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Abstract The main subject of this contribution is the all-optical control over the
state of polarization (SOP) of light, understood as the control over the SOP of a
signal beam by the SOP of a pump beam. We will show how the possibility of such
control arises naturally from a vectorial study of pump-probe Raman interactions
in optical fibers. Most studies on the Raman effect in optical fibers assume a scalar
model, which is only valid for high-PMD fibers (here, PMD stands for the
polarization-mode dispersion). Modern technology enables manufacturing of low-
PMD fibers, the description of which requires a full vectorial model. Within this
model we gain full control over the SOP of the signal beam. In particular we show
how the signal SOP is pulled towards and trapped by the pump SOP. The isotropic
symmetry of the fiber is broken by the presence of the polarized pump. This
trapping effect is used in experiments for the design of new nonlinear optical
devices named Raman polarizers. Along with the property of improved signal
amplification, these devices transform an arbitrary input SOP of the signal beam
into one and the same SOP towards the output end. This output SOP is fully
controlled by the SOP of the pump beam. We overview the state-of-the-art of the
subject and introduce the notion of an ‘‘ideal Raman polarizer.’’
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1 Introduction

Over the past few years, the possibility of utilizing the Raman effect in optical
waveguides as the basis for the development of non-linear polarizers has opened
the way to an interesting range of potential applications, such as multi-channel
repolarization in optical fibers, enhanced amplification and even the possibility of
developing silicon-based Raman polarizers [1–5].

Raman-based polarization attraction falls into a broad class of potentially game-
changing effects related to light-by-light control in optical waveguides. Models for
such control are essentially nonlinear and usually imply the use of a high-intensity
beam to modify the properties of the medium (for instance its refractive index or
absorption coefficient) such that propagation of a weaker probe beam through the
nonlinearly modified medium is affected in a substantial and controllable way. The
possibility of achieving nonlinear polarization control is rooted in soliton theory,
namely in conservative structures such as the polarization domain wall solitons
[6–11]. However conclusions extracted from soliton theories involving a medium
of infinite extension can be misleading for counterpropagating waves in a medium
of finite length. In this case the presence of boundary conditions may lead to
solitons with a finite lifetime [12]. In such situation, other so-called polarization
attractors representing the unique distribution of SOPs of the two beams inside the
medium play a key role in the process of trapping polarization of light [12, 13].

Different mechanisms such as photorefractive two-beam coupling [14] or Kerr
nonlinearity [10, 15] have, over the years, proven to be capable of producing
nonlinear polarization attraction. In their initial demonstrations, all of these
methods were subject to limitations in their application in telecommunication
links: their response time, in the case of photorefractive materials, or the
requirement of extremely high beam powers. Only recently results of practical
relevance have emerged, with non-conservative schemes based on stimulated
Raman [16] or Brillouin scattering [17], as well as the first low-power lossless
polarizer, consisting of a 20 km randomly weakly birefringent fiber pumped by an
incoherent counter-propagating beam [18].

As mentioned above, here we will focus on the particular and very promising
case of Raman polarizers, in which the pump and signal beam propagate through a
Raman-active medium. By way of interacting with this medium, the pump beam
induces a phonon-mediated gain for a frequency down-shifted (Stokes) signal
beam. The signal beam, co- or counter-propagating with the pump beam, is then
gradually amplified. This amplification mechanism lies at the heart of Raman
amplifiers. One degree of control exerted by the pump beam over the signal beam
is the total gain experienced by the signal from input to the output. This degree of
control is well studied in literature and widely used in practice. Much less known
is another degree of control—over the state of polarization (SOP) of the signal
beam. The main subject of this study are polarization-sensitive Raman amplifiers,
in which polarization-dependent gain (PDG), an intrinsic characteristic of the
Raman effect which is usually considered an undesirable feature in amplification
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applications, can be turned into an advantage by selectively amplifying only one
polarization mode of the input beam.

Signal and pump fields considered in this study are continuous waves (CW) or
relatively long pulses, such that the response of the Raman-active medium is
virtually instantaneous, and as such it is described by the instantaneous dissipative
cubic nonlinearity. Mostly, our theoretical study is developed for silica single-
mode fibers, though extensions to other Raman-active media, such as silicon are
also possible [5]. We shall demonstrate how polarization-sensitive Raman
amplifiers operate in the regime of Raman polarizers. These Raman polarizers are
devices that along with the function of amplification of light, also re-polarize the
beam: the SOP of the outcoming signal beam is defined by the SOP of the pump
beam, independently of what SOP the signal beam had at the input. In other words,
the signal SOP is attracted (trapped) by the pump SOP. By changing the polari-
zation of the pump we thereby change the signal SOP. In this way we exercise an
all-optical control over the signal SOP.

In this chapter we will present the theory of Raman polarizers with an emphasis
on randomly birefringent fibers, such as the ones used in the telecom industry. We
shall identify the conditions that are necessary for a traditional Raman amplifier to
function as Raman polarizer, and characterize its performance.

