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We numerically study the evolution of the spectrum of parametric resonance or modulation instability
sidebands in quasiperiodic dispersion oscillating fibers. We separately consider a linear variation along
the fiber of either the spatial period, the average dispersion, or the amplitude of the dispersion oscil-
lation. We found that this linear variation of the dispersion oscillating fiber parameters may provide
different novel mechanisms for the splitting of the resonance sideband spectrum, owing to coherent
interference between quasi-resonant waves that are generated at different points along the fiber.
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1. Introduction

Modulation instability (MI) is a nonlinear process that has been
widely investigated in various fields of physics including hydro-
dynamics [1], plasmas [2] and optics [3], to cite a few. In the
presence of a high power continuous wave (CW), MI leads to the
emergence and amplification of gain sidebands in the wave
spectrum. In nonlinear fiber optics, such a process has been de-
monstrated in fibers with anomalous, constant group velocity
dispersion (GVD) [3], as well as in normal GVD fibers by enabling
the fulfillment of the nonlinear phase-matching condition through
either fourth order dispersion [4,5], birefringence or a multimodal
structure [6-8]. However, the efficiency of such parametric pro-
cesses may highly suffer from unwanted longitudinal fluctuations
of the fiber parameters, with a rapid drop of the gain as well as a
broadening of its bandwidth. Ultimately, parametric gain may fully
disappear in the presence of fiber fluctuations [4,5,8-10], which
leads to the requirement of sophisticated devices or fiber designs
[11]. The efficiency of pulse reshaping processes may also be ser-
iously impaired by stochastic fluctuations of the fiber parameters
[12].

To the contrary, whenever the longitudinal variations of the
fiber parameters are quite large, periodic and controlled such as in
loss (or nonlinearity) [13], dispersion [14,15] or polarization [16]
managed fiber transmission or laser systems, new deterministic
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MI or parametric resonance (PR) sidebands appear. In this work,
we shall use the terms of MI or PR as fully equivalent in our de-
scription of the sideband spectrum generation process. As a matter
of fact, the periodic oscillation of the fiber dispersion leads to the
quasi-phase-matching (QPM) of the nonlinear four-wave mixing
(FWM) process. As a result, unequally spaced MI sidebands can
emerge [14-16]. A renewed experimental and theoretical interest
in these studies has been recently stimulated by the availability of
fibers presenting a longitudinal and periodic modulation of their
dispersion properties. Recent experimental works have confirmed
the QPM-induced MI process in the normal GVD regime of mi-
crostructured dispersion oscillating fiber (DOF) around 1 pm
[17,18], as well as of non-microstructured highly nonlinear DOF at
telecom wavelengths [19].

However, one may wonder how in this case deviations from a
strictly periodic evolution of the fiber parameters may affect the
QPM-MI spectrum. Can it be beneficial to the enlargement of the
sideband bandwidth to use a chirped DOF, in a manner that is
similar to the approach commonly used in the context of chirped
QPM quadratic crystals? Or is the longitudinal variation of the
parameters of the fiber always detrimental to the parametric re-
sonance gain? To answer this important question, in this work we
numerically study the impact of a linear longitudinal evolution of
the main parameters of a DOF. Therefore our analysis is organized
as follows. In the first section, we describe our numerical model
and the specific DOF under investigation. Next, by using systematic
simulations and an approximate approach that is based on the
Floquet theorem and the associated linear stability analysis (LSA),
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we separately discuss the influence of each parameter, i.e., the
spatial dispersion oscillation period, the value of the average dis-
persion, and finally the amplitude of the dispersion oscillations.

2. Model and situation under investigation

The evolution of the complex slowly-varying electric field y in
an optical fiber can be described by the nonlinear Schrodinger
equation (NLSE) that includes both the Kerr nonlinearity and the
longitudinally varying second-order dispersion /(z)

ay _ B(2)o%y

0z 2 ot?

+7lyPy =0
141n" 1)

where z is the propagation distance and ¢ is the reduced time. We
neglect here the slight variations of the effective area of the fun-
damental mode that may appear during the drawing process of
the single mode fiber and we consider the nonlinear coefficient y
as constant.

