hm− j (�) ≤ C ‖∂ j

t f (t, ·)‖Hm− j−0.5(T2).107

The proof of Lemma 2 is also postponed to Sect. 7. The diffeomorphism that reduces the108

free boundary problem (2), (3), (4), (5) to the fixed domain � is given in the following109

lemma.110

Lemma 3. Let m ≥ 3 be an integer. Then there exists a numerical constant ε0 > 0111

such that for all T > 0, for all f ∈ ∩m−1
j=0 C j ([0, T ]; Hm− j−0.5(T2)) satisfying112

‖ f ‖C([0,T ];H2.5(T2)) ≤ ε0, the function113


(t, x) := (
x ′, x3 + ψ(t, x)

)
, (t, x) ∈ [0, T ] ×�, (6)114

with ψ as in Lemma 2, defines an Hm-diffeomorphism of � for all t ∈ [0, T ]. More-115

over, there holds ∂ j
t 
 ∈ C([0, T ]; Hm− j (�)) for j = 0, . . . ,m − 1, 
(t, x ′, 0) =116

(x ′, f (t, x ′)), 
(t, x ′,±1) = (x ′,±1), ∂3
(t, x ′, 0) = (0, 0, 1), and117

∀ t ∈ [0, T ] , ‖ψ(t, ·)‖W 1,∞(�) ≤ 1

2
.118

Proof of Lemma 3. The proof follows directly from Lemma 2 and the Sobolev Imbedding119

Theorem, because120

∂3
3(t, x) = 1 + ∂3ψ(t, x) ≥ 1 − ‖ψ(t, ·)‖C([0,T ];W 1,∞(�))121

≥ 1 − C ‖ f ‖C([0,T ];H2.5(T2)) ≥ 1/2 ,122

provided that f is taken sufficiently small in C([0, T ]; H2.5(T2)). In the latter inequal-123

ity, C denotes a numerical constant. The other properties of 
 follow directly from124

Lemma 2. ��125

We set126

A := [D
]−1 (inverse of the Jacobian matrix) ,
J := det [D
] (determinant of the Jacobian matrix) ,
a := J A (transpose of the cofactor matrix) ,

127

128
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and we compute129

A =
⎛

⎝
1 0 0
0 1 0

−∂1ψ/J −∂2ψ/J 1/J

⎞

⎠ , J = 1 + ∂3ψ , a =
⎛

⎝
J 0 0
0 J 0

−∂1ψ −∂2ψ 1

⎞

⎠ .130

(7)131

We already observe that under the smallness condition of Lemma 3, all coordinates of A132

are bounded by 2 and J ∈ [1/2; 3/2]. Now we may reduce the free boundary problem (2),133

(3), (4), (5) to a problem in the fixed domain� by the change of variables (6). Let us set134

v±(t, x) :=u±(t, 
(t, x)) , B±(t, x) := H±(t, 
(t, x)) , Q±(t, x) :=q±(t, 
(t, x)).135

Then system (2), (3), (4), (5) can be reformulated on the fixed reference domain � as136

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tv
± + (ṽ± · ∇)v± − (B̃± · ∇)B± + AT ∇Q± = 0 ,

∂t B± + (ṽ± · ∇)B± − (B̃± · ∇)v± = 0 ,
(AT ∇) · v± = 0 , (AT ∇) · B± = 0 , in [0, T ] ×�± ,
∂t f = v± · N , B± · N = 0 , [Q] = 0 , on [0, T ] × � ,

v±
3 = B±

3 = 0 , on [0, T ] × �± ,
v±
|t=0 = v±

0 , B±
|t=0 = B±

0 , on �± ,
f|t=0 = f0 , on �.

(8)137

In (8), we have set138

N := (−∂1ψ,−∂2ψ, 1),139

ṽ := A v − (0, 0, ∂tψ/J ) = (v1, v2, (v · N − ∂tψ)/J ) , (9)140

B̃ := A B = (B1, B2, B · N/J ).141

Vectors are written indifferently in rows or columns in order to simplify the redaction.142

Notice that143

J = 1 , N = (−∂1 f,−∂2 f, 1) on � , ṽ3 = B̃3 = 0 on � and �±. (10)144

We warn the reader that in (8), the notation AT is used to denote the transpose of A and145

has nothing to do with the time interval [0, T ] on which the smooth solution is sought.146

We hope that this does not create any confusion.147

1.4. The main result.148

1.4.1. The linearized stability conditions. The necessary and sufficient linear stability149

conditions for planar (constant coefficients) current-vortex sheets was found a long time150

ago by Syrovatskii [13] and Axford [2]. Let us consider constant vectors u±, H± satis-151

fying (3) with the planar front f (t, x ′) ≡ σ t + ξ ′ · x ′ and constant pressures q± ≡ 0.152

(Here we consider for this paragraph that x ′ belongs to R
2 instead of T

2 and x3 ∈ R.153

This is however of no consequence on what follows.) The linear stability conditions for154

such piecewise constant solutions to (1) read155

|[u]|2 ≤ 2
(
|H+|2 + |H−|2

)
, (11a)156

|H+ × [u]|2 + |H− × [u]|2 ≤ 2 |H+ × H−|2. (11b)157
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Under the additional assumption H+ × H− �= 0, then (11a) follows from (11b) and the158

strict inequality in (11a) follows from the strict inequality in (11b). The case of equality159

in (11b) corresponds to the transition to violent instability, i.e. ill-posedness of the lin-160

earized problem. In the region of parameters defined by (11), the associated linearized161

equations admit surface waves of the form exp(i τ t + i η · x ′ − |η| |x3|) for η ∈ R
2\{0}162

and some suitable τ ∈ R, see [2,13] or [4, p. 510]. We also refer to [1] for the derivation163

of weakly nonlinear surface waves.164

The interior of the set of parameters described by (11) is defined by the condition165

|H+ × [u]|2 + |H− × [u]|2 < 2 |H+ × H−|2. (12)166

In particular, H+ × H− �= 0 and (11a) becomes redundant. The condition (12) is always167

satisfied for current sheets, i.e. if [u] = 0 and H+ × H− �= 0. If [u] �= 0, condition (12)168

can be rewritten as169

|[u]| <
√

2 |H+| |H−| | sin(ϕ+ − ϕ−)|
√

|H+|2 sin2 ϕ+ + |H−|2 sin2 ϕ− ,170

where ϕ± denotes the oriented angle between [u] and H±.171

Under the “spectral stability condition” (12), Morando, Trakhinin and Trebeschi [10]172

have shown an a priori estimate with a loss of three derivatives for solutions to the line-173

arized equations with constant coefficients. In this paper we shall consider the following174

more restrictive situation:175

max
(
|H+ × [u]|, |H− × [u]|

)
< |H+ × H−|. (13)176

Under the latter more restrictive stability condition, which represents “half” of the sta-177

bility domain defined by (12), Trakhinin [15] has shown an a priori estimate in the178

anisotropic space H1∗ , without loss of derivatives from the data, for solutions of the lin-179

earized incompressible equations with variable coefficients. Similar stability conditions180

have also been considered by Trakhinin for the analysis of linearized and nonlinear sta-181

bility of compressible current-vortex sheets, see [5,14,16]. The choice of the space H1∗182

in [15] was motivated by the fact that the free boundary �(t) is characteristic. However,183

we shall prove here that no loss of derivatives in the normal direction to the boundary184

occurs and we shall obtain estimates in standard Sobolev spaces. Though there is no185

loss of derivatives from the source terms of the equations to the solution in the main a186

priori estimate of [15], the regularity assumptions on the coefficients are rather strong187

(stronger than what we shall assume here), and it is not so clear that the estimate in188

H1∗ is sufficient to prove an estimate in some Hm∗ , m large enough, with coefficients in189

the same space Hm∗ . There are even strong reasons to believe that with the formulation190

of [15], a loss of regularity will occur with respect to the coefficients of the linearized191

equations.192

Our goal here is to prove a closed estimate where coefficients are estimated in the193

same space as the data. As a matter of fact, we have found it more convenient to work194

directly on solutions to the nonlinear equations. Since we are considering classical solu-195

tions in three space dimensions, our a priori estimate will be proved in H3(�), a space196

that is imbedded in W 1,∞ by the Sobolev Imbedding Theorem.197
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1.4.2. The main result. For a pair of functions u = (u+, u−) ∈ Hs(�+) × Hs(�−),198

with real s ≥ 1, we will shortly write199

‖u+‖s,+ := ‖u+‖Hs (�+) , ‖u−‖s,− := ‖u−‖Hs (�−) ,
‖u±‖s,± := ‖u+‖s,+ + ‖u−‖s,−.