2 Model

In short, we shall consider the simultaneous propagation of two beams in a Raman-
active medium. In our case the Raman active medium is a few kilometers long
span of a telecom fiber. The fiber is linearly birefringent, and also characterized by
both conservative and dissipative cubic nonlinearities. The main feature that
makes our theory different from most previous studies on fiber-optic Raman
amplifiers is its vectorial nature. Thus, we carefully consider the propagation
dynamics of two polarization components of each of the two beams. In total, the
number of field components is four, and they all interact with each other via cubic
nonlinearity. The first vectorial theory of Raman effect in randomly birefringent
optical fibers was developed by Lin and Agrawal in Ref. [19] and applied to the
regime of interaction characteristic to what we call here ‘‘standard Raman
amplifiers.’’ Here we are interested in a totally different regime, namely the regime
of Raman polarizer. The difference between the two regimes is explained below, in
the beginning of Sect. 2.

We start from the equation of motion for the signal field, written for the two-

component field vector Us ¼ ðusx; usyÞT ; where usx and usy are the amplitudes of
the normal polarization modes ex and ey of the fiber: Us ¼ usxex þ usyey: This
equation is derived under the (as usual for nonlinear optics) unidirectional and
slowly varying approximations, see for instance [19, 20], and reads
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iozUs þ ib0ðxpÞotUs þ DBðxsÞUs

þ css
2
3
ðU�s � UsÞUs þ

1
3
ðUs � UsÞU�s

� �

þ 2
3
csp ðU�p � UpÞUs þ ðUp � UsÞU�p þ ðUs � U�pÞUp

h i

þ i�sgðU�p � UsÞUp ¼ 0:

ð1Þ

A similar equation (with indices p and s interchanged) arises for the pump beam,
which is characterized by the field vector Up: Here css and csp are self- and cross-
modulation coefficients, whose values depend on frequency, and therefore in
principle are different for the signal and pump beams. They are equal to the
frequency-dependent Kerr coefficient of the fiber. For simplicity we assume
css ¼ cpp ¼ cps � c; b0ðxp;sÞ is the inverse group velocity of the pump/signal beam.
�s ¼ 1; �p ¼ �xs=xp;DBðxp;sÞ is the birefringence tensor. For a linearly bire-
fringent fiber it takes the form DBðxp;sÞ ¼ Dbðxp;sÞ cos hr3 þ sin hr1ð Þ; where
Dbðxp;sÞ is the value of birefringence at frequency xp;s; and h the angle of ori-
entation of the axis of the birefringence with respect to the reference frame defined
by polarization modes ex and ey: r3 and r1 are the usual Pauli matrices.

The orientation angle h is randomly varying in fibers. In principle, the mag-
nitude of the birefringence Db also varies stochastically. However, as noticed in
Ref. [21], the two approaches, one in which h is the only stochastic variable, and
the second, where both h and Db are stochastic variables, produce nearly identical
results. Thus, here we shall develop our theory by assuming the single stochastic
variable h: Our theory can be seen as a generalization of the one beam linearly
birefringent theory of Wai and Menyuk from Ref. [21] to the case of two beams
interacting via the Kerr and Raman nonlinearity in a fiber. The angle h is driven by
a white noise process ozh ¼ ghðzÞ; where hghðzÞi ¼ 0 and hghðzÞghðz0Þi ¼
2L�1

c dðz� z0Þ: Here Lc is the correlation length, that characterizes the typical
distance at which h changes randomly.

Details of the theory are presented in Refs. [2, 3]. Here we quickly drive
through the major steps of this theory and show how to obtain the final result—a
set of four coupled first-order ordinary differential equations, one equation for each
polarization component of two beams. It is instructive to present these four
equations as two vectorial equations for the Stokes vectors of the pump and
signal beams. Each Stokes vector has three components. Namely, the pump Stokes

vector SðpÞ ¼ SðpÞ1 ; SðpÞ2 ; SðpÞ3

� �
has components SðpÞ1 ¼ W�p1Wp2 þWp1W

�
p2; S

ðpÞ
2 ¼

i W�p1Wp2�
�

Wp1W
�
p2Þ; S

ðpÞ
3 ¼ jWp1j2 � jWp2j2; and power SðpÞ0 ¼ jSðpÞj: Similar

expressions define the signal Stokes vector SðsÞ: Here the field vector W is related
to the original Jones field vector U by the relation Wp;s ¼ Tp;sUp;s; where the 2� 2
matrices Tp;s with elements
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TpðzÞ ¼
a1 a2

�a�2 a�1

� �
; ð2Þ

TsðzÞ ¼
b1 b2

�b�2 b�1

� �
: ð3Þ

obey the stochastic differential equations

�iozTp þ DBðxpÞTp ¼ 0; ð4Þ

iozTs þ DBðxsÞTs ¼ 0; ð5Þ

where plus (minus) sign stands for the co- (counter-) propagating regime of
propagation of the two beams, and