MI or parametric resonance induced by the longitudinal var-
iations of chromatic dispersion was theoretically investigated be-
fore in a wide range of configurations, ranging from sinusoidal
profiles with a spatial period of a few tens of meters [17,19], up to
dispersion-managed systems with periods of several kilometers
[20-23]. Let us consider a fiber dispersion profile that evolves with
distance z according to the following sinusoidal rule:
ﬂz (Z) = ﬁZﬂV + ﬁZamp sin (%) (2)
where A is the spatial period of the dispersion oscillation, 3,4y is
the average dispersion of the fiber, and Poamp is the half of the
peak-to-peak amplitude of the dispersion variation. In the pre-
sence of sinusoidal longitudinal GVD variations, and when
pumped by a continuous wave of power P, the QPM of FWM (or
MI, or PR) leads to the appearance of resonant gain sidebands,
whose angular frequency shift relative to the pump can be ana-
lytically predicted as follows [14]:

2ap|A — 2yP
ﬂ2av (3)

with p=1, 2, 3... The corresponding exponential power gain
coefficient for the pth sideband may be estimated by the analytical
expression [24]

ﬁZamp'sz
Jr 2x[A

where J, is the Bessel function of order p.

In this contribution, we analyze by means of extensive nu-
merical simulations the spectrum of parametric resonances in a
quasiperiodic DOF. Specifically, we separately consider a linear
variation with propagation distance z of each of the three para-
meters in the right hand side of Eq. (2). By expressing any of these
parameters as Q, we set

2 _
Qp =

g(2p) =2yP

(4)
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Here Q stands for either A, Paqy, O Paamp; Q is the average value of
the quantity under study, and o characterizes the rate of evolution
of Q. Positive values of o indicate that the value of the Q parameter
grows larger along the propagation distance. The ratio of the peak-
to-peak amplitude of fluctuation AQ over Q is lal. The values of the
parameters Qo and Q; at the input and output of the fiber are
therefore Qo = Q (1 — (/2)) and Q; = Q (1 + («/2)), respectively.
Inspired by the highly nonlinear DOF that was experimentally
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Fig. 1. Evolution of the longitudinal dispersion profile of a DOF with sinusoidal
dispersion modulation (gray line), or for a quasiperiodic DOF with linear evolution
of either: the spatial period (panel a, black line, «=0.1); the average dispersion
(panel b, black line, «=0.5); the amplitude of the dispersion fluctuations (panel c,
black line, a=2).

used in [19,25,26], we consider here a DOF with the following
average values: A =20 m, “fyq, = 2 ps?/km and ~ fygm, = 2 ps?[km.
We set the overall fiber length equal to 400 m, and its nonlinear
coefficient y=10 W~ km~'. The DOF is pumped by a quasi-CW
pump with a peak power P=4 W at the telecommunication wa-
velength A=1550 nm. Examples of the resulting dispersion pro-
files for the different cases of linear variation of either one of the
A, Baav O Paamp parameters are illustrated in Fig. 1.

We numerically solved the NLSE (1) by the standard split-step
Fourier algorithm, including a weak input white noise seed: the
results were averaged over 12 independent noise shots. We con-
sider here separately the impact of a longitudinal variation of ei-
ther A, Baqv, or P2amp. We also took advantage of the LSA based on
the Floquet theorem, which proved to be a very powerful tool for
the analysis of the evolution of the MI gain spectrum in DOFs
[18,22,23,27]. Clearly the Floquet theorem is strictly valid for a
periodic DOF only: nevertheless, it may still be used as an ap-
proximate tool to compute the sideband spectrum in quasiperiodic
DOFs as well. Indeed, in Ref. [22], we have shown that the Floquet
method may still be used to obtain an approximate averaged de-
scription of the MI gain spectrum in the presence of fiber loss (or
gain). The way to compute the gain profile g(w, Q) by the Floquet
method is to consider first a constant value of Q, obtain its cor-
responding PR spectrum, and then compute the overall MI spec-
trum gr by simply averaging over the probability distribution of
the Q parameter

