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Abstract: The Raman polarizer is a Raman amplifier which not only
amplifies but also re-polarizes light. We propose a relatively simple and
analytically tractable model – the ideal Raman polarizer, for describing
the operation of this device. The model efficiently determines key device
parameters such as the degree of polarization, the alignment parameter, the
gain and the RIN variance.
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1. Introduction

Raman-based polarization attraction belongs to a broad class of effects related to light-by-light
control in optical waveguides. Models for such control are essentially nonlinear and usually
imply the use of a high-intensity beam to modify the properties of the medium (for instance
its refractive index or absorption coefficient) such that propagation of a weaker probe beam
through the nonlinearly modified medium is affected in a substantial and controllable way. The
Raman polarizer was first experimentally demonstrated and numerically validated in a work by
Martinelli et.al. [1]. The authors demonstrated that initially unpolarized light is amplified and
simultaneously re-polarized in the course of propagation through a low-PMD randomly bire-
fringent telecom fiber (here PMD stands for polarization mode dispersion). Namely, the state
of polarization (SOP) of the signal beam at the output of the fiber is attracted towards the SOP
of the outcoming pump beam. Soon after this pioneering paper, quite a number of contributions
appeared aimed at the theoretical description of the operation of Raman polarizers in both co-
and counter-propagating configurations, as well as at the study of potential applications such as
multi-channel repolarization, enhanced amplification or silicon-based polarizers , [2–13]. All
of these papers provided purely numerical, albeit rigorous, studies. It would, still, be certainly
desirable to have access to a simple and analytically tractable model, capable of describing the
main features of Raman-based polarizers. Here we report such a model, valid for the charac-
terization of Raman polarizers both in the diffusion limit, in which the polarizer behaves as a
standard depolarized Raman amplifier, and in the Manakov limit, in which the Raman polarizer
behaves ideally, achieving full polarization of the incoming signal in complete alignment to the
pump’s SOP.

2. Model and main results

We consider the simultaneous propagation of two beams in a few kilometers long span of a ran-
domly birefringent telecom fiber. Figure 1 depicts the usual configuration for a co-propagating
Raman polarizer, characterized by a low-PMD fiber, a polarized high-power Raman pump and
a (typically) randomly polarized input signal at the corresponding first-Stokes wavelength. The
main feature which differentiates our theory from most previous studies on fiber-optic Raman
amplifiers is its vectorial nature. The first vectorial theory of the Raman effect in randomly
birefringent optical fibers was developed by Lin and Agrawal in Ref. [14], and it was applied to
describing the operation of what we call here “standard Raman amplifiers”. The interest there
was on the study of PMD-induced fluctuations in the intensity of the amplified signal.

Fig. 1. Schematic depiction of a typical experimental setup with a co-propagating Raman
polarizer. Raman pump at 1450 nm is highly polarized, whereas the state of polarization
of the signal is managed with a polarization controller (PC). A wavelength-division multi-
plexer is used to combine signal and pump and the repolarized signal is demultiplexed at
the output with a filter.

Here, on the other hand, we are interested in studying a totally different regime of Raman
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amplifiers, i.e., that of Raman polarizers. This can be achieved through adequate formulation
of the problem in terms of a set of deterministic differential equations. Skipping, for the sake of
both focus and space limitations, details of their derivation (which can be found in its entirety
in Refs. [2, 3]), we can arrive to the equations of motion for the signal Stokes vector:

∂zS(s) = γS(s)× Js(z)S(s) + γS(s)× Jx(z)S(p) + (g/2)
[
S(p)0 S(s) +S(s)0 JR(z)S(p)

]
. (1)

where γ is the fiber nonlinear coefficient, Js is the self-polarization modulation (SpolM) tensor,
Jx – cross-polarization (XPolM) modulation tensor and JR – the Raman tensor. All of these
tensors are diagonal. The elements of these tensors are dependent on the magnitude of the
birefringence beat lengths LB(ωs), LB(ωp) and on the correlation length Lc of the random bire-
fringence variations. The Raman tensor defines the polarization-sensitive amplification of the
amplifier: when the elements of this tensor vanish, the model is reduced to a scalar one. Con-
versely, when the diagonal elements of the Raman tensor keep appreciable values, the theory
retains its vectorial character.

Clearly the evolution of the signal Stokes vector sensitively depends on how the elements of
these tensors evolve with distance. In order to find their dynamics it is necessary to solve the set
of linear ordinary differential equations whose complete derivation and numerical solution is
given in Refs. [2,3]. Here we will be concerned only with their approximate analytical solutions,
which, as it will be shown, are successfully applicable in the cases of highest interest.