200

We also let | · |p,± denote the L p norm on �±, and | · |p denote the L p norm on � for201

p ≥ 1 and p �= 2; the L2 norm on �± is denoted by ‖ · ||±. Our main result reads as202

follows.203

Theorem 4. Let δ0 ∈ ]0, 1/2], let R > 0, and let v±
0 , B±

0 ∈ H4(�±), f0 ∈ H4.5(T2)204

satisfy205

∀ x ′ ∈ T
2 , |B+

0 × B−
0 (x

′, 0)| ≥ δ0 ,206

max
(|B+

0 × [v0] (x ′, 0)|, |B−
0 × [v0] (x ′, 0)|) ≤ (1 − δ0) |B+

0 × B−
0 (x

′, 0)| , (14)207

‖v±
0 ‖3,± + ‖B±

0 ‖3,± + ‖ f0‖H3.5(T2) ≤ R.208

Then there exist ε1 > 0, T0 > 0 and C1 > 0 that depend only on δ0 and R such209

that if ‖ f0‖H2.5(T2) ≤ ε1, then for all solutions (v±, B±, Q±) ∈ C([0, T ]; H4(�±)),210

f ∈ C([0, T ]; H4.5(T2)) to (8) satisfying (without loss of generality)211

∫

�−
Q−(t, x) dx +

∫

�+
Q+(t, x) dx = 0 ,212

for all t ∈ [0, T ], the following estimates hold:213

‖v±(t)‖3,± + ‖B±(t)‖3,± + ‖Q±(t)‖3,±+ ‖ f (t)‖H3.5(T2) ≤ C1 ,

‖ f (t)‖H2.5(T2) ≤ 2 ε1 ,
(15)214

for all t ∈ [0,min{T, T0}].215

Directly from (8) and (15) a uniform estimate readily follows for ‖∂tv
±(t)‖2,±,216

‖∂t B±(t)‖2,± and ‖∂t f (t)‖H2.5(T2).217

The first two conditions (14) are nothing but a uniform version of (13) on the initial218

front. Then our main result gives a uniform control of solutions to (8) provided that a219

flatness condition is satisfied by the initial front. The main result also shows that the220

front remains sufficiently flat on a small time interval. The main interest of Theorem 4221

is to show that energy estimates without loss of derivatives can be proved for (8) in the222

framework of standard Sobolev spaces. We hope that in the near future, our approach223

will yield an existence and uniqueness result for (8) without using a Nash-Moser itera-224

tion. As far as we know, no existence result has been proved yet for (8), with or without225

a Nash-Moser iteration.226

We can imagine many different possibilities where our “nonlinear” estimate can help227

for an existence theorem. First of all, a similar a priori estimate without loss of deriv-228

atives for the linearized problem could enable one to prove existence for the nonlinear229

problem by a standard fixed-point argument. The solution could be found as well by230

a fixed-point argument by the resolution of a sequence of linearized equations, with231

an approach resembling the one introduced in [12]. Alternatively, one can try to find232

the solution in the limit of a suitable approximation, chosen to preserve as much of the233

boundary behavior as possible. In this respect see the interesting parabolic regularization234

in [7].235
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Our “nonlinear” estimate can be useful as well for optimal regularity of solutions.236

Assume for instance that solutions of the nonlinear problem are found either by a suitable237

Nash-Moser iteration (for highly regular initial data), or by some kind of Cauchy-Ko-238

waleskaya argument in the analytic framework (for analytical initial data). Given general239

H3 data, one can construct a sequence of regularized data, and find the corresponding240

highly regular solutions by one of the above methods. Then our Theorem 4 directly241

gives compactness (and thus strong convergence) of such a sequence of approximate242

solutions. In the limit one finds the solution with optimal H3 regularity.243

We will investigate the problem of existence with regularity as in Theorem 4 in a244

future work.245

1.4.3. Strategy of the proof. We consider the following energy functional246

E(t) := ‖v±(t), B±(t)‖2
3,± + ‖Q±(t)‖2

3,± + ‖ f (t)‖2
H3.5(T2)

+ ‖∂t f (t)‖2
H2.5(T2)

.247

(16)248

Even though this function is not conserved, it is possible to show that supt∈[0,T0] E(t)249

remains uniformly bounded for sufficiently smooth solutions to (8), whenever T0 > 0 is250

taken sufficiently small (T0 being independent of the solution that we are considering).251

The strategy for proving Theorem 4 is the following: we first estimate the velocity and252

magnetic field by showing energy estimates on their tangential derivatives (meaning the253

∂1 and ∂2 derivatives), on their divergence and on their curl. Computing the curl equation254

is the crucial point if one wants to use standard Sobolev spaces (this is one difference255

with [15]). The front f will be estimated directly from the boundary conditions in (8).256

Eventually, the pressure will be estimated by showing that Q± satisfy an elliptic system257

with source terms depending only on v±, B±, f which have been estimated previously.258

Then we shall combine all these estimates to show that they yield a uniform control of259

solutions on a time interval that only depends on the size of the initial data.260

Not so surprisingly, Theorem 4 requires an additional degree of regularity on the261

solution compared to the space in which we prove the estimate. This technical point is262

assumed only to justify all computations below (integration by parts and so on). This263

is exactly the same as when one proves a priori estimates for solutions to first order264

hyperbolic problems and in many aspects our analysis is closely linked to techniques265

used in hyperbolic boundary problems with characteristic boundaries. In particular, if266

we believe that coefficients of the differential operators in (8) should have the same267

regularity as the solution to (8), then A should belong to H3 if v±, B± belong to H3.268

This forces the lifting ψ of the front f to belong to H4 and this is where it is crucial269

to gain half-derivative from f to ψ . This is the reason why we have adopted the same270

lifting procedure as in [9].271

2. Estimate of Tangential Derivatives272

2.1. Uniform control of low order derivatives. From now on we consider a time T ′ > 0273

such that we have for our given solution the uniform estimates:274

∀ t ∈ [0, T ′] , ‖ f (t, ·)‖H2.5(T2) ≤ ε0 , (17a)275

‖v±(t)− v±
0 , B±(t)− B±

0 ‖2,± ≤ ε0 , (17b)276
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where in (17), the numerical constant ε0 is given by Lemma 3. Let us already observe277

that with our choice of ε0, (17a) implies278

∀ (t, x) ∈ [0, T ′] ×�, |∇ψ(t, x)| ≤ 1

2
.279

Moreover, the Sobolev Imbedding Theorem implies that the H2 norm dominates the L∞
280

norm on�± so we can further restrict ε0, depending only on δ0, such that the following281

inequalities are implied by (17b):282

∀ (t, x ′) ∈ [0, T ′] × T
2 , |B+ × B− (t, x ′, 0)| ≥ δ0

2
, (18a)283

∀ (t, x ′) ∈ [0, T ′] × T
2 ,

max
(|B+ × [v] (t, x ′, 0)|, |B− × [v] (t, x ′, 0)|)

|B+ × B− (t, x ′, 0)| ≤ 1 − δ0

2
.284

(18b)285

Of course, the time T ′ chosen above a priori depends on the particular solution that we286

are considering, and one of our goals is to show below that T ′ can be chosen to depend287

only on δ0 and on the norm R of the initial data.288

We will denote generic numerical constants (for instance constants that appear in289

Sobolev imbeddings) by the same letter C or by M0. Such constants are allowed to290

depend only on δ0 and R. We also let F denote a generic nonnegative, nondecreas-291

ing function which does not depend on the solution. In particular, we feel free to use292

F + F = F , F × F = F and so on. We shall sometimes write u(t) instead of u(t, ·), for293

some given function u depending on t and x . For shortness we shall write ‖v±, B±‖3,±294

for ‖v±‖3,± + ‖B±‖3,±, and similarly for ‖∂tv
±, ∂t B±‖2,± and other quantities. Let us295

now turn to the derivation of L2 estimates for tangential derivatives of the velocity and296

magnetic field.297

2.2. Estimates of tangential derivatives. Let us denote by ∂ = (∂1, ∂2) the horizontal298

(tangential) derivatives. Inspired from [14,15] we define on [0, T ] the energy functional299

H(t) := 1

2

∑

±

∑

|α|≤3

∫

�±

(
1 −λ±

−λ± 1

) (
∂
α
v±

∂
α

B±
)

·
(
∂
α
v±

∂
α

B±
)

dx , (19)300

where λ± = λ(v±, B±) is a C1 function that will be chosen appropriately later on. In301

particular, the choice of λ± will be made so that we have302

‖λ+‖L∞([0,T ′]×�+) < 1 , ‖λ−‖L∞([0,T ′]×�−) < 1 , (20)303

which will imply that the matrix in the integrals defining H(t) is positive definite (hence304

we shall recover a control of the tangential derivatives of the solution).305

We compute the time derivative306

H′(t) = 1

2

∑

±

∑

|α|≤3

∫

�±

(
0 −∂tλ

±
−∂tλ

± 0

)(
∂
α
v±

∂
α

B±
)

·
(
∂
α
v±

∂
α

B±
)

dx307

+
∑

±

∑

|α|≤3

∫

�±

(
1 −λ±

−λ± 1

)(
∂
α
∂tv

±
∂
α
∂t B±

)