g(0) = [2(0, Qpdf(QdQ= [ glo. Q)0 -

3. Impact of the spatial period variation
We start our study by investigating the influence of a spatial

dispersion oscillation period that varies linearly with the propa-
gation distance (see Fig. 1(a)). The resulting spectra (or parametric
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Fig. 2. (a) Evolution of the MI gain spectrum (or Arnold resonance tongues) as a
function of the amplitude of the linear change of the spatial period. Results are
obtained from the numerical integration of the NLSE. (b) Evolution of Aa at —10 dB
vs. the QPM sideband number p: results from numerical simulations (black trian-
gles) are compared with results from the Floquet LSA (gray circles). (For inter-
pretation of the references to color in this figure, the reader is referred to the web
version of this article.)

instability spectral bands, which are known in the mathematical
theory of periodic ordinary differential equations as Arnold re-
sonance tongues [28,29]) are plotted in Fig. 2(a), and highlight the
rapid fall of the gain that is experienced by the various sidebands
when lal is increased. We may also note that the unequally spaced
and initially narrow spectral sidebands continuously broaden and
eventually may overlap. The splitting and fan-out of the resonant
sideband frequencies is strikingly reminiscent to the Stark splitting
of the electron resonances or spectral lines of atoms and molecules
in the presence of an applied electric field [30]. Moreover, Fig. 2
(a) also shows that an oscillatory pattern develops in the sideband
amplitudes within the resonance tongues. In Fig. 2(b), we evaluate
the tolerance Aa, on « that we defined as follows:
A0, = Omax — Omin Where Otnax and am, are the values of o leading
to a decrease of 10 dB of the maximum gain of the pth sideband.
Aoy, rapidly decreases with the order of the gain sideband, from a
value of 0.26 for the first sideband down to a value below 0.05 for
the 6th sideband. As a practical consequence, we may infer that
even very small deviations from a strictly periodic dispersion os-
cillation structure may hamper the development of high-order
gain sidebands, and that a tight drawing precision is therefore
required for generating a large set of spectral lines.

Details of the spectra obtained for a=—0.1 and x=0.1 are
provided in Fig. 3(a1), and compared with the gain spectrum that
is obtained in perfectly periodic conditions. We may note here that
the sign of o has a crucial influence on the sideband spectrum, as
can also be observed by noting the tilt of the spectrum in Fig. 2(a).
In other words, according to the direction of propagation along the
chirped DOF, the sideband spectrum may exhibit a shift towards
either lower or higher frequencies whenever the dispersion os-
cillation period grows larger or smaller, respectively.

In order to gain a simple qualitative understanding of the ob-
served evolution of the resonance tongues, we computed the
corresponding sideband spectrum as it is predicted by the Floquet

Gain (dB)

o L1 1 \1/\1

1.5 2 25 3 3.5 4

Frequency(THz)

Fig. 3. (a) Output spectrum obtained from numerical simulations (panel al)
without linear evolution of A (black line), for a= —0.1 (gray curve) and a=0.1 (light
gray curve). Results from Eq. (6) are plotted on panel (a2) for lal=0.1 (gray line).
(b) Evolution of the QPM MI spectrum g(w) as a function of A for a strictly periodic
DOF, as predicted by the Floquet LSA. (c) Evolution of the output spectrum vs. lol as
predicted by the use of the approximate approach based on Eq. (6). Same colormap
as in Fig. 2. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

