
Argumentation Frameworks Features: an Initial Study

Mauro Vallati1 and Federico Cerutti2 and Massimiliano Giacomin3

Abstract. Semantics extensions are the outcome of the argumenta-
tion reasoning process: enumerating them is generally an intractable
problem. For preferred semantics two efficient algorithms have been
recently proposed, PrefSAT and SCC-P, with significant runtime
variations. This preliminary work aims at investigating the reasons
(argumentation framework features) for such variations. Remarkably,
we observed that few features have a strong impact, and those ex-
ploited by the most performing algorithm are not the most relevant.

1 INTRODUCTION

Abstract argumentation is a popular approach for non-monotonic rea-
soning. Although it is built on just arguments — vertexes of a graph
— and attacks — directed edges — it has been proved able to encom-
pass other approaches to non-monotonic reasoning [5]. Given these
simple structures, argumentation theory prescribes several semantics
[1]: each semantics identifies the so-called semantics extensions, viz.
sets of arguments that are “collectively acceptable”.

In this paper we focus on the so-called preferred semantics: it has
interesting theoretical properties [5] making it one of the most used
semantics. The enumeration problem associated to this semantics is
at the second level of the polynomial hierarchy [6]: this justifies the
search for efficient mechanisms for solving it (solvers). Among oth-
ers, two solvers have been recently proposed: PrefSAT [3], which
translates the enumeration problem into several SAT problems, and
SCC-P [4], which exploits the SCC-recursiveness schema [2]. Pref-
SAT is more efficient than other state-of-the-art solvers [3], but in
some situations it is way less efficient than SCC-P [4].

The aim of this paper is to explain the significant runtime variation
between PrefSAT and SCC-P [4] by implementing so-called empir-
ical performance models (EPMs) [8]. First, we run the two solvers
on a large number of instances (AFs). For each instance, the solvers’
performances are recorded and a set of instances features is com-
puted. Each feature is a real number that summarises a property of
the instance. A predictive model is then learnt as a mapping instance
features–solver performance. Finally, the EPMs are cross-validated.

Although EPMs are well established within AI [8], as to our
knowledge this is the first study in argumentation theory (whose
main concepts are summarised in Section 2). Since the critical step
to building accurate EPMs is identifying a “good” set of instance
features, the core of this paper is to investigate suitable features for
argumentation frameworks (Section 3): as a preliminary study, we
focused on features related to graph theory. Finally Section 4 sum-
marises the main contributions and concludes the paper.

1 University of Huddersfield, UK, email: m.vallati@hud.ac.uk
2 University of Aberdeen, UK, email: f.cerutti@abdn.ac.uk
3 University of Brescia, Italy, email: massimiliano.giacomin@unibs.it

2 PRELIMINARIES

An argumentation framework (AF) [5] is a pair 〈A,→〉, where A
is a set of arguments (vertexes of a graph) and → ⊆ A × A is a
set of attacks (directed edges). S ⊆ A is conflict-free iff ∀a,b ∈
S, 〈a,b〉 /∈ →. An argument a ∈ A is acceptable w.r.t. S ⊆ A iff
∀b ∈ A | 〈b,a〉 ∈ →, ∃c ∈ S | 〈c,b〉 ∈ →. S ⊆ A is admissible
iff it is conflict-free and each argument of S is acceptable w.r.t. S.
S ⊆ A, admissible, is a complete extension iff each argument, which
is acceptable w.r.t. S, belongs to S. S ⊆ A is a preferred extension
iff it is a maximal (w.r.t. set inclusion) complete extension.

Two efficient algorithms for preferred extensions enumeration
have been proposed: PrefSAT [3] and SCC-P [4]. PrefSAT solves
the SAT problem equivalent to find a complete extension in an AF,
and finds the preferred extensions through hill-climbing. The already
found extensions are excluded by subsequent search steps. SCC-P
implements the SCC-recursiveness schema [2]. First, the extensions
of the frameworks restricted to the initial (i.e. not receiving any at-
tack) strongly connected components (SCCs) are computed and com-
bined together. Then each SCC which is attacked only from initial
SCCs is considered: the extensions of such a SCC are locally com-
puted and merged with those already obtained. Then the subsequent
SCCs are considered until no remaining SCCs are left to process.
The schema is recursive: for each SCC (1) all arguments attacked by
the extension selected in the previous SCCs are suppressed; (2) the
procedure is recursively applied to the remaining part of the SCC.
The base of the recursion is reached when there is only one SCC: in
this case a solver similar to PrefSAT is called. Unsurprisingly, SCC-
P proved to be more efficient than PrefSAT on AFs with a significant
number of SCCs [4]. In the other cases, PrefSAT is much more effi-
cient than the other state-of-the-art solvers [3, 4].