·
(
∂
α
v±

∂
α

B±
)

dx308
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= −
∑

±

∑

|α|≤3

∫

�±
∂tλ

± ∂αv± · ∂αB± dx309

−
∑

±

∑

|α|≤3

∫

�±

(
1 −λ±

−λ± 1

)(D1
D2

)

·
(
∂
α
v±

∂
α

B±
)

dx310

=
5∑

p=1

Hp(t) , (21)311

(D1
D2

)

=
⎛

⎝
∂
α
{
(ṽ± · ∇)v± − (B̃± · ∇)B± + AT ∇ Q±

}

∂
α
{
(ṽ± · ∇)B± − (B̃± · ∇)v±

}

⎞

⎠ ,312

where each term Hp in the decomposition will be defined below, and we leave it as a313

very simple exercise to the reader to check that the sum of all these terms coincides with314

the time derivative H′(t). We now define and estimate all the terms in the decomposition315

of H′(t). We first consider316

H1(t) := −
∑

±

∑

|α|≤3

∫

�±
∂tλ

± ∂αv± · ∂αB± dx ,317

which is trivially estimated by318

∀ t ∈ [0, T ′] , |H1(t)| ≤ C E(t)
∑

±
‖∂tλ

±‖L∞(�±). (22)319

Next we consider some of the terms with the highest number of derivatives. Let us define320

H2(t)

:=−
∑

±

∑

|α|≤3

∫

�±

(
1 −λ±

−λ± 1

)(
(ṽ± · ∇)∂αv± − (B̃± · ∇)∂αB±
(ṽ± · ∇)∂αB± − (B̃± · ∇)∂αv±

)

·
(
∂
α
v±

∂
α

B±
)

dx .321

This term is estimated by integrating by parts and recalling the boundary condition (10).322

We obtain323

H2(t) =
∑

±

∑

|α|≤3

∫

�±
1

2

(
div ṽ± + div (λ± B̃±)

) (
|∂αv±|2 + |∂αB±|2

)
324

−
(

div B̃± + div (λ±ṽ±)
)
∂
α
v± · ∂αB± dx ,325

from which we already get326

|H2(t)| ≤ C E(t)
∑

±
‖div ṽ±, div B̃±‖L∞(�±) + ‖div (λ±ṽ±), div (λ± B̃±)‖L∞(�±).327

Using the expression of ṽ±, B̃±, we get (recall that the estimate (17a) implies in partic-328

ular 1 + ∂3ψ ≥ 1/2)329

∀ t ∈ [0, T ′] , ‖div ṽ±, div B̃±‖L∞(�±) ≤ F(E(t)) ,330

‖div (λ±ṽ±), div (λ± B̃±)‖L∞(�±) ≤ F(E(t)) ‖λ±‖W 1,∞(�±).331
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We thus end up with332

∀ t ∈ [0, T ′] , |H2(t)| ≤ F(E(t))
(

1 +
∑

±
‖λ±‖W 1,∞(�±)

)
. (23)333

Let us now consider the term334

H3(t) := −
∑

±

∑

|α|≤3

∫

�±

(
1 −λ±

−λ± 1

)(
AT ∇ (∂αQ±)

0

)

·
(
∂
α
v±

∂
α

B±
)

dx335

= −
∑

±

∑

|α|≤3

∫

�±
AT ∇ (∂αQ±) ·

{
∂
α
v± − λ± ∂αB±} dx .336

This is the term which requires the most careful analysis. We first observe that the term337

in the sum which corresponds to α = 0 (no tangential derivative) is estimated in an338

elementary way by Cauchy-Schwarz inequality, and admits an upper bound that is the339

same as in (23). We thus feel free to slightly modify the definition of H3 and from now340

on we only consider the sum over the multi-indices α satisfying 1 ≤ |α| ≤ 3. A first341

integration by parts gives (here we use Einstein’s convention over repeated indices)342

H3(t) =
∑

1≤|α|≤3

∫

�

A3i ∂
α

Q+
{
∂
α
v+

i − λ+ ∂
α

B+
i

}
dx ′

343

−
∑

1≤|α|≤3

∫

�+

A3i ∂
α

Q+
{
∂
α
v+

i − λ+ ∂
α

B+
i

}
dx ′

344

−
∑

1≤|α|≤3

∫

�

A3i ∂
α

Q− {
∂
α
v−

i − λ− ∂αB−
i

}
dx ′

345

+
∑

1≤|α|≤3

∫

�−
A3i ∂

α
Q− {

∂
α
v−

i − λ− ∂αB−
i

}
dx ′

346

+
∑

±

∑

1≤|α|≤3

∫

�±
∂
α

Q± ∂ j

{
A ji (∂

α
v±

i − λ± ∂αB±
i )
}

dx . (24)347

Let us notice first that348

A3i {∂αv±
i − λ± ∂αB±

i }|x3=±1 = 1

J
{∂αv±

3 − λ± ∂αB±
3 }|x3=±1 = 0 ,349

because of (7) andψ = v±
3 = B±

3 = 0 on [0, T ]×�±. Therefore the second and fourth350

boundary integrals on �± in (24) vanish identically. As for the two boundary integrals351

on �, from (7), (10) and the boundary condition [Q] = 0 on � we have352

A3· = N , [∂αQ] = 0 on �.353

Therefore we may rewrite (24) as H3(t) = H31(t) + H32(t) with354

H31(t) :=
∑

1≤|α|≤3

∫

�

∂
α

Q
[
(∂
α
v − λ ∂

α
B) · N

]
dx ′ , (25)355

H32(t) :=
∑

±

∑

1≤|α|≤3

∫

�±
∂
α

Q± ∂ j

{
A ji (∂

α
v±

i − λ± ∂αB±
i )
}

dx , (26)356
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where [·] in (25) still denotes the jump across �, and Q denotes the common trace of357

Q± on �.358

Let us first consider the term H31(t), which is where the choice of λ± is made. The359

boundary conditions [v · N ] = B± · N = 0 on � yield ∂
α
([v · N ]) = ∂

α
(B± · N ) = 0360

on �. Therefore we may write361

H31(t) = −
∑

1≤|α|≤3

∫

�

∂
α

Q
[
[∂α; N ] · v − λ [∂α; N ] · B

]
dx ′ ,362

where [∂α; N ] denotes the commutator between ∂
α

and the multiplication by N . This363

commutator can be written as a sum of the form364

[∂α; N ] = ∂
α

N +
∑

1≤|β|≤|α|−1

� ∂
β

N ∂
α−β

,365

where � denotes some harmless numerical coefficient. Let us assume for the time being366

that we can construct λ± on [0, T ′] × � that satisfy367

{
λ+ B+

1 − λ− B−
1 = [v1] ,

λ+ B+
2 − λ− B−

2 = [v2] , (27)368

so that [v′ − λB ′] = 0, where we have set v′ := (v1, v2) and so on. Then the decompo-369

sition of the commutator reduces H31(t) to370

H31(t) =
∑

1≤|α|≤3

∑

1≤|β|≤|α|−1

�

∫

�

∂
α

Q ∂
β∇′ f ·

(
∂
α−β

v′ − λ ∂
α−β

B ′) dx ′ ,371

where we have set ∇′ := (∂1, ∂2) (here the indices ± do not play any role so we feel372

free to omit them). We now recall the following classical product estimate.373

Lemma 5. The product mapping H0.5(T2)× H1.5(T2) −→ H0.5(T2), ( f, g) �−→ f g374

is continuous.375

We can now estimate each term in the above decomposition of H31(t). In the case376

|α| − |β| = 1, we get (use Lemma 5 for the product estimate and the fact that H1.5(T2)377

is an algebra)378

∣
∣
∣
∣

∫

�

∂
α

Q ∂
β∇′ f ·

(
∂
α−β

v′ − λ ∂
α−β

B ′) dx ′
∣
∣
∣
∣379

≤ C
∥
∥
∥∂

α
Q
∥
∥
∥

H−0.5(�)

∥
∥
∥∂

β∇′ f · (∂α−β
v′ − λ ∂

α−β
B ′)

∥
∥
∥

H0.5(�)
380

≤ C ‖∇Q‖H1.5(�)

∥
∥
∥∂

β∇′ f
∥
∥
∥

H0.5(T2)

∥
∥
∥∂

α−β
v′ − λ ∂

α−β
B ′
∥
∥
∥

H1.5(�)
381

≤ F(E(t))
(

1 +
∑

±
‖λ±‖H1.5(�)

)
.382
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In the case |α| − |β| ≥ 2, which only happens for |α| = 3 and |β| = 1, we have383

∣
∣
∣
∣

∫

�

∂
α

Q ∂
β∇′ f ·

(
∂
α−β

v′ − λ ∂
α−β

B ′) dx ′
∣
∣
∣
∣384

≤ C
∥
∥
∥∂

α
Q
∥
∥
∥

H−0.5(�)

∥
∥
∥∂

β∇′ f · (∂α−β
v′ − λ ∂

α−β
B ′)

∥
∥
∥

H0.5(�)
385

≤ C ‖∇Q‖H1.5(�)