DBðxpÞ ¼
DbðxpÞ � i

2hz

� i
2hz �DbðxpÞ

� �
; ð6Þ

DBðxsÞ ¼
DbðxsÞ � i

2hz
i
2hz �DbðxsÞ

� �
: ð7Þ

Here, hz is the derivative of h with respect to z: It is different from zero owing to
the random changes of orientation of the birefringence axes. Now the polarization
components of each beam appear to be defined with respect to the local bire-
fringence axes, while these axes rotate stochastically along the fiber length driven
by the noise source ghðzÞ:

These transformations eliminate the birefringence terms from the equations of
motion of Wp and Ws and bring about a vast number of cubic terms composed of
different combinations of Wp1;Wp2;Ws1;Ws2 and their complex conjugates. Factors
in front of these terms are products of two coefficients of the form umun; or u�mun;
or u�mu�n; where m; n ¼ 1; . . .; 14: Products with m ¼ n we shall call self-products,

while with m 6¼ n cross-products. Here, u1 ¼ ja1j2 � ja2j2; u2 ¼ �ða1a2 þ a�1a�2Þ;
u3¼ iða1a2�a�1a�2Þ;u4¼ 2a1a�2;u5¼ a2

1� a�2
2;u6¼�iða2

1þa�2
2Þ; u7¼ a�1b1�a2b�2;

u8¼�ðb1a2þ b�2a�1Þ; u9¼ iðb1a2�a�1b�2Þ;u10¼�iða�1b1þa2b�2Þ;u11 ¼ a1b�2þ
b1a�2; u12 ¼ a1b1�a�2b�2;u13 ¼�iða1b1þa�2b�2Þ;u14¼ iða1b�2�a�2b1Þ:

In the thus obtained equations of motion for Wp and Ws we perform the
ensemble average (over different realizations of the random process which
describes linear birefringence). Thus, we write humuni instead of umun: This
change holds true only in the limit when the stochastic variations are faster than
the nonlinear beam evolution. This is exactly the place in the derivation where our
single approximation comes into play. At this point we also need to apply the
ergodic theorem

hf i ¼ lim
z!1

1
z

Z z

0
dz0f ðz0Þ: ð8Þ
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Our goal is to calculate ensemble averages of all necessary self- and cross-
products: in this way we may complete the derivation of the differential equations
for Wp and Ws:

The equations of motion for un with n ¼ 1; . . .; 14 can be easily formulated
basing ourselves on Eqs. (4) and (5). As these equations are linear, in order to find
an ensemble average of any function of these coefficients (in our case pair prod-
ucts) we need to construct a generator. We refer to the Appendix in Ref. [21] for
details of this procedure, and only give here the final result. With this generator we
are able to formulate the equations of motion for the ensemble averages of the
products of the coefficients. Thus the solutions to the equations of motion

ozG1 ¼ �2L�1
c ðG1 � G2Þ; ð9Þ

ozG2 ¼ 2L�1
c ðG1 � G2Þ � 4DbðxpÞG4; ð10Þ

ozG3 ¼ �4DbðxpÞG4; ð11Þ

ozG4 ¼ �L�1
c G4 � 2DbðxpÞðG2 � G3Þ ð12Þ

yield the result for the self-products fhu2
1i; hu2

2i; hu2
3ig; fhRe2ðu4Þi; hRe2ðu5Þi;

hRe2ðu6Þig; and fhIm2ðu4Þi; hIm2ðu5Þi; hIm2ðu6Þig; if we associate them with
fG1;G2;G3g with initial conditions given as ð1; 0; 0Þ; ð0; 1; 0Þ; and ð0; 0; 1Þ;
respectively.

The remaining self-products fhRe2ðu7Þi; hRe2ðu8Þi; hRe2ðu9Þ; hRe2ðu10Þig;
fhIm2ðu7Þi; hIm2ðu8Þi; hIm2ðu9Þ; hIm2ðu10Þig; fhRe2ðu11Þi; hRe2ðu12Þi; hRe2ðu13Þ;
hRe2ðu14Þig; and fhIm2ðu11Þi; hIm2ðu12Þi; hIm2ðu13Þ; hIm2ðu14Þig; can be found
from the equations

ozG1 ¼ �2L�1
c ðG1 � G2Þ þ 2D�G5; ð13Þ

ozG2 ¼ 2L�1
c ðG1 � G2Þ � 2D�G6; ð14Þ

ozG3 ¼ 2D�G6; ð15Þ

ozG4 ¼ �2D�G5; ð16Þ

ozG5 ¼ D�ðG4 � G1Þ � L�1
c G5; ð17Þ

ozG6 ¼ D�ðG2 � G3Þ � L�1
c G6; ð18Þ

when we associate them with fG1;G2;G3;G4g; with initial conditions as ð1; 0;
0; 0Þ; ð0; 0; 0; 1Þ; ð0; 1; 0; 0Þ; and ð0; 0; 1; 0Þ; respectively. Here D� � �DbðxpÞ

�
�DbðxsÞ	:

In order to find the cross-products we constructed appropriate generators and
found that all the cross-products that are of interest to us turn out to be equal to
zero. Similarly, terms of the form ReðunÞImðunÞ also vanish. Thus, many SPM,