Figures 2(a),(b),(c) demonstrate how well these analytical solutions reproduce the full nu-
merical simulations. Figure 2(a) shows that the elements of the SPolM tensor drop down to
zero with distance: they already vanish within the first 10 m of fiber for most practically rele-
vant situations. Indeed, provided that the length of Raman amplifiers exceeds 1÷2 km, we can
safely set Js = diag(0, 0, 0). Similarly, the elements of the other two tensors also decrease with
distance, however at much slower rate. Namely,

Jx =−8
9

diag(1, 1, 1)exp(−z/Ld) (2)

JR = diag(1, 1, 1)exp(−z/Ld) (3)

As demonstrated in Fig. 2(b),(c), the decay distance is indeed associated with a characteristic
length Ld , which is called the PMD diffusion length:

L−1
d =

1
3
(DpΔω)2 (4)

where Dp = 2
√

2π
√

Lc/(LBωp) is the PMD coefficient, and Δω = ωp −ωs is the Raman shift
ΔωR = 13.2 THz.

Our analytical theory can be considered valid only in two limits – the so-called Manakov limit

(LNL, LR � Ld) and the diffusion limit (LNL, LR � Ld) (where LNL = (γS(p)0 )−1 is the nonlinear
length, and LR is the characteristic amplification length). Please note that the Manakov limit
implies the largest values of the Raman matrix elements: therefore the strongest re-polarization
occurs in this case. On the other hand, in the diffusion limit all elements of the Raman matrix
go to zero, hence no re-polarization occurs.

In the diffusion limit our approximation reduces to the scalar model which describes standard
Raman amplifiers, whereas in the Manakov limit we deal with a vectorial Raman amplifier – i.e.
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a Raman polarizer. Moreover, in the Manakov limit the SPolM, XPolM, and Raman tensors are
no longer z-dependent, hence the model equations can be solved analytically. This is precisely
the situation when we have an ideal Raman polarizer, since the device shown in Fig. 1 performs
its signal re-polarization action in the most effective manner possible.

Fig. 2. (a) SPolM, (b) XPolM, and (c) Raman tensors. In Figs. (b),(c) all three curves
visually coincide; the blue curve is the analytical result showing exponential decay:
∝ exp(−z/Ld). Parameters are: Lc = 1 m, LB(ωs) = 20 m, ωp −ωs = 13.2 THz, λs =

1.55 μm, and λp = 1.45 μm, Ld = 870 m, PMD=0.14 ps km−1/2.

Let us consider the statistical properties of a Raman polarizer in the undepleted pump regime,
by supposing that the signal is initially unpolarized. The immediate questions are – what is the
SOP of the outcoming signal beam and how well this beam is polarized? We find that the signal
SOP at the fiber output is aligned with the pump SOP, and that the degree of alignment is
characterized by the degree of polarization (DOP). The Raman polarizer perfoms its function
properly when the output signal DOP stays close to unity. By introducing the gain as G ≡
〈S(s)0 (L)〉/S(s)0 (0) we get

G =
1
2
[1+ exp(gPL)] (5)

and for the DOP:

DOP = 1−G−1 (6)

where P is the pump power. Please note that the angular brackets stand for averaging over the
ensemble of SOPs of the signal beam. Such ensemble uniformly covers the Poincare sphere
at z = 0. The quantity which characterizes the degree of alignment between the pump and
the signal SOPs in a Raman polarizer is the alignment parameter A↑↑, which is defined as the
cosine of the angle between the output signal SOP and the output pump SOP. We find that
A↑↑ = 1−G−1. Please note that although both the DOP and the A↑↑ are defined by the same
analytical expression in the case of an ideal polarizer, they do not stand for the same physical
content. Indeed, the DOP defines the spread of the spot on the Poincaré sphere, while the
alignment parameter A↑↑ defines how close the signal SOP stands to the pump SOP. One could
imagine a situation where the tiny spread describing a DOP close to unity is not concentrated
near the pump SOP, in which case the DOP and A↑↑ are distinctly different. However, this is not
our case.

It is also particularly interesting to be able to obtain analytically the polarization-dependent
gain (PDG) of the device. A strong PDG is inherent to the operation of a Raman polarizer, and
different signal beam SOPs experience different Raman gains: a signal beam with a SOP par-
allel to the pump Stokes vector is amplified most efficiently, while the orthogonal polarization
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experiences no gain. Indeed, Gmax = exp(gPL) (when the initial SOPs of the pump and signal
are parallel) and Gmin = 1 (when the initial pump and signal SOPs are orthogonal). We intro-
duce the PDG parameter Δ as Δ = Gmax −Gmin, and obtain that for the ideal Raman polarizer
Δ = 2(G− 1). A high PDG, though, brings, along with a strong re-polarization of the signal
beam, the much less desirable feature of a high level of unwanted relative intensity noise (RIN)
generation. Indeed RIN is an important source of potential performance impairment with a Ra-
man polarizer: different methods [10, 11, 13] have been proposed to combat this problem. The
variance of this RIN can be estimated as

σ2
s = 〈S2

0(L)〉/〈S0(L)〉2 −1 = (1−G−1)2/3 (7)

Fig. 3. Gain (in dB) vs. Pump power for the cases of an ideal Raman polarizer (black,
straight line) and a standard depolarized Raman amplifier (red, dashed line), with a fixed
fiber length of 2 km, and a typical Raman gain coefficient g = 0.76 W 1km−1 for parallel
polarization.