∥
∥
∥∂

β∇′ f
∥
∥
∥

H1.5(T2)

∥
∥
∥∂

α−β
v′ − λ ∂

α−β
B ′
∥
∥
∥

H0.5(�)
386

≤ F(E(t))
(

1 +
∑

±
‖λ±‖H1.5(�)

)
.387

Summing all the estimates, we have obtained388

∀ t ∈ [0, T ′] , |H31(t)| ≤ F(E(t))
(

1 +
∑

±
‖λ±‖H1.5(�)

)
, (28)389

provided that we can construct λ± that satisfy (27). Let us therefore turn to the construc-390

tion of these functions.391

We first observe that the boundary conditions (10) give392

B±
3 = B±

1 ∂1 f + B±
2 ∂2 f , [v3] = [v1] ∂1 f + [v2] ∂2 f , on � ,393

so (27) is equivalent to the relation394

[v] = λ+ B+ − λ− B− on �.395

Using the lower bound (18a) on the time interval [0, T ′], we know that (27) is a Cramer396

system (otherwise, B+ and B− would be colinear). Hence λ± are uniquely determined397

on [0, T ′] × � and have the same regularity as v±, B± on the boundary �. Moreover,398

the latter relations give399

|λ±(t, x ′, 0)| = |B∓ × [v]|
|B+ × B−| (t, x ′, 0) ≤ 1 − δ0

2
,400

where we have used (18b). As in [14,15], we extend λ± to the domains�± as functions401

that do not depend on the normal variable x3. Using time or tangential differentiation402

on the system (27), we can easily obtain the estimates403

∀ t ∈ [0, T ′] , ‖λ±‖H1.5(�) + ‖λ±‖W 1,∞(�±) + ‖∂tλ
±‖L∞(�±) ≤F(E(t)) ,

‖λ±‖L∞(�±) ≤1 − δ0

2
.

(29)404

The latter estimates on λ± simplify (22), (23) and (28), and give405

∀ t ∈ [0, T ′] , |H1(t)| + |H2(t)| + |H31(t)| ≤ F(E(t)). (30)406

We emphasize that in the estimate (30), the nondecreasing function F depends on δ0407

because the estimates on λ± depend on δ0, but F does not depend on the particular408

solution that we are considering.409
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Let us now consider the term H32(t) in (26). We decompose H32(t) as H32(t) =410

H321(t) + H322(t), with411

H321(t) :=
∑

±

∑

1≤|α|≤3

∫

�±
∂
α

Q± (∂ j A ji ) (∂
α
v±

i − λ± ∂αB±
i ) dx ,412

H322(t) :=
∑

±

∑

1≤|α|≤3

∫

�±
∂
α

Q± A ji ∂ j (∂
α
v±

i − λ± ∂αB±
i ) dx .413

The first term H321(t) is easily estimated by applying the Cauchy-Schwarz inequality414

and by using the L∞ estimate of λ±, see (29):415

∀ t ∈ [0, T ′] , |H321(t)| ≤ F(E(t)). (31)416

As for H322(t), since we have the divergence constraint A ji ∂ jv
±
i = A ji ∂ j B±

i = 0, we417

may write418

H322(t) = −
∑

±

∑

1≤|α|≤3

∫

�±
∂
α

Q± {[∂α; A ji ∂ j ]v±
i + A ji (∂ jλ

±) ∂αB±
i

−λ± [∂α; A ji ∂ j ]B±
i

}
dx ,

419

where [·; ·] still denotes the commutator. The latter terms are now estimated in a some-420

how brutal way by applying the Cauchy-Schwarz inequality. We recall that the H4 norm421

of ψ is controlled by the H3.5 norm of f thanks to Lemma 1, and that commutators in422

L2 are controlled by standard estimates which may be found for instance in [3, p. 295].423

Eventually we obtain424

∀ t ∈ [0, T ′] , |H322(t)| ≤ F(E(t)).425

Combining with (31), and (30), we end up with426

∀ t ∈ [0, T ′] , |H1(t)| + |H2(t)| + |H3(t)| ≤ F(E(t)). (32)427

Going on with the estimate of the terms in the decomposition (21) of H′(t), we finally428

consider429

H4(t) := −
∑

±

∑

|α|≤3

∫

�±

(
1 −λ±

−λ± 1

)

430

×
([∂α; ṽ± · ∇]v± − [∂α; B̃± · ∇]B±

[∂α; ṽ± · ∇]B± − [∂α; B̃± · ∇]v±
)

·
(
∂
α
v±

∂
α

B±
)

dx,431

and432

H5(t) := −
∑

±

∑

|α|≤3

∫

�±

[
∂
α; AT ∇

]
Q± ·

{
∂
α
v± − λ± ∂αB±} dx .433

Indeed the reader can check that the relation (21) holds with the above definitions of434

H1, . . . ,H5. Applying again the classical commutator estimates and using once again435

the L∞ estimates of λ±, we have436

∀ t ∈ [0, T ′] , |H4(t)| + |H5(t)| ≤ F(E(t)). (33)437
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Combining (32) and (33), we have therefore derived the inequality438

∀ t ∈ [0, T ′] , |H′(t)| ≤ F(E(t)) ,439

for a given nonnegative nondecreasing function F that is independent of the solution.440

Integrating from 0 to t ∈ [0, T ′] and using the L∞ bounds on λ±, we have already441

proved our main a priori estimate for tangential derivatives:442

∀ t ∈ [0, T ′] ,
∑

|α|≤3

∥
∥∂

α
v±(t), ∂αB±(t)

∥
∥2

± ≤ M0 + t F(max
0≤s≤t

E(s)) , (34)443

where M0 is a numerical constant that only depends on δ0 and R (here we have used444

(29) to derive a lower bound for the positive definite matrix appearing in the definition445

of the energy functional H).446

3. Divergence and Curl Estimates for v and B447

3.1. Estimates for the divergence. In this section we derive suitable estimates for the448

divergence of v±, B± in �±. Expanding the divergence constraint for v±, we find that449

for each t ∈ [0, T ′], there holds450

∂1v
±
1 − ∂1ψ

J
∂3v

±
1 + ∂2v

±
2 − ∂2ψ

J
∂3v

±
2 +

1

J
∂3v

±
3 = 0 in �± ,451

from which the identity452

div v± = ∇ψ · ∂3v
±

J
in �±

453

readily follows. Since H2(�±) is an algebra, we get ∀ t ∈ [0, T ′],454

‖div v±(t)‖2,± ≤ C

∥
∥
∥
∥
∇ψ

J
(t)

∥
∥
∥
∥

2
‖∂3v

±(t)‖2,± ≤ C ‖ f (t)‖H2.5(T2) ‖v±(t)‖3,±.455

The analogue estimate for the divergence of B± is obtained by following the same lines,456

and we have thus proved the a priori estimate457

∀ t ∈ [0, T ′] , ‖div v±(t), div B±(t)‖2,± ≤ C0 ‖ f (t)‖H2.5(T2) ‖v±(t), B±(t)‖3,±.458

(35)459

3.2. Estimates for the curl. In order to estimate the curl of v±, B± we proceed as fol-460

lows. Let us introduce the curl of the Eulerian velocity and magnetic fields u, H461

ζ̃ := curl u , ξ̃ := curl H ,462

and set463

{
ζ := ζ̃ ◦
 = (curl u) ◦
 = (AT ∇)× (u ◦
) = (AT ∇)× v ,

ξ := ξ̃ ◦
 = (curl H) ◦
 = (AT ∇)× (H ◦
) = (AT ∇)× B.
(36)464
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Using the definition of the matrix A in (7), the relations (36) can be easily inverted to465

find466

curl v = ζ +
∇ψ × ∂3v

J
, curl B = ξ +

∇ψ × ∂3 B

J
. (37)467

Applying the curl operator to the original equations (2) satisfied by (u, H), we easily468

find that the Eulerian curls (ζ̃ , ξ̃ ) solve the system469

{
∂t ζ̃

± + (u± · ∇)ζ̃± − (H± · ∇)ξ̃± − (ζ̃± · ∇)u± + (ξ̃± · ∇)H± = 0 ,
∂t ξ̃

± + (u± · ∇)ξ̃± − (H± · ∇)ζ̃± + [curl; u± · ∇]H± − [curl; H± · ∇]u± = 0 ,
470

in
⋃

t∈[0,T ]{t}×�±(t). Making use of (36) and recalling the definitions in (9), it follows471

that (ζ, ξ) solve472

⎧
⎪⎨

⎪⎩

∂tζ
± + (ṽ± · ∇)ζ± − (B̃± · ∇)ξ± − (A ζ± · ∇)v± + (A ξ± · ∇)B± = 0 ,

∂tξ
± + (ṽ± · ∇)ξ± − (B̃± · ∇)ζ± + [AT ∇×;A v± · ∇]B±

− [AT ∇×; A B± · ∇]v± = 0 ,

(38)473

in [0, T ] × �±. Thus, in order to estimate the curl of v±, B±, we are reduced, after474