V. V. Kozlov et al.



XPM, and Raman terms in the final equations of motion disappear. The thus found
equations of motion for the fields are conveniently formulated in Stokes space.
They read as

�oz þ b0ðxpÞot

	 

SðpÞ ¼ c SðpÞ � JðpÞs ðzÞSðpÞ þ SðpÞ � JxðzÞSðsÞ

� �

þ �pðg=2Þ SðsÞ0 JR0SðpÞ þ SðpÞ0 JRðzÞSðsÞ
� �

;
ð19Þ

oz þ b0ðxsÞotð ÞSðsÞ ¼ c SðsÞ � JðsÞs ðzÞSðsÞ þ SðsÞ � JxðzÞSðpÞ
� �

þ ðg=2Þ SðpÞ0 JR0SðsÞ þ SðsÞ0 JRðzÞSðpÞ
� �

:
ð20Þ

Matrices in Eqs. (19) and (20) are all diagonal with elements JR ¼
diagðJR1; JR2; JR3Þ; Jx ¼ diagðJx1; Jx2; Jx3Þ; Js ¼ diagðJs1; Js2; Js3Þ: These elements
are different for the counter-propagating and the co-propagating interaction
geometries.

In order to complete our theory, we need to express all elements in these
matrices in terms of ensemble averages of self-products:

JR1 ¼ hReðu2
14 � u2

10Þi; ð21Þ

JR2 ¼ �hReðu2
14 þ u2

10Þi; ð22Þ

JR3 ¼ �hju14j2 � ju10j2i; ð23Þ

Jx1 ¼
2
3
hReðu2

10 þ u2
13 � u2

9 � u2
14Þi; ð24Þ

Jx2 ¼
2
3
hReðu2

10 þ u2
14 � u2

9 � u2
13Þi; ð25Þ

Jx3 ¼
2
3
hju9j2 þ ju14j2 � ju13j2 � ju10j2i; ð26Þ

Js1 ¼
1
3
hReðu2

6Þi; ð27Þ

Js2 ¼ �
1
3
hReðu2

6Þi; ð28Þ

Js3 ¼
1
3

3hu2
3i � 1

� �
; ð29Þ

and also JR0 ¼ hju10j2 þ ju14j2i: Note that our model reduces to the one-beam
theory of Wai and Menyuk when the coefficients u7 through u14 are set to zero.

The Stokes representation is particularly appealing in the context of the prob-
lem that we are considering. As we are interested in the polarization properties
of the outcoming signal beam, the Stokes vector quite clearly presents the
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polarization vector on the Poincaré sphere. The evolution of the Stokes vector
draws a trajectory of its tip on the sphere. Another quantity of interest is the degree
of polarization (DOP). In those cases where we are dealing with an ensemble of
beams, the DOP characterizes the length of the average Stokes vector. Here again
the Stokes representation appears to be rather useful.

Thus, the equation of motion for the Stokes vector of a CW signal beam is

ozS
ðsÞ ¼ cSðsÞ � JsðzÞSðsÞ þ cSðsÞ � JxðzÞSðpÞ

þ �pðg=2Þ SðpÞ0 SðsÞ þ SðsÞ0 JRðzÞSðpÞ
h i

:
ð30Þ

(With JR0 ¼ 1; which is the case for all situations considered below). Here Js is the
self-polarization modulation (SPolM) tensor, Jx—cross-polarization (XPolM)
modulation tensor, JR—Raman tensor. All they are diagonal. Elements of these
tensors are dependent on the magnitude of the birefringence both at signal and
pump carrier frequencies, that is on the beat lengths LBðxsÞ and LBðxpÞ; and also
on the correlation length Lc: All these three lengths do not exceed 100 m in
conventional telecom fibers. The physical meaning of each tensor follows from its
definition. Thus, the SPolM tensor defines how two polarization components
belonging to the same beam interact in the Kerr medium, and thereby rotate the
Stokes vector. The XPolM tensor has similar meaning, but now the rotation is due
to the interaction of polarization components belonging to different beams. Finally,
the Raman tensor defines polarization-sensitive amplification of amplifier. This
tensor is of particular importance to us. For instance, when all elements of this
tensor vanish, the Raman amplifier becomes insensitive to the SOP of the pump
beam, so that we are dealing essentially with a scalar model. Conversely, when the
diagonal elements of the Raman tensor have appreciable values, then the theory
must be necessary vectorial.