An additional quantity which can be easily derived from our analytical model is the mean
gain of an ideal Raman polarizer. It is well known that the gain of a standard Raman amplifier
is equal to g/2. In terms of available gain, an ideal Raman polarizer performs much better:
from the model we can see that for large values of G: G ≈ exp(gPL− ln2), so that the gain
coefficient is almost twice that of standard amplifiers. Such property makes Raman polarizers
very efficient Raman amplifiers as well. This is illustrated in Fig. 3, where the gain of a standard
depolarized amplifier is compared to the gain of an ideal polarizer, for a fixed 2 km length of
standard single-mode fibre, and a variable pump power ranging from 0.1 to 5 W . As expected,
in the case of an ideal polarizer with a highly polarized pump, the degree of polarization of the
signal and its alignment with the pump grow steadily larger with pump power, and so does the
relative gain improvement. At 5 W pump power, the mean gain for the ideal polarizer is 13.5
dB higher than that of a standard Raman amplifier.

3. Counter-propagating configuration

So far, we have been dealing only with the co-propagating geometry of Fig. 1. In this case, the
pump SOP stochastically changes along the fiber, and its output SOP depends on the particular
realization of the birefringence stochasticity in the chosen fiber span. Moreover, the stochas-
ticity changes with time, as a result of variations of the environmental conditions. Therefore
the trapping of signal’s SOP to the pump’s SOP does not guarantee the absence of fluctuations
of signal’s SOP at the output, even though these fluctuations closely follow the time-varying
pump SOP. Hence, it is of interest to study the implementation of counter-propagating geome-
tries, which can offer the much desirable stabilization in a laboratory frame (see Refs. [3, 8]).
Since the signal’s SOP is attracted towards the instantaneous position of pump’s Stokes vector,
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this alignment holds also at the output end of the fiber. The output pump SOP is defined solely
by the source, and as such it is supposed to be well defined and deterministic. As regarding the
theory, one can repeat the derivations with the opposite sign of the z-derivative in the equation
governing the evolution of the pump beam. As shown in Ref. [3], this reversing of the sign
brings some changes in the components of the XPolM and Raman tensors. They become

Jcounter
x =−8

9
diag(1,−1, 1)exp(−z/Ld) , (8)

Jcounter
R =

1
3

diag(1,−1, 1)exp(−z/Ld) . (9)

The factor 1
3 in front of the Raman tensor immediately leads to the conclusion that the

counter-propagating Raman polarizer is significantly less effective in re-polarization than its
co-propagating analog. In order to get similar performances we need either to increase the pump
power or lengthen the fiber, or both. If we now solve the equation of motion in the undepleted
pump regime, the average gain turns out to be

G =
1
2

(
e

2
3 gPL + e

1
3 gPL

)
, (10)

which is significantly smaller than that of a Raman polarizer operating in the co-propagating
configuration, although it is still larger than that of an ideal Raman amplifier. For the same
value of the product PL, the output signal DOP in the conter-propagating configuration is also
smaller than in the co-propagating case:

DOP = 1−2
(

e
1
3 gPL +1

)−1 ≈ 1−2e−
1
3 gPL( f or gPL � 1)≈ 1−

√
2G−1/2 . (11)

As an example, for G = 20 dB in the co-propagating case the DOP is as high as 99%, while in
the counter-propagating configuration it is only 86%. The alignment parameter for the counter-
propagating geometry is different from the co-propagating case. Still, for an unpolarized signal,
the alignment parameter coincides with the DOP, A↑↓ ≈ 1−√

2G−1/2.
The PDG parameter Δ = Gmax −Gmin is easily calculated, resulting in

Δ =
1
2

(
e

2
3 gPL − e

1
3 gPL

)
=

1
2

(
1+2G−√

1+8G
)
. (12)

Similarly, the RIN is expected to be lower. This is confirmed by its obtained variance:

σ2
s =

1
3

[
1−2

(
e

1
3 gPL +1

)−1
]2

. (13)

In conclusion, we have presented a tractable analytical model for Raman polarizers that is
able to predict their most relevant parameters, providing accurate estimations for the output
DOP, alignment parameter, PDG and mean gain, as well as being capable of predicting the
variance of the RIN noise produced by PDG. This analytical approximation is reduced, in the
diffusion limit, to the traditional description of the depolarized Raman amplifier, whereas in the
Manakov limit it describes the behavior of an ideal Raman polarizer.
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