(37), to proving suitable bounds for the H2−norm of the solution (ζ, ξ) to (38). Let475

us observe that with our regularity assumptions on the original solution, there holds476

(ζ, ξ) ∈ C1(H2) ∩ C(H3) so all integration by parts below are legitimate.477

Let us introduce an associated energy functional K defined by478

K(t) := 1

2

∑

±

∑

|β|≤2

∫

�±

{
|∂βζ±(t)|2 + |∂βξ±(t)|2

}
dx . (39)479

Differentiating with respect to t and making use of (7), (9), (38) gives480

K′(t) =
∑

±

∑

|β|≤2

∫

�±

{
∂β∂tζ

± · ∂βζ± + ∂β∂tξ
± · ∂βξ±} dx481

= K1(t) + K2(t) + K3(t) , (40)482

where483

K1(t) := −
∑

±

∑

|β|≤2

∫

�±

{
(ṽ± · ∇)∂βζ± − (B̃± · ∇)∂βξ±} · ∂βζ±

484

+
{
(ṽ± · ∇)∂βξ± − (B̃± · ∇)∂βζ±} · ∂βξ± dx ,485

K2(t) := −
∑

±

∑

|β|≤2

∫

�±

{
[∂β; ṽ± · ∇]ζ± − [∂β; B̃± · ∇]ξ±} · ∂βζ±

486

+
{
[∂β; ṽ± · ∇]ξ± − [∂β; B̃± · ∇]ζ±} · ∂βξ± dx ,487

K3(t) := −
∑

±

∑

|β|≤2

∫

�±
∂β

(
(Aξ± · ∇)B± − (Aζ± · ∇)v±) · ∂βζ±

488

+∂β
([

AT ∇×; Av± · ∇
]

B± −
[

AT ∇×; AB± · ∇
]
v±) · ∂βξ± dx .489
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Let us estimate separately each of the above Ki , for i = 1, 2, 3. We start with K1. To490

estimate this term, we use Leibniz’ rule and integrate by parts. The boundary conditions491

(10) give492

K1(t) = −1

2

∑

±

∑

|β|≤2

∫

�±

{
ṽ± · ∇

(
|∂βζ±|2+|∂βξ±|2

)
−2 B̃± · ∇ (

∂βξ± · ∂βζ±)} dx493

=
∑

±

∑

|β|≤2

∫

�±

{
1

2
div ṽ± (

|∂βζ±|2 + |∂βξ±|2
)

− div B̃± ∂βξ± · ∂βζ±
}

dx .494

Applying Cauchy-Schwarz inequality, we obtain495

∀ t ∈ [0, T ′] , |K1(t)| ≤ F(E(t)). (41)496

Let us now deal with the term K2. We focus on the first integral involved in the497

definition of K2, namely498

∑

|β|≤2

∫

�±
[∂β; ṽ± · ∇]ζ± · ∂βζ± dx .499

In the sequel ∂1 and ∂2 stand for any derivative of order one and order two respectively.500

The commutator is zero if β = 0. If |β| = 1, the integral is of the form501

∫

�±
∂1ζ± ∂1ṽ± ∂1ζ± dx .502

Using an L∞ bound for ∂1ṽ± and Cauchy-Schwarz for the two remaining terms, we503

have504

∣
∣
∣
∣

∫

�±
∂1ζ± ∂1ṽ± ∂1ζ± dx

∣
∣
∣
∣ ≤ F(E(t)).505

It remains to examine the terms in the commutator with |β| = 2. We can easily check506

that such a commutator can be rewritten as a sum of the form (we omit the harmless507

numerical constants)508

∫

�±
∂1ṽ± ∂2ζ± ∂2ζ± + ∂2ṽ± ∂1ζ± ∂2ζ± dx .509

The first term is estimated as in the case |β| = 1 by using an L∞ bound for ∂1ṽ±. The510

second of these two terms requires more attention. We combine Hölder’s inequality and511

the Sobolev Imbedding Theorem (recall that in three space dimensions H1 is imbedded512

in L6):513

∣
∣
∣
∣

∫

�±
∂2ṽ± ∂1ζ± ∂2ζ± dx

∣
∣
∣
∣ ≤ |∂2ṽ±|3,± |∂1ζ±|6,± ‖∂2ζ±‖±514

515

≤ C ‖ṽ±‖3,± ‖ζ±‖2
2,± ≤ F(E(t)).516

In a completely similar way, we can handle the other commutators in K2(t) to finally517

get the estimate518

∀ t ∈ [0, T ′] , |K2(t)| ≤ F(E(t)). (42)519
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We now turn to the last term K3, that we write in the form K3(t) = K31(t)+K32(t)with520

K31(t) := −
∑

±

∑

|β|≤2

∫

�±
∂β

(
(Aξ± · ∇)B± − (Aζ± · ∇)v±) · ∂βζ± dx ,

K32(t) :=−
∑

±

∑

|β|≤2

∫

�±
∂β
{
[AT ∇×; Av±·∇]B±−[AT ∇×; AB±·∇]v±}·∂βξ± dx .

521

The first integral in K31(t) is estimated by the Cauchy-Schwarz inequality and by using522

the fact that H2(�±) is an algebra:523

∣
∣
∣
∣

∫

�±
∂β

(
(Aξ± · ∇)B±) · ∂βζ± dx

∣
∣
∣
∣ ≤ ‖ζ±‖2,± ‖(Aξ± · ∇)B±‖2,±524

≤ ‖ζ±‖2,± ‖A‖2 ‖ξ±‖2,± ‖B±‖3,± ≤ F(E(t)).525

The second integral in K31(t) is estimated in the same way and we get526

∀ t ∈ [0, T ′] , |K31(t)| ≤ F(E(t)). (43)527

As for K32(t), it is rather easy to see that the quantity [AT ∇×; Av± · ∇]B± −528

[AT ∇×; AB± · ∇]v± can be expanded as a sum of terms of the form529

A ∂1 A v± ∂1 B± + A ∂1 A B± ∂1v± + A A ∂1v± ∂1 B± ,530

where we have disregarded the indices for the sake of simplicity. Hence the H2 norm of531

this quantity can be estimated by a quantity of the form F(E(t)). Using Cauchy-Schwarz532

inequality in K32(t), we end up with533

∀ t ∈ [0, T ′] , |K32(t)| ≤ F(E(t)).534

Combining the latter estimate with (41), (42) and (43), we have obtained535

∀ t ∈ [0, T ′] , |K′(t)| ≤ F(E(t)).536

We can now integrate this inequality from 0 to t and use (37). The “error” terms ∇ψ ×537

∂3v
±
3 /J , ∇ψ × ∂3 B±

3 /J are estimated as in the paragraph on the divergence estimate,538

see (35), so eventually we get539

∀ t ∈ [0, T ′] , ‖curl v±(t), curl B±(t)‖2
2,± ≤ M0 + t F(max

0≤s≤t
E(s))540

+C0 ‖ f (t)‖2
H2.5(T2)

‖v±(t), B±(t)‖2
3,±. (44)541

542
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3.3. Final estimate for the velocity and magnetic field. With the above divergence and543

curl estimates, we are ready to obtain the main a priori estimate for the velocity and544

magnetic field in each domain �±. The only point is to observe, through elementary545

algebraic manipulations, that the H3 norm of a vector field is controlled by the L2 norms546

of tangential derivatives of order ≤ 3 and by the H2 norms of its divergence and of its547

curl. We thus add the estimates (34), (35) and (44) to obtain548

∀ t ∈ [0, T ′] , ‖v±(t), B±(t)‖2
3,± ≤ M0 + t F(max

0≤s≤t
E(s))549

+ C0 ‖ f (t)‖2
H2.5(T2)

‖v±(t), B±(t)‖2
3,± ,550

where, of course, the numerical constants M0,C0 are independent of the solution. Con-551

sequently, up to choosing ε0 small enough so that C0 ε0 ≤ 1/2 and adapting the time552

interval [0, T ′] so that (17a) is valid with the new definition of ε0, we obtain553

∀ t ∈ [0, T ′] , ‖v±(t), B±(t)‖2
3,± ≤ M0 + t F(max

0≤s≤t
E(s)). (45)554

4. Estimate of the Front555

From the linear system of the boundary conditions on �,556

{
B+

1 ∂1 f + B+
2 ∂2 f = B+

3 ,

B−
1 ∂1 f + B−

2 ∂2 f = B−
3 ,

(46)557

we have already seen that the determinant B+
1 B−

2 −B+
2 B−

1 does not vanish on [0, T ′]×�.558

More precisely, we have559

|B+
1 B−

2 − B+
2 B−

1 (t, x ′, 0)|2 = |B+ × B−(t, x ′, 0)|2
1 + |∇′ f (t, x ′)|2 ≥ δ2

0

4 (1 + C ε2
0)
,560

where we have used (18a), (17a) and the imbedding H1.5(T2) ↪→ L∞(T2). We also note561

that thanks to (17b), the L∞ norm of B± is uniformly controlled on [0, T ′]. Therefore,562

using the latter uniform bound for the determinant and inverting the linear system (46),563

we have564

∀ t ∈ [0, T ′] , ‖∇′ f (t)‖H2.5(T2) ≤ C0 ‖B±(t)‖3,± , (47)565

with C0 depending only on δ0 and R.566

From the other boundary conditions on �:567

∂t f = v±
3 − v±

1 ∂1 f − v±
2 ∂2 f ,568

(47) and the fact that H2.5(T2) is an algebra, we infer the second main estimate for f :569