Certainly, the evolution of the Stokes vector sensitively depends on how the
elements of these tensors evolve with distance. In order to find their dynamics it is
necessary to solve the set of linear ordinary differential equations which is given
above, see also Refs. [2, 3]. Instead of writing them down here, we present their
approximate analytical solutions. Figure 1a, b, c shows how well these analytical
solutions reproduce the exact situation. Figure 1a shows that the elements of the
SPolM tensor drop very fast and already vanish within the first 10 m of the fiber.
Given, that the length of the Raman amplifier exceeds 1
 2 km; we can safely set

Js ¼ diagð0; 0; 0Þ: ð31Þ

The elements of the other two tensors also deceases with distance, however much
slower, namely as

Jx ¼ �
8
9

diagð1; 1; 1Þ expð�z=LdÞ; ð32Þ

JR ¼ diagð1; 1; 1Þ expð�z=LdÞ: ð33Þ
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(a)

(b)

(c)

Fig. 1 Three diagonal
elements of the a (1/3)
SPolM, b XPolM, and
c Raman tensors. In b, c all
three curves visually
coincide; the blue curve is the
analytical result showing the
exponential decay: /
expð�z=LdÞ: Parameters are:
Lc ¼ 1 m; LBðxsÞ ¼ 10 m;
xp � xs ¼ 13:2 THz; ks ¼
1:55 lm; and kp ¼ 1:45 lm:
The PMD diffusion length is
Ld ¼ 870 m: Note that a brief
transient in b is not resolved
on the chosen scale

Trapping Polarization of Light in Nonlinear Optical Fibers



As demonstrated in Fig. 1b, c the decay distance is indeed determined by the

characteristic length Ld; which is called the PMD diffusion length: L�1
d ¼

1
3ðDpDxÞ2; where Dp ¼ 2

ffiffiffi
2
p

p
ffiffiffiffiffi
Lc
p

=ðLBxpÞ is the PMD coefficient, [21], and
throughout the paper Dx ¼ xp � xs is taken to be equal to the Raman shift DxR

in the germanium-doped silica fibers, that is 13.2 THz. The theory that we are
developing here is strictly valid only in two limits – the limit which we call here
Manakov limit ðLNL; LR � LdÞ and diffusion limit ðLNL; LR � LdÞ; where LNL is
nonlinear length, and LR characteristic amplification length.

3 Raman Amplifiers Versus Raman Polarizers

Raman amplifiers, which we call here standard Raman amplifiers, operate in the
diffusion limit, as they are based on fibers with large PMD coefficients. Thus, for
Dp ¼ 0:2 ps=

ffiffiffiffiffiffiffi
km
p

and Dx ¼ DxR ¼ 13:2 THz; the PMD diffusion length Ld is
less than 10 m. Taking into account that standard Raman amplifiers are 10 or more
kilometers long, the contribution of the polarization-dependent gain [second term
in brackets in Eq. (30)] to the total gain [both terms in brackets in Eq. (30) taken
together] is totally negligible. The model equation for the signal beam is then

ozS
ðsÞ ¼ ðg=2ÞSðpÞ0 SðsÞ: ð34Þ

Thus, each component of the Stokes vector is amplified independently and equally
with the other components. For such Raman amplifier there is no preferentially
amplified polarization mode. The model is essentially a scalar one.

A different situation arises in the Manakov limit. For PMD coefficients less than
0:02 ps=

ffiffiffiffiffiffiffi
km
p

; the PMD diffusion length becomes greater than 1 km. In this case
we can write the model equation for the signal Stokes vector in the form

ozS
ðsÞ ¼ � �cSðsÞ � SðpÞ

þ ðg=2Þ SðpÞ0 SðsÞ þ SðsÞ0 SðpÞ
h i

;
ð35Þ

with �c ¼ 8
9c: In this limit ðLd !1Þ we deal with an ideal Raman polarizer. The

equation above includes two contributions. The XPolM contribution is a cross-
phase modulation (XPM) part of the Manakov equation, in which the factor of 8

9

appears as the result of averaging of fast stochastic polarization dynamics of each
Stokes vector. Quite to the contrary, the Raman contribution appears exactly as in
the case of isotropic fibers (i.e. in absence of the birefringence, and its stochas-
ticity), because the mutual polarization scrambling of the relative orientations of
the pump and Stokes vectors is very inefficient when the PMD diffusion length Ld

is long. In other words, Raman amplification is insensitive to the absolute orien-
tation of the individual SOPs of the signal and pump beams in the laboratory
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frame. It is however sensitive to their mutual orientation. In the case of standard
Raman amplifiers, the signal Stokes vector rotates rapidly around the pump Stokes
vector, and therefore on average ‘‘feels’’ no polarization dependence. In the case of
Raman polarizers, still the two vectors stochastically rotate in the laboratory
frame, but they do it now in unison, so that their mutual orientation is almost
‘‘frozen.’’

4 An Ideal Raman Polarizer

As characteristic to isotropic fibers, the signal experiences maximal gain when its
Stokes vector is aligned along the pump Stokes vector. To show this we can
choose (without loss of generality) the pump Stokes vector be aligned along its

first component: SðpÞ ¼ SðpÞ0 ð1; 0; 0Þ: Then, we may write for the signal first Stokes
component:

ozS
ðsÞ
1 ¼ ðg=2ÞSðpÞ0 SðsÞ0 þ SðsÞ1

h i
: ð36Þ

If initially the signal Stokes vector is also aligned with its first component, then the
signal amplification coefficient is g: This value should be contrasted to the value of
g=2; which is characteristic to standard Raman amplifiers, see Eq. (34).