3 ANALYSIS

PrefSAT, SCC-P and the features extraction have been run on a clus-
ter with computing nodes equipped with 2.5 Ghz Intel Core 2 Quad
ProcessorsTM, 8 GB of RAM. A cutoff of 15 minutes was imposed
to compute the preferred extensions for each AF. For each solver we
recorded the overall result: success (found all the preferred exten-
sions), crashed, timed-out or ran out of memory. Unsuccessful runs
were assigned a runtime equal to the cutoff.

The 10,000 AFs are generated using a parametric random ap-
proach allowing to select (probabilistically — average, standard de-
viation) the density of attacks for each SCC; and how many argu-
ments (probabilistically) in each SCC attack how many arguments
(probabilistically) in how many (probabilistically) other SCCs. The
number of arguments ranges between 10 and 40,000. We exploited a
10-fold cross-validation approach on a uniform random permutation
of our instances — a standard method where nine slices are used for
training and the tenth for testing. EPMs are built using WEKA [7].

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-1117

1117

Features. We considered 26 features, belonging to 5 classes: graph
size (5), degree (4), SCC (5), graph structure (5), times (7).
Graph size features: number of vertices, number of edges, ratios
vertices–edges and inverse, and graph density (NT – non trivial).
Degree features (overall NT): average, standard deviation, maxi-
mum, minimum degree values across the nodes in the graph.
SCC features (overall NT): number of SCCs, average, standard devi-
ation, maximum and minimum size.
Graph structure: presence of auto-loops, number of isolated vertices
(NT), flow hierarchy (NT) and results of test on Eulerian (NT) and
aperiodic structure of the graph (NT).
Finally, the needed CPU-time for extracting each NT feature has
been considered. It is worth mention that usually the overall features
extraction process takes less than a CPU-time second per instance
apart from the aperiodicity of the graph (up to 20 seconds). A feature
is trivial if its extraction requires less than 0.001 seconds.
Prediction and Feature Importance. We considered EPMs for both
classification and regression approaches. Classification approaches
classify the AF into a single category: this indicates the algorithm
which is predicted to be the fastest. Regression techniques model
the behaviour of each algorithm for predicting its runtime on a new
AF. Since solvers runtimes vary from 0.01 to 900 CPU seconds, we
trained our regression models to predict log-runtime rather than ab-
solute runtime: this have been effective in similar circumstances [8].
We first assessed the performance of various classification and re-
gression models, and we observed that random forests performed
best in classification, and M5-Rules in regression.

Table 1 shows the results for prediction and regression (RMSE)
using the best performing models, with 10-fold cross validation on a
uniform random permutation of our full set of 10,000 AFs. Results
are shown by generating EPMs considering the single best feature
(B1), the best two and three of them (B2, B3), all the features but
SCC-related ones (A-S) and all the extracted features (All). Best fea-
tures are selected according to a greedy forward search in the space
of features: starting from an empty subset, it iteratively adds a new
feature to the considered subset. It stops when the addition of any
attribute results in the decrease of the evaluation. The evaluation of
a subset of features is done by considering the predictive ability of
each feature along with the degree of redundancy between them.

In Table 1, the three best features for the classification task are:
(1) the density of the AF, (2) the minimum degree value and (3) the
number of SCCs. Remarkably, (1) allows to achieve, even while used
alone, significant classification performances. From [4], SCC-related
information are believed to be very informative, thus without SCC
features we expect a noticeable decrease of the EPMs performance.
Interestingly, considering the number of SCCs in the 3-best features
introduces some noise that worsen the performance. For the regres-
sion task, the three best features for predicting PrefSAT runtimes are
the same exploited for classification, while for SCC-P are: (1) the
density, (2) the number of SCCs and (3) the size of the largest SCC.
According to the results, SCC-P performances are somehow easier
to predict than PrefSAT ones. Differently from classification, for the
regression task exploiting the three best features allows significantly
better runtime prediction than the best single feature.