∀ t ∈ [0, T ′] , ‖∂t f (t)‖H2.5(T2) ≤ C0

(
‖v±(t)‖3,± + ‖v±(t), B±(t)‖2

3,±
)
. (48)570

In particular, we can integrate from 0 to t and get571

∀ t ∈ [0, T ′] , ‖ f (t)‖H2.5(T2) ≤ ‖ f0‖H2.5(T2) + t F(max
0≤s≤t

E(s)). (49)572
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We simplify (47), (48) and (49) by using (45) (we feel free to use t2 ≤ t which always573

holds by assuming, without loss of generality T ′ ≤ 1):574

∀ t ∈ [0, T ′] , ‖∂t f (t)‖2
H2.5(T2)

≤ M0 + t F(max
0≤s≤t

E(s)) ,575

‖ f (t)‖2
H3.5(T2)

≤ M0 + t F(max
0≤s≤t

E(s)) , (50)576

‖ f (t)‖H2.5(T2) ≤ ‖ f0‖H2.5(T2) + t F(max
0≤s≤t

E(s)).577

The last estimate in (50) says that f (t) remains small in H2.5 provided that we start578

from small initial data and the first and second estimates in (50) give a control of ∂t f (t)579

in H2.5 and f in H3.5. We observe that f (t) is expected to remain small in H2.5 but580

has no reason to be small in H3.5 (in particular because no smallness condition has been581

made on the norm of f0 in H3.5).582

5. The Elliptic Problem for the Total Pressure583

We first deduce from (8) the elliptic system of equations solved by the total pressure.584

Applying AT ∇· to the equation for v± in (8) gives585

−AT ∇ · (AT ∇ Q±) = AT ∇ ·
{
∂tv

± + (ṽ± · ∇)v± − (B̃± · ∇)B±}.586

Using the divergence relations AT ∇·v± = AT ∇·B± = 0, we then deduce the equations587

− AT ∇ · (AT ∇ Q±) = F± , (51)588

where we have set589

F± := −∂t Aki ∂kv
±
i + Aki ∂k ṽ

± · ∇v±
i − ṽ± · ∇ Aki ∂kv

±
i − Aki ∂k B̃± · ∇B±

i590

+B̃± · ∇ Aki ∂k B±
i . (52)591

Recalling that a = J A we get from (51) the equivalent equations592

− aT ∇ · (AT ∇Q±) = J F±. (53)593

Now we look for the boundary conditions satisfied by Q±. Since ṽ±
3 = B̃±

3 = 0 and594

ψ = v±
3 = B±

3 = 0 on [0, T ] × �±, from the third equation for v± in (8) evaluated on595

�± we obtain the homogeneous Neumann condition596

∂3 Q± = 0 on [0, T ] × �±. (54)597

On � we take the scalar product of the equation for v± in (8) with the vector N . We get598

− (AT ∇Q±) · N =
{
∂tv

± + (ṽ± · ∇)v± − (B̃± · ∇)B±} · N . (55)599

Let us compute the jump of each quantity in (55) across �. Since [Q] = 0 gives600

[∂1 Q] = [∂2 Q] = 0 on [0, T ] × �, we obtain (recall that J = 1 on �)601

[
(AT ∇Q) · N

] = [A�j N j ∂�Q] = (1 + |∇′ f |2) [∂3 Q]. (56)602
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Using the boundary conditions ∂t f = v± · N , B± · N = 0, on [0, T ] × �, we also603

deduce604

[
{∂tv + (ṽ · ∇)v − (B̃ · ∇)B} · N

]
605

= [
2 v′ · ∇′∂t f + (v′ · ∇′)∇′ f · v′ − (B ′ · ∇′)∇′ f · B ′] . (57)606

Thus from (55), (56) and (57), we find the boundary condition607

[A�j N j ∂�Q] = G on [0, T ] × � , (58)608

where we have set609

G := − [
2 v′ · ∇′∂t f + (v′ · ∇′)∇′ f · v′ − (B ′ · ∇′)∇′ f · B ′] . (59)610

Collecting Eqs. (51), (54), (58) gives the elliptic problem611

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−AT ∇ · (AT ∇Q±) = F± , on [0, T ] ×�± ,
[Q] = 0 , on [0, T ] × � ,

[A�j N j ∂�Q] = G , on [0, T ] × � ,

∂3 Q± = 0 on [0, T ] × �± ,
(x1, x2) �→ Q±(t, x1, x2, x3) is 1 − periodic,

(60)612

with F± and G defined in (52), (59), respectively.613

Remark 1. When one tries to solve the elliptic system for the pressure, it may be easier614

to work with the formulation (53) instead of (51) because of the necessary compatibility615

condition on the data F±,G. More precisely, trying to solve problem (8) by a fixed point616

argument, one possible step could be the resolution of system (60). (We have in mind617

the approach used in [12], for the resolution of the incompressible MHD equations in618

a fixed domain under slip boundary conditions.) Thus the compatibilty condition needs619

to be satisfied by the data.620

In order to formulate the compatibility condition we compute by an integration by621

parts622

−
∑

±

∫

�±
aT ∇ · (AT ∇Q±) dx = −

∫

�+

a3i Aki ∂k Q+ dx ′ +
∫

�

a3i Aki [∂k Q] dx ′
623

+
∫

�−
a3i Aki ∂k Q− dx ′+

∑

±

∫

�±
∂kaki Ahi ∂h Q± dx,624

where the last integral vanishes because of the so-called Piola’s identity ∂kaki = 0. The625

boundary conditions for Q yield626

−
∑

±

∫

�±
aT ∇ · (AT ∇Q±) dx =

∫

�

a3i Aki [∂k Q] dx ′ =
∫

�

Aki Ni [∂k Q] dx ′.627

This shows that the data F ,G of problem (60) need to satisfy the condition628

∑

±

∫

�±
J F± dx =

∫

�

G dx ′.629
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This condition is satisfied with our definitions since630

∑

±

∫

�±
J F± dx =

∑

±

∫

�±
aT ∇ · {∂tv

± + (ṽ± · ∇)v± − (B̃± · ∇)B±} dx631

= −
∫

�

[
N · {∂tv + (ṽ · ∇)v − (B̃ · ∇)B}

]
dx ′ =

∫

�

G dx ′ ,632

from (57), (59), and by computations as above. Thus the compatibility condition is633

satisfied.634

Our approach here is different because we have already assumed that the solution635

exists and we only wish to prove an a priori estimate on a time interval that is inde-636

pendent of the solution. Consequently, we shall deal with the slightly more symmetric637

formulation (51) to derive energy estimates.638

In the rest of this section we study the elliptic problem (60) for generic data F±,G.639

Only at the end of the section we will go back to the specific definition of F±,G given in640

(52), (59). As (60) is time-independent, in the sense that time appears only as a param-641

eter, for simplicity of notation from now on in this section the explicit dependence on t642

will be neglected.643

5.1. The functional framework. Thanks to the continuity of the total pressure across �,644

we can define the pressure Q ∈ H1(�) by Q := Q± on �±. The function Q belongs645

to the Hilbert space646

V :=
{

R ∈ H1(�) ,

∫

�

R dx = 0

}

.647

The space V equipped with the norm ‖∇ R‖L2(�) is indeed a Hilbert space, because of648

the Poincaré inequality, and the norm ‖∇ R‖L2(�) is equivalent to the standard H1 norm.649

In what follows, the function Q will be estimated in the space V , and we shall repeatedly650

use the fact that the L2 norm of ∇Q is equivalent to ‖Q±‖1,±.651

5.2. The general procedure for the pressure estimate.652

653

Step 1. We start from (60), multiply each equation in�± by Q±, integrate over�± and654

use integration by parts. This yields655

∑

±

∫

�±
∂k(Akj Q±) A�j ∂�Q± dx

=
∫

�+

A3 j Q+ A�j ∂�Q+ dx ′ −
∫

�−
A3 j Q− A�j ∂�Q− dx ′

−
∫

�

A3 j Q+ A�j ∂�Q+ dx ′ +
∫

�

A3 j Q− A�j ∂�Q− dx ′

+
∑

±

∫

�±
Q± F± dx .