The other two components of the signal Stokes vector are amplified less
efficiently than the first component. Indeed, their equations of motion are:

ozS
ðsÞ
2 ¼ ��cSðpÞ0 SðsÞ3 þ ðg=2ÞSðpÞ0 SðsÞ2 ; ð37Þ

ozS
ðsÞ
3 ¼ �cSðpÞ0 SðsÞ2 þ ðg=2ÞSðpÞ0 SðsÞ3 : ð38Þ

Here, the gain is only g=2:
The observations derived from Eqs. (36–38) explain the ability of a Raman

polarizer to re-polarize light. They demonstrate that only the Stokes component of
the signal aligned with the pump Stokes vector is dominantly amplified. In a high-
gain Raman amplifier, the difference in gain for polarization components may
become so large that the polarization of the outcoming beam is almost perfectly
aligned with the pump SOP. This effect of alignment is called polarization
attraction, or polarization trapping. Shortly, we shall quantify effect of the
polarization attraction in terms of the DOP, the so-called alignment parameter, and
some other parameters, while now we comment on the output SOP of the out-
coming signal beam measured with respect of the laboratory frame.

As we have seen, the Raman tensor decays as the distance grows larger, see
Eq. (33). Therefore, it is preferable to decrease the total fiber length at the price of
increasing the pump power. Indeed, the first proof-of-principle experiment
reported in Ref. Martinelli et. al. [16], was carried out with a dispersion-shifted
fiber of only 2; 1 km and an average pump power as high as 2:2 W:
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Most theories of Raman polarizers reported so far, see Refs. [2, 3, 16, 22, 23],
are based on numerical simulations of the stochastic equations which properly take
into account the randomness of the fiber birefringence (the total fiber span is
divided into short segments, with each segment extended over one correlation
length; the orientation of the birefringence axes is fixed within each segment,
while it varies randomly when going from one segment to the next one). Such an
approach is indeed necessary when the PMD diffusion length is comparable with
the amplification length, a case which is in the middle between the Manakov limit
and the diffusion limit. In this case, the Raman polarizer has non-optimal per-
formances, yielding a DOP which is significantly below unity. So, this case is not
advantageous in practice. In order to realize a ‘‘good’’ Raman polarizer, one should
choose to work in the Manakov limit. As we have indicated above, working in this
limit allows us to get analytical and physically transparent results. In the next
section we shall continue to work with ideal Raman polarizers and provide an even
deeper analytical insight.

5 Evaluation of the Performance of a Raman Polarizer

Equations (36–38) can be solved analytically. We shall limit ourselves to the

undepleted pump approximation, so that the pump power P � SðpÞ0 ðzÞ ¼ const: Our
model does not include linear losses in the fiber, because we have chosen to work
with relatively short fiber spans, for which losses are relatively small. If necessary,
the losses can be included, though analytics will become less transparent. Solu-
tions to Eqs. (36–38) are:

SðsÞ0 ðzÞ ¼
1
2

SðsÞ0 ð0Þ � SðsÞ1 ð0Þ
h i

þ 1
2

SðsÞ0 ð0Þ þ SðsÞ1 ð0Þ
h i

egPz;

ð39Þ

SðsÞ1 ðzÞ ¼ �
1
2

SðsÞ0 ð0Þ � SðsÞ1 ð0Þ
h i

þ 1
2

SðsÞ0 ð0Þ þ SðsÞ1 ð0Þ
h i

egPz;

ð40Þ

SðsÞ2 ðzÞ ¼
h
SðsÞ2 ð0Þ cosð�cPzÞ

� SðsÞ3 ð0Þ sinð�cPzÞ
i
e

1
2gPz;

ð41Þ

SðsÞ3 ðzÞ ¼
h
SðsÞ2 ð0Þ sinð�cPzÞ

þ SðsÞ3 ð0Þ cosð�cPzÞ
i
e

1
2gPz:

ð42Þ
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We are interested in the statistical properties of a Raman polarizer. All quan-
tities of interest can be derived from the above-written solutions. First of all, we
shall calculate the mean quantities. The immediate questions are—what is the SOP
of the outcoming signal beam and how well the beam is polarized? In order to find
an answer to the first question we need to simply get an average of Eqs. (39–42)
given the statistics of the incoming light. We assume that the signal is initially

unpolarized, so that hSðsÞ1 ð0Þi ¼ hS
ðsÞ
2 ð0Þi ¼ hS

ðsÞ
3 ð0Þi ¼ 0: Then, at z ¼ L; where L

is the total length of the fiber, we get

hSðsÞ0 ðLÞi ¼
1
2

SðsÞ0 ð0Þ 1þ expðgPLÞ½ 	; ð43Þ

hSðsÞ1 ðLÞi ¼
1
2

SðsÞ0 ð0Þ �1þ expðgPLÞ½ 	; ð44Þ

hSðsÞ2 ðLÞi ¼ 0; ð45Þ

hSðsÞ3 ðLÞi ¼ 0: ð46Þ

So, the signal SOP at the output is aligned with the pump SOP. The degree of
alignment is characterized by the DOP, which is calculated as

DOPðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hSðsÞ1 ðzÞi

2 þ hSðsÞ2 ðzÞi
2 þ hSðsÞ3 ðzÞi

2
q

hSðsÞ0 ðzÞi
: ð47Þ

As usual, a DOP equal to unity means that light if perfectly polarized, a DOP equal
to zero indicates that the light beam is unpolarized, while intermediate values
stand for a partially polarized beam. We say that the Raman polarizer perfoms its

function properly when DOP becomes close to unity. Introducing gain G as G �
hSðsÞ0 ðLÞi=SðsÞ0 ð0Þ we get G ¼ 1

2 1þ expðgPLÞ½ 	 and for the DOP:

DOP ¼ 1� G�1: ð48Þ

The higher the gain, the larger the DOP. Already 20 dB gain is enough to get a
DOP as high as 0:99:

A short comment is in order on how one should interpret the averaging pro-
cedure, expressed by h. . .i: There are two possible situations. On the one hand, we

can vary the SOP of the signal beam in time, then h. . .i ¼ h. . .iT ¼ T�1
R T

0 . . .dt;
where T is the period of time, sufficiently long to get correct statistical averaging.

hSðsÞ1 iT ¼ hS
ðsÞ
2 iT ¼ hS

ðsÞ
3 iT ¼ 0 means that we are dealing with unpolarized light.

On the other hand, we can imagine an experiment with an ensemble of beams.
Then, h. . .i ¼ h. . .ie means ensemble average over all these beams. If the SOPs of
all beams from the ensemble randomly or uniformly cover the Poincaré sphere,

then, similarly to the time average, we get hSðsÞ1 ie ¼ hS
ðsÞ
2 ie ¼ hS

ðsÞ
3 ie ¼ 0: In this

Trapping Polarization of Light in Nonlinear Optical Fibers



situation we say that we are dealing with an ensemble of scrambled beams. In a
case where the time average gives the same statistical information as the ensemble
average, we refer to such system as an ergodic one. The Raman polarizers con-
sidered here are obviously ergodic systems, simply because time does not enter the
equations of motion explicitely. Therefore, our analysis is valid for the scrambled
beams approach as well as for time averaging.

Another important quantity which characterizes a Raman polarizer is the
alignment parameter A""; defined as the cosine of the angle between the output
signal SOP and the output pump SOP:

A"" ¼
hSðsÞ1 SðpÞ1 þ SðsÞ2 SðpÞ2 þ SðsÞ3 SðpÞ3 i

hSðsÞ0 iS
ðpÞ
0

: ð49Þ

The closer the alignment parameter to unity, the better the alignment of the output
signal and pump Stokes vectors. Using solutions in Eqs. (43–46) we get

A"" ¼
hSðsÞ1 ðLÞi
hSðsÞ0 i

¼ 1� G�1 ð50Þ

for the value of the alignment parameter at the fiber output. Although this value
coincides with the value of DOP, see Eq. (48), these two quantities have different
physical meanings. For a statistical ensemble of beams, the alignment parameter
shows the average direction of the signal Stokes vector on the Poincaré sphere,
while the DOP measures the breadth of the spot traced by the tips of the signal
Stokes vectors around this average direction.

Yet another quantity of interest is the measure of the polarization-dependent
gain (PDG). It is exactly the PDG which is at the heart of a Raman polarizer.
Different SOPs of the signal beam experience different amplifications. The signal
beam with a SOP parallel to the pump Stokes vector is amplified most efficiently,
while the orthogonal polarization experiences no gain. Indeed, as it follows from
the solution in Eq. (40), Gmax ¼ expðgPLÞ and Gmin ¼ 1: We introduce the PDG
parameter D as D ¼ Gmax � Gmin; and get for the ideal Raman polarizer D ¼
2ðG� 1Þ: The PDG parameter aquires high values for a high-gain Raman pola-
rizer. Note that for an ‘‘ideal Raman amplifier’’ (an amplifier, which is perfectly
described by the scalar theory, or in other words, the amplifier, which works
deeply in the diffusion limit) D ¼ 0:

The high value of the PDG parameter points out that along with the desirable
property of strong re-polarization of the signal beam, this device is characterized
by a high level of unwanted relative intensity noise (RIN). By varying the signal
SOP at the input we get pronounced variations of the intensity at the output, even if
the incoming beam had a steady intensity in time. In order to characterize the
output power fluctuations, let us calculate the variance

r2
s ¼
hS2

0ðLÞi
hS0ðLÞi2

� 1: ð51Þ
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Using solution in Eq. (39) we get

r2
s ¼ ð1� G�1Þ2=3: ð52Þ

For large G; rs 
 3�1=2 
 58 %: This level of RIN may be detrimental for some
optical devices, particularly nonlinear ones. Note that an ideal Raman amplifier is
characterized by rs ¼ 0; i.e., by zero RIN, thanks to the efficient polarization
scrambling which is provided by PMD. The price to be paid is the totally sto-
chastic signal SOP at the output fiber end.