linear stability analysis: Fig. 3(b) summarizes the evolution of the
gain g(m,A) for a strictly periodic DOF. In agreement with the
analytical expression for the sideband position given in Eq. (3), the
central frequencies of the gain sidebands are strongly affected by
changes of the oscillation period A. This explains the observed
broadening of the average gain profile resulting from Eq. (6) (see
Fig. 3(c)), as well as the dramatic decrease of the gain values. Quite
unexpectedly, the approximate Floquet method approach may
indeed qualitatively well reproduce the numerically observed gain
drop that is summarized in Fig. 2(b). Nevertheless, the Floquet
method approach is unable to capture some of the numerically
observed features, such as the previously discussed spectral
asymmetry of the sideband spectrum obtained as the direction of
propagation is reversed in the chirped DOF. Clearly, the main
limitation inherent in using Eq. (6) is that the average gain is a sum
of positive contributions: the overall gain may intrinsically only
increase upon propagation. Hence it is not possible to reproduce
with Eq. (6) the large spectral oscillations of the gain sidebands: as
it can be seen in Fig. 3(a2), instead of strong oscillations, a kind of
plateau is predicted. This means that the sideband splitting and
associated rapid amplitude oscillations with frequency of the re-
sonance tongues are due to the coherent constructive (or de-
structive) interference among the sidebands that are generated at
different points along the chirped DOF. Moreover, Eq. (6) leads to
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the same result irrespective of the sign of a: consequently, it fails
in predicting the asymmetric spectral evolution that is obtained by
the full numerical simulation of the NLSE.

4. Impact of the average dispersion variation

Let us investigate next the influence on the Arnold resonance
tongues of a longitudinal change of the average DOF dispersion
(see Fig. 1(b)). To this end, we carried out a numerical study similar
to that of Section 3. The corresponding results are summarized in
Figs. 4 and 5. As it can be seen in Fig. 4, in this case the sideband
splitting and fan-out as the amplitude of the average dispersion
excursion grows larger is now symmetric with respect to the di-
rection of variation of o (or B,4,). On the other hand, we may also
note from Figs. 4 and 5 several features that are common with the
trends observed in the presence of a chirped spatial period A.
Namely, the broadening of the gain sidebands results from the
change of Q,, according to P,, as predicted by Eq. (3). Moreover,
the peak sideband gain is strongly sensitive to the presence of a
variation of the fiber parameters: its amplitude drops and exhibits
strong frequency oscillations. Finally, an overlap of the different
gain sidebands is also observed in Figs. 4 and 5. Once again, in
spite of some limitations owing to the fact that the Floquet
method is only rigorously applicable to a perfectly periodic DOF,
the approximate approach that is based on Eq. (6) may provide a
useful insight on the evolution of the gain bandwidth or the range
of Aa. But even if the difference between DOF with constant
parameters and the quasiperiodic DOF under study seem relatively
small (see Fig. 1(b) plotted for ®=0.5), Eq. (6) is unable to capture
the rapidly oscillating spectral pattern that is observed when the
gain sideband spectrum is substantially broadened. Once again,
the sideband splitting and amplitude oscillations within the Ar-
nold resonance tongues result from the coherent (or phase-
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Fig. 4. (a) Evolution of the MI gain spectrum or resonance tongues vs. the ampli-
tude of the linear variation of the average dispersion. Results are obtained from the
numerical integration of the NLSE. (b) Evolution of Aa at —10 dB vs. the QPM
sideband order: results from numerical simulations (black triangles) are compared
with results from the Floquet LSA (gray circles). (For interpretation of the refer-
ences to color in this figure, the reader is referred to the web version of this article.)
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Fig. 5. (a) Output spectrum obtained from numerical simulations (panel al)
without a linear evolution of B,4, (black curve), and for a=—0.25 (gray line) or
a=0.25 (light gray curve). Results from Eq. (6) are plotted on panel (a2) for lal=0.25
(gray curve). (b) Evolution of the QPM MI spectrum as a function of .4, for a strictly
periodic DOF as predicted by the Floquet linear stability analysis. (c) Evolution of
the output spectrum vs. lal as predicted by the use of the approximate approach
based on Eq. (6). Same colormap as in Fig. 4. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

sensitive) summation of sidebands generated at different points of
the quasiperiodic DOF.