656
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We recall that from the boundary conditions, ψ and ∂3 Q± vanish on �± so the integrals657

on �± vanish. So we get658

∑

±

∫

�±
Akj ∂k Q± A�j ∂�Q± dx = −

∑

±

∫

�±
(∂k Ak j ) Q± A�j ∂�Q± dx659

−
∫

�

Q|� G dx ′ +
∑

±

∫

�±
Q± F± dx ,660

where Q|� denotes the common trace of Q± on �. The integral on the left-hand661

side gives the coercive term in ∇Q± (see the definition (7) and recall the condition662

‖∇ψ‖L∞([0,T ′]×�) ≤ 1/2). Then we apply the Cauchy-Schwarz and Poincaré inequali-663

ties to derive664

c ‖Q±‖2
1,± ≤ ‖F±‖2± + ‖G‖2

H−0.5(T2)
+
∑

±

∫

�±
|∂k Ak j | |Q±| |∂�Q±| dx ,665

for a suitable numerical constant c > 0. Then we use the Hölder and Sobolev inequalities666

to derive667

∑

±

∫

�±
|∂k Ak j | |Q±| |∂�Q±| dx ≤ C ‖∇Q±‖± |∇ A|4 |Q±|4,±668

≤ C ‖A‖2 ‖Q±‖2
1,± ≤ C ‖ f (t)‖H2.5(T2) ‖Q±‖2

1,±.669

Up to choosing ε0 small enough, we have thus derived the first estimate670

∀ t ∈ [0, T ′] , ‖Q±‖2
1,± ≤ C0

(
‖F±‖2± + ‖G‖2

H−0.5(T2)

)
. (61)671

Step 2. We are now going to estimate Q± in H2(�±). Let us first apply a tangential672

derivative ∂ to (60), with ∂ = ∂1 or ∂ = ∂2. Defining Q
± := ∂Q±, we obtain the elliptic673

system674

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−AT ∇ · (AT ∇Q
±
) = F±

, on [0, T ] ×�± ,
[Q] = 0 , on [0, T ] × � ,

[A�j N j ∂�Q] = G , on [0, T ] × � ,

∂3 Q
± = 0 on [0, T ] × �± ,

(x1, x2) �→ Q
±
(t, x1, x2, x3) is 1 − periodic,

(62)675

where the new source terms F±
,G are defined by676

F± := ∂F± + ∂Akj ∂k(A�j ∂�Q±) + Akj ∂k((∂A�j ) ∂�Q±) , (63)677

G := ∂G − ∂(A�j N j ) [∂�Q] = ∂G − ∂(|∇′ f |2) [∂3 Q]. (64)678

We apply the same procedure of integration by parts as above, obtaining first679

∑

±

∫

�±
Akj ∂k Q

±
A�j ∂�Q

±
dx = −

∑

±

∫

�±
(∂k Ak j ) Q

±
A�j ∂�Q

±
dx680

−
∫

�

Q|� G dx ′ +
∑

±

∫

�±
Q

± F±
dx ,681
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where Q|� denotes the common trace of Q
±

on �. The integrals on the left-hand side682

give the coercive terms and, as above, we can absorb the first integrals occuring in the683

right-hand side by choosing ε0 small enough. We thus have684

c ‖Q
±‖2

1,± ≤ −
∫

�

Q|� G dx ′ +
∑

±

∫

�±
Q

± F±
dx .685

We now estimate the integrals on �±, recalling the definition (63) for F±
. Let us first686

observe that the term with ∂F± can be integrated by parts and we can then apply the687

Cauchy-Schwarz and Young inequalities. The other terms are estimated as follows:688

∑

±

∫

�±
|Q±| |∂Akj | |A�j | |∂k∂�Q±| dx ≤ C ‖Q±‖2,± |∇ A|4 |A|∞ |Q±|4,±689

≤ C ‖A‖2
2 ‖Q±‖2

2,±690

≤ C ‖ f (t)‖2
H2.5(T2)

‖Q±‖2
2,± ,691

∑

±

∫

�±
|Q±| |∂Akj | |∂k A�j | |∂�Q±| dx ≤ C |Q±|4,± |∇ A|24 |∇Q±|4,±692

≤ C ‖A‖2
2 ‖Q±‖2

2,±693

≤ C ‖ f (t)‖2
H2.5(T2)

‖Q±‖2
2,± ,694

and applying similar sequences of inequalities, the reader can get quickly convinced that695

all other terms in the product Q
± F±

are estimated by the same quantity. We thus have696

c ‖Q
±‖2

1,± ≤ ‖F±‖2± +

∣
∣
∣
∣

∫

�

Q|� G dx ′
∣
∣
∣
∣ + C ‖ f (t)‖2

H2.5(T2)
‖Q±‖2

2,±.697

Let us now turn to the boundary term. Of course, we have698

∣
∣
∣
∣

∫

�

Q|� ∂G dx ′
∣
∣
∣
∣ ≤ ‖G‖H0.5(T2) ‖Q|�‖H0.5(�) ≤ C ‖G‖H0.5(T2) ‖Q

±‖1,±.699

The remaining term occurring in G is easily estimated as follows:700

∣
∣
∣
∣

∫

�

Q|� [∂3 Q] ∂(|∇′ f |2) dx ′
∣
∣
∣
∣ ≤ ∣

∣Q|�
∣
∣
3 |[∂3 Q]|3

∣
∣
∣∂(|∇′ f |2)

∣
∣
∣
3

701

≤ C ‖Q|�‖H0.5(�) ‖[∂3 Q]‖H0.5(�) ‖|∇′ f |2‖H1.5(T2)702

≤ C ‖Q±‖2
2,± ‖ f (t)‖2

H2.5(T2)
,703

where we have used H0.5(�) ↪→ L4(�) (which holds in two space dimensions), and704

the fact that H1.5(�) is an algebra. Applying Young’s inequality again, we thus obtain705

‖Q
±‖2

1,± ≤ C0

(
‖F±‖2± + ‖G‖2

H0.5(T2)
+ ‖ f (t)‖2

H2.5(T2)
‖Q±‖2

2,±
)
. (65)706

Step 3. The remaining second order derivative ∂2
3 Q± is estimated directly from Eq. (60)707

by using the explicit expression of the coefficients Akj . More precisely, (60) reads708

A ji Aki ∂ j∂k Q± = −F± − A ji ∂ j Aki ∂k Q± ,709

710
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that is,711

1 + |∇′ψ |2
(1 + ∂3ψ)2

∂2
3 Q± + ∂2

1 Q± + ∂2
2 Q± − 2

∂1ψ ∂1∂3 Q±

1 + ∂3ψ
− 2

∂2ψ ∂2∂3 Q±

1 + ∂3ψ
712

= −F± − A ji ∂ j Aki ∂k Q±. (66)713

We thus obtain714

c ‖∂2
3 Q±‖2± ≤ C

(
‖Q

±‖2
1,± + ‖F±‖2± + ‖A ∂1 A ∂1 Q±‖2±

)
715

≤ C
(
‖Q

±‖2
1,± + ‖F±‖2± + ‖ f (t)‖2

H2.5(T2)
‖Q±‖2

2,±
)
.716

Combining with (61) and (65) and choosing the numerical constant ε0 sufficiently small,717

we obtain718

∀ t ∈ [0, T ′] , ‖Q±‖2
2,± ≤ C0

(
‖F±‖2± + ‖G‖2

H0.5(T2)

)
. (67)719

Step 4. We now apply the estimate (67) to the solution Q
±

to the problem (62), which720

has the same form as (60) but with different source terms (defined in (63) and (64)). We721

thus have722

∀ t ∈ [0, T ′] , ‖Q
±‖2

2,± ≤ C
(
‖F±‖2± + ‖G‖2

H0.5(T2)

)
.723

The L2-estimate of F±
follows by applying similar arguments as above; for instance,724

we have725

‖∂1 A ∂1 A ∂1 Q+‖+ ≤ ‖∂1 A ∂1 A‖+ ‖Q+‖W 1,∞(�+) ≤ C |∇ A|24 ‖Q+‖3,+726

≤ C ‖ f (t)‖2
H2.5(T2)

‖Q±‖3,±.727

All the other terms in F±
admit the same upper bound, that is728

‖F±‖2± ≤ C
(
‖F±‖2

1,± + C ‖ f (t)‖2
H2.5(T2)

‖Q±‖2
3,±

)
.729

As far as the boundary source term is concerned, we apply Lemma 5 and obtain730

‖∂(|∇′ f |2) [∂3 Q]‖H0.5(�) ≤ C ‖∂(|∇′ f |2)‖H0.5(T2) ‖[∂3 Q]‖H1.5(�)731

≤ C ‖ f (t)‖2
H2.5(T2)

‖Q±‖2
3,±.732

We have thus derived the upper bound733

∀ t ∈ [0, T ′] , ‖Q
±‖2

2,± ≤ C
(
‖F±‖2

1,± + ‖G‖2
H1.5(T2)

+ ‖ f (t)‖2
H2.5(T2)

‖Q±‖2
3,±

)
.734

The remaining third order derivative ∂3
3 Q± can be estimated by applying ∂3 to Eq. (66).735