In addition to the results discussed in Table 1, it is worth mention-
ing that: (I) for AFs with few arguments (“small”) the classification
process mainly depends on the ratio vertices/edges, while for “big-
ger” AFs it mainly depends on the average degree value; (II) con-
sidering only SCC-related features drops the classification accuracy
— proportion of instances correctly classified — to 62.3%; (III) the
EPM precision — the proportion of true positives within a class —

Table 1. Evaluation of classification and regression EPMs for different
features subsets. B1, B2, B3 indicates the best 1, 2 and 3 features according
to a greedy forward search; A-S indicates all the features but SCC-related

ones; All indicates all the extracted features
Classification (Higher is better)

B1 B2 B3 A-S All
Accuracy 83.5% 82.6% 80.9% 83.5% 84.4%

Precision PrefSAT 84.0% 83.3% 80.3% 83.3% 84.2%

Precision SCC-P 83.1% 82.0% 81.4% 83.7% 84.6%

Regression - RMSE log (Lower is better)
B1 B2 B3 A-S All

PrefSAT 1.39 1.31 0.93 0.89 0.89

SCC-P 1.36 0.80 0.78 0.76 0.75

is similar between the two algorithms; (IV) considering regression
EPM for SCC-P, 88.9% of the predictions are within a factor of 1 of
the observed runtimes with the full feature set (All), vs. 82.4% and
60.4% when using respectively B3 and B1 features; (V) for Pref-
SAT the corresponding values are: 77.5%, 75.9% and 61.0%; (VI)
not considering aperiodicity of the AF — the most expensive fea-
ture to extract — the regression performance does not change, while
classification accuracy decreases by 0.2%.

4 CONCLUSIONS

Exploiting EPMs for predicting solvers’ performance is known to
lead to practical improvements [8] and to provide useful insights that
can be exploited for further solvers improvements. In this work we
have investigated the use of EPMs for two efficient solvers that enu-
merate the preferred extensions of argumentation frameworks, iden-
tifying a set of features and analysing their effectiveness for both
classification and regression predicting tasks.

Table 1 shows that a small and easy to compute set of features
leads to good EPMs. Remarkably, although one of the considered
solvers relies on SCC-decomposition of the AF, SCC related features
are very informative only in conjunction with other features.

Future work includes extending this preliminary work on features
collection, by encoding AFs in different structures and by consider-
ing probing features; considering other state-of-the-art solvers; and
engineering a portfolio approach.

REFERENCES

[1] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin, ‘An intro-
duction to argumentation semantics’, Knowledge Engineering Review,
26(4), 365–410, (2011).

[2] Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida, ‘SCC-
recursiveness: a general schema for argumentation semantics’, Artificial
Intelligence, 168(1-2), 165–210, (2005).

[3] Federico Cerutti, Paul E. Dunne, Massimiliano Giacomin, and Mauro
Vallati, ‘Computing preferred extensions in abstract argumentation: A
sat-based approach’, in TAFA, pp. 176–193, (2013).

[4] Federico Cerutti, Massimiliano Giacomin, Mauro Vallati, and Marina
Zanella, ‘A SCC recursive meta-algorithm for computing preferred la-
bellings in abstract argumentation’, in KR, (2014). to appear.

[5] Phan M. Dung, ‘On the Acceptability of Arguments and Its Fundamental
Role in Nonmonotonic Reasoning, Logic Programming, and n-Person
Games’, Artificial Intelligence, 77(2), 321–357, (1995).

[6] Paul E. Dunne and Michael Wooldridge, ‘Complexity of abstract argu-
mentation’, in Argumentation in AI, eds., I Rahwan and G Simari, chap-
ter 5, 85–104, Springer-Verlag, (2009).

[7] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten, ‘The WEKA data mining software: An
update’, SIGKDD Explorations, 11(1), 10–18, (2009).

[8] Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown, ‘Algo-
rithm runtime prediction: Methods & evaluation’, Artificial Intelligence,
206(0), 79 – 111, (2014).

M. Vallati et al. / Argumentation Frameworks Features: An Initial Study1118