5. Impact of the amplitude of the dispersion oscillation

In this last section, we shall examine the impact of a linear
variation of the amplitude of the fiber dispersion oscillation on the
shape and amplitude of the Arnold resonance tongues. As we shall
see, in this case the evolution of the sideband spectrum is strongly
dependent on the value of the (constant) average dispersion [,
Let us consider first the case with By4,=2 ps’/km. The corre-
sponding results, obtained from the numerical integration of the
NLSE, are summarized in Fig. 6(a). As it can be seen, in this case the
linear change of the oscillation amplitude has a quite limited im-
pact on the sideband spectrum, contrary to the two previous cases
discussed in Sections 3 and 4. Remarkably, Fig. 6(a) shows that o
may vary over a relatively large range, without significantly af-
fecting the peak gain values. Indeed, Fig. 6(b) confirms that Aa
may be as high as 3 and even higher, without decreasing the gain
in the first QPM by more than 3 dBs. We may also note that the
gain bandwidth does not broaden significantly, even when de-
viations from constant P,mp as large as o=2 are imposed (see
Fig. 1(c) for an illustration of the dispersion evolution for o=2).
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Fig. 6. (a) Evolution of the MI gain spectrum or resonance tongues vs. the strength
of the variation of the dispersion oscillation amplitude; here ,q,=2 ps?/km. Re-
sults are obtained from the numerical integration of the NLSE. (b) Evolution of A«
at —3 dB as a function of the order of the QPM sideband: results from numerical
simulations (black triangles) are compared with approximate results from the
Floquet LSA (gray circles). (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)

Finally, Fig. 6(a) shows that the spectrum deformation is fully
symmetric as the sign of a is changed. This means that in this case
the same spectrum results at the output of the quasiperiodic DOF,
irrespective of the propagation direction.

Now, a relatively good qualitative and quantitative match is
obtained between the numerical spectra and the approximate
analysis relying on the Floquet LSA as it has been summarized in
Fig. 7. The key point is that, contrary to the previous cases, the
variation of the amplitude of the dispersion oscillations Pagmp
should in principle have no influence, on the basis of Eq. (3), on the
position of the MI sidebands.

As we shall see now, the impact of the longitudinal evolution of
B2amp is dramatically different whenever the average dispersion is
reduced down to B4, =1 ps?/km. The corresponding results of our
systematic simulations are reported in Fig. 8(a): as can be seen, the
resonance tongues display several new features. First of all, at low
lol values, a new sideband that is induced by FWM between the
pump and the first QPM sideband is observed. The corresponding
generation efficiency drops down as soon as the gain of the first
QPM sideband decreases.

However, an interesting and novel property of the MI or PR
spectrum is that for selected sidebands, the quasiperiodic oscilla-
tion amplitude leads to a substantial increase of the spectral gain.
This is for example the case for the 4th sideband: the corre-
sponding gain is increased by more than 20 dBs with respect to
the case of a strictly periodic DOF (see Fig. 8(c)). This gain en-
hancement may be explained with the help of Eq. (4): with «=0
and for the parameters under study, the gain predicted by Eq. (4)
for the 4th sideband vanishes. To the contrary, whenever o0,
nonzero gain is experienced at different stages of the propagation
along the fiber, so that the overall gain is finite. The numerically
observed gain enhancement of Fig. 8(c) is well reproduced with
the help of Eq. (6): the corresponding LSA results are presented in
Fig. 9(b).
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Fig. 7. (a) Output spectrum obtained from numerical simulations (panel al) and
from Eq. (6) (panel a2) for a constant Baqmp (black curve), and for a=2 (gray curve);
here ,q,=2 ps?/km. (b) Evolution of the QPM MI spectrum as a function of Baamp
for a strictly periodic DOF as predicted by the Floquet LSA. (c) Evolution of the
output spectrum vs. lol as predicted by the use of the approximate approach based
on Eq. (6). Same colormap as in Fig. 6. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

On the other hand, in a manner similar to the cases described
in Figs. 2 and 4, the use of the Floquet approach based on the
incoherent summation of Eq. (6) is not able to capture a very in-
teresting spectral feature that is observed for the higher-order
QPM sidebands in Figs. 8(b) and 9(a). As can be seen, instead of a
spectral sideband with a single peak, a splitting into two separate
sub-peaks occurs for sidebands of order p > 1. Moreover, for each
of these sidebands the frequency spacing between the two sub-
peaks grows larger as Il increases. The observed sideband split-
ting leads to energy spectra for the amplified quantum noise that
are qualitatively analogous to energy spectra of electrons under
the Zeeman splitting of the spectral lines in a gas, which occurs in
the presence of a strong magnetic field [31].