The commutators are estimated exactly as above, and we now feel free to skip a few736

details. Eventually, up to choosing a sufficiently small numerical constant ε0 > 0, and737

provided that T ′ is such that (17a) holds, we derive the estimate738

∀ t ∈ [0, T ′] , ‖Q±‖2
3,± ≤ C0

(
‖F±‖2

1,± + ‖G‖2
H1.5(T2)

)
. (68)739
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5.3. The final pressure estimate. It only remains to use the definition of the source terms740

F±,G in (68). Using first the fact that H1.5(T2) is an algebra and recalling the definition741

(59) of G, we have742

‖G(t)‖H1.5(T2)

≤ C
(
‖v±(t)‖3,±‖∂t f (t)‖H2.5(T2) + ‖v±(t), B±(t)‖2

3,±‖ f (t)‖H3.5(T2)

)
,

743

and using (45), (50), we get744

‖G(t)‖2
H1.5(T2)

≤ M0 + t F(max
0≤s≤t

E(s)).745

The source terms F± can be estimated by applying the classical estimate746

‖u1 u2‖H1 ≤ C (‖u1‖L∞ ‖u2‖H1 + ‖u2‖L∞ ‖u1‖H1).747

Analyzing each separate term in the definition (52) of F± by applying the latter product748

estimate and by using (17), (45) or (50), we get749

‖F±(t)‖2
1,± ≤ M0 + t F(max

0≤s≤t
E(s)).750

Adding the previous two inequalities, we obtain our final estimate for the pressure:751

∀ t ∈ [0, T ′] , ‖Q±‖2
3,± ≤ M0 + t F(max

0≤s≤t
E(s)). (69)752

6. Proof of Theorem 4753

If we summarize the analysis of the previous sections, we have shown that there exist754

some numerical constants ε0 > 0 and M0 > 0, there exists a nonnegative nondecreasing755

function F on R
+, all three depending only on δ0 and R such that, on any time interval756

[0, T ′] for which the inequalities (17) are valid,757

∀ t ∈ [0, T ′] , E(t) ≤ M0 + t F(max
0≤s≤t

E(s)). (70)758

The function F and the constants ε0,M0 are independent of the particular solution that759

we are considering. Moreover, H2(�±) is an algebra, so applying direct estimates on760

(8) we find761

∀ t ∈ [0, T ′] , ‖∂tv
±(t), ∂t B±(t)‖2,± ≤ F(E(t)) ,762

so integrating with respect to t we have763

∀ t ∈ [0, T ′] , ‖v±(t)− v±
0 , B±(t)− B±

0 ‖2,± ≤ t F(max
0≤s≤t

E(s)). (71)764

From now on, the nonnegative, nondecreasing function F is fixed, as well as the con-765

stants ε0, M0. To complete the proof of Theorem 4, we define ε1 := ε0/2, and we choose766

a time T0 > 0 such that 2 T0 F(2 M0) ≤ M0 and 2 T0 F(2 M0) ≤ ε1. We emphasize that767

the definition of T0 only depends on δ0 and R. Then we define T ′ as the maximal time768

on which (17) holds (T ′ is positive because (17) holds at the initial time with a strict769

inequality). We will see that T0 ≤ T ′ if T0 < T , and T ′ = T < T0 if T < T0.770
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There are now two possibilities. Let us first assume T > T0, and let us define I as771

the set of all times t ∈ [0, T0] such that772

max
0≤s≤t

E(s) ≤ 2 M0 , max
0≤s≤t

‖v±(s)− v±
0 , B±(s)− B±

0 ‖2,± ≤ ε0 ,

max
0≤s≤t

‖ f (s)‖H2.5(T2) ≤ ε0.

773

Then I is non-empty since it contains 0 (use (70) for t = 0), and I is closed since all774

functions involved in the definition of I are continuous. Let us show that I is open. Let775

t ∈ I . Using (70), we have776

E(t) ≤ M0 + t F(max
0≤s≤t

E(s)) ≤ M0 + T0 F(2 M0) < 2 M0.777

In the same way, (50), (71) and the definition of ε1 give778

‖v±(t)− v±
0 , B±(t)− B±

0 ‖2,± < ε0 , ‖ f (t)‖H2.5(T2) < ε0.779

Consequently, there exists a neighborhood of t in [0, T0] that is included in I . In other780

words, I is open. Hence I = [0, T0] and the result of Theorem 4 is proved. The proof781

in the case T ≤ T0 is similar.782

7. Proof of Lemma 1783

Given χ ∈ C∞
0 (R), χ = 1 on [−1, 1], we define784

f (1)(x ′, x3) := χ(x3|D|) f (x ′) , ψ(x ′, x3) := (1 − x2
3 ) f (1)(x ′, x3) , (72)785

where χ(x3|D|) is the pseudo-differential operator with |D| being the Fourier multi-786

plier in the variables x ′. From the definition it readily follows that ψ(x ′, 0) = f (x ′),787

ψ(x ′,±1) = 0 for all x ′ ∈ T
2. Moreover,788

∂3ψ(x
′, x3) = −2 x3 f (1)(x ′, x3) + (1 − x2

3 ) χ
′(x3|D|) |D| f (x ′) , (73)789

which vanishes if x3 = 0. Given any function g defined on T
2, let us denote by ck(g)790

the kth Fourier coefficient791

ck(g) =
∫

T2
e−2 i π k·x ′

g(x ′) dx ′ , k ∈ Z
2.792

Since ck( f (1)(·, x3)) = χ(x3 |k|) ck( f ), we compute793

‖ψ(·, x3)‖2
Hm (T2)

= (1 − x2
3 )

2 ‖ f (1)(·, x3)‖2
Hm (T2)

794

≤ C (1 − x2
3 )

2
∑

k∈Z2

(1 + |k|2)m
∣
∣
∣ck( f (1)(·, x3))

∣
∣
∣
2

795

≤ C (1 − x2
3 )

2
∑

k∈Z2

(1 + |k|2)m χ2(x3 |k|) |ck( f )|2.796
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It follows that797

‖ψ‖2
L2

x3
(Hm (T2))

≤ C
∫ 1

−1
(1 − x2

3 )
2
∑

k∈Z2

(1 + |k|2)m χ2(x3 |k|) |ck( f )|2 dx3798

≤ C
∑

k∈Z2

(1 + |k|2)m |ck( f )|2
∫ 1

−1
χ2(x3 |k|) dx3799

≤ C |c0( f )|2 + C
∑

|k|≥1

(1 + |k|2)m |ck( f )|2 1

|k|
∫ |k|

−|k|
χ2(s) ds.800

Denoting by X ∈ C∞(R) the primitive function of χ2 vanishing at −∞, i.e. X ′(s) =801

χ2(s), we notice that X is bounded over all R. Then802

‖ψ‖2
L2

x3
(Hm (T2))

≤ C |c0( f )|2 + C
∑

|k|≥1

(1 + |k|2)m−1/2|ck( f )|2 sup
s∈R

|X (s)|803

≤ C ‖ f ‖2
Hm−1/2(T2)

. (74)804

In a similar way, from (73), we obtain805

‖∂3ψ‖2
L2

x3
(Hm−1(T2))

806

≤C
(
‖χ(x3 |D|) f ‖2

L2
x3
(Hm−1(T2))

+‖χ ′(x3 |D|) |D| f ‖2
L2

x3
(Hm−1(T2))

)
807

≤ C
∑

k∈Z2

(1 + |k|2)m−1 |ck( f )|2
∫ 1

−1
χ2(x3 |k|) dx3808

+C
∑

k∈Z2

(1 + |k|2)m−1 |k|2 |ck( f )|2
∫ 1

−1
|χ ′(x3 |k|)|2 dx3809

≤C‖ f ‖2
Hm−3/2(T2)

+C
∑

k �=0

(1+|k|2)m−1|k| |ck( f )|2
∫ |k|

−|k|
|χ ′(s)|2 ds.810

Denoting by Y ∈ C∞(R) a primitive function of (χ ′)2, we also notice that Y is bounded811

over all R, so as in (74), we get812

‖∂3ψ‖2
L2

x3
(Hm−1(T2))

≤ C ‖ f ‖2
Hm−3/2(T2)

813

+C
∑

|k|≥1

(1 + |k|2)m−1/2 |ck( f )|2 sup
s∈R

|Y (s)| ≤ C ‖ f ‖2
Hm−1/2(T2)

.814

Iterating the same argument yields815

‖∂ j
3ψ‖2

L2
x3
(Hm− j (T2))

≤ C ‖ f ‖2
Hm−1/2(T2)

, j = 0, . . . ,m.816

Adding over j = 0, . . . ,m finally gives ψ ∈ Hm(�) and the continuity of the map817

f �→ ψ .818

The proof of Lemma 2 follows from Lemma 1, with t as a parameter. Notice also819

that the map f → f (1), see (72), is linear and that the time regularity is conserved820

because, with obvious notation, (∂ j
t f )(1) = ∂

j
t ( f (1)). The conclusions of Lemma 2821

follow directly.822
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