A reasonable question to ask is whether it is possible for a Raman polarizer to
keep the useful property of re-polarization and at the same time to suppress RIN
down to an acceptable level. The answer is positive. One possible way to combat
the RIN and at the same time keep the property of re-polarization is to use the
Raman polarizer in the depleted-pump regime, Ref. [24]. In this saturation regime
all input SOPs are amplified to approximately the same level of intensity, actually

up to SðsÞ0 ðLÞ 
 P: Strictly speaking, only one signal SOP (the one which is per-
fectly orthogonal to the pump SOP) is not amplified at all. However, the numerous
imperfections of any practical realization of a Raman polarizer, including residual
PMD, may prevent the observation of such a singular behaviour.

So far we have analyzed the main statistical properties of an ideal Raman
polarizer operating in the undepleted-pump regime. If necessary, any other sta-
tistical quantity of interest can be obtained from the exact analytical solutions
given in Eqs. (39–42). In a similar manner, one can characterize the re-polariza-
tion of partially polarized beams. The final quantity which we would like to
comment on is the mean gain of an ideal Raman polarizer. It is well known, that
the gain of an ideal Raman amplifier is equal to g=2: The reason is that in the
course of propagation the signal SOP rotates quickly around the pump SOP, and on
average ‘‘feels’’ the arithmetic mean of the maximal gain ðgÞ when it is parallel to
the pump SOP, and minimal gain ð0Þ when it is orthogonal, yielding g=2 on
average. In terms of available gain, an ideal Raman polarizer performs much
better. As can be seen from Eq. (43), for large values of G;G 
 expðgPL� ln 2Þ;
so that the gain coefficient is almost twice larger. This property makes Raman
polarizers very efficient Raman amplifiers as well.

6 Counter-Propagating Raman Polarizers

So far, we have been dealing only with the co-propagating geometry. In this
geometry, the pump SOP stochastically changes along the fiber, and its output SOP
depends on the particular realization of the birefringence stochasticity in the
chosen fiber span. Moreover, the stochasticity changes with time, as a result of
variation of the environmental conditions. Therefore the trapping of signal’s SOP
to pump’s SOP does not garantee the absence of fluctuations of signal’s SOP at the
output, even though these fluctuatons closely follow the time-varying pump SOP.
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In other words, the co-propagating Raman polarizer provides the trapping effect in
the stochastic frame, but does not garantee the SOP stabilization in the laborotary
frame.

The desirable stabilization in the laboratory frame can be achieved by imple-
menting a counter-propagating geometry, Refs. [3, 23]. Since the signal’s SOP is
attracted toward the instantaneous position of pump’s Stokes vector, this alignment
holds also at the output end of the fiber. The output pump SOP is defined solely by
the source, and as such it is supposed to be well defined and deterministic. In this
respect the counter-propagating geometry is preferrable. As regarding the theory,
one can repeat derivations with the opposite sign of z-derivative in the equation
governing evolution of the pump beam. As shown in Ref. [3], this reversing of the
sign brings some changes in the components of the XPolM and Raman tensors.
They become

Jcounter
x ¼ � 8

9
diagð1;�1; 1Þ expð�z=LdÞ; ð53Þ

Jcounter
R ¼ 1

3
diagð1;�1; 1Þ expð�z=LdÞ: ð54Þ

The presence of the factor 1
3 in front of the Raman tensor immediately leads us to

the conclusion that the counter-propagating Raman polarizer is significantly less
effective in re-polarization than its co-propagating analog. In order to get similar
performances we need either to increase the pump power or lengthen the fiber, or
both. Let us evaluate the performance of this device.

First of all, we start with the solving the equation of motion (35) in the
undepleted-pump regime. We get

SðsÞ0 ðzÞ ¼
1
2

SðsÞ0 ð0Þ � SðsÞ1 ð0Þ
h i

e
1
3gPz

þ 1
2

SðsÞ0 ð0Þ þ SðsÞ1 ð0Þ
h i

e
2
3gPz;

ð55Þ

SðsÞ1 ðzÞ ¼ �
1
2

SðsÞ0 ð0Þ � SðsÞ1 ð0Þ
h i

e
1
3gPz

þ 1
2

SðsÞ0 ð0Þ þ SðsÞ1 ð0Þ
h i

e
2
3gPz;

ð56Þ

SðsÞ2 ðzÞ ¼
h
SðsÞ2 ð0Þ cosð�cPzÞ

� SðsÞ3 ð0Þ sinð�cPzÞ
i
e

1
2gPz;

ð57Þ

SðsÞ3 ðzÞ ¼
h
SðsÞ2 ð0Þ sinð�cPzÞ

þ SðsÞ3 ð0Þ cosð�cPzÞ
i
e

1
2gPz:

ð58Þ
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We immediately observe that the difference in amplification coefficients of the first
Stokes component