A sideband splitting of the resonance tongues was previously
theoretically reported for a strictly periodic DOF in Ref. [22], and
later experimentally demonstrated in Ref. [26], and its potential
implications for all-optical signal processing were further analyzed
in Ref. [32]. Because of the periodicity of the dispersion oscilla-
tions, in those cases the Floquet analysis could be successfully
applied to reproduce the sideband splitting effect. In the case of a
quasiperiodic DOF, a proper extension of the Floquet method
should be developed, similarly to the case of parametric forcing
containing several incommensurable frequencies [33]. However
the development of this new mathematical tool is beyond the
scope of the present numerical study. In [34], Copie et al. analyzed
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Fig. 8. (a) Evolution of the MI gain spectrum as a function of the value of the linear
amplitude change of the dispersion fluctuations: here pyq,=1 ps/km. Results are
obtained from the numerical integration of the NLSE. (b) Details of the output
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second and fourth QPM sideband, respectively). Results from the numerical in-
tegration of the NLSE (solid curves) are compared with predictions from Eq. (6)
(dotted curve). (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)

analytically and experimentally the emergence of new sidebands
in the spectrum obtained after propagation in a fiber with a
complex dispersion oscillating profile characterized by two dif-
ferent spatial frequencies. However, in the quasiperiodic disper-
sion profile of Egs. (2) and (5) it is not possible to extract in un-
ambiguous manner a second spatial frequency besides the first
one. Therefore it appears that the analytical results of Ref. [34]
cannot be directly applied to describe the gain splitting and the
emergence of the new gain peaks at the edges of the gain side-
bands, as shown in Fig. 8(a, b).

In the present case, the sideband splitting results from a co-
herent interference among the resonant waves that are generated
at different points of the aperiodic DOF. The longitudinal evolution
of the sideband amplitudes is illustrated on Fig. 10(a): as can be
seen, the MI or PR gain at the mid-point of higher-order (i.e., with
p > 1) sidebands may experience a non-monotonic behavior. The
initial growth is followed by a gain decrease at the mid-point of
each parametric resonance. Correspondingly, two gain peaks
emerge with a frequency spacing that grows progressively larger
with the propagation distance.

We thus performed a systematic study of the evolution of the
resonance tongues as a function of the value of the average
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Fig. 9. Same as Fig. 7 but for p,q,=1 ps?/km. Same colormap as Fig. 8. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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dispersion. The corresponding results are summarized on Fig. 10
(b), and reveal that the spacing between the sub-sidebands also
increases with the ratio Paamp/B2av, SO that two well-separated
peaks may result, as the relative amplitude of the dispersion os-
cillations grows larger. Fig. 10(b) reveals that the sideband splitting
is not necessarily restricted to higher order QPM sidebands: for
average dispersion Paq, < 0.5 ps?/km, a splitting of the first-order
QPM sideband may be observed, too.

6. Conclusion

In this work we have studied how a longitudinal and linear
evolution of the parameters of a dispersion oscillating fiber may
affect the spectrum of quasi-phase-matched modulation in-
stability or parametric resonance. We found that even slight de-
viations of a constant spatial period significantly affect the output
sideband spectrum, in a manner that is sensitive to the direction of
use of the DOF. Moreover, variations of the average DOF dispersion
also impact the MI gain, leading to a noticeable sideband broad-
ening, and the development of additional amplitude modulations
in the sideband gain. To the contrary, as long as the ratio of
sideband amplitude fluctuations to average dispersion Bagmp/B2av
remains moderately high, even large changes of the amplitude of
the dispersion fluctuations do not significantly affect the main
properties of the spectrum. On the other hand, in the regime of
sufficiently high Baamp/B2av ratios, a new type of spectral sideband
splitting was observed. In all of the above cases, a simple but ap-
proximate approach based on the averaging of Floquet spectra
obtained by a linear stability analysis was found to be useful, and it
could permit to qualitatively reproduce most of the observed
spectral sideband features. However, the sideband splitting effect
could not be captured by the averaged Floquet approach, since it
results from a coherent constructive or destructive interference
among the resonant waves generated at different points along the
quasiperiodic DOF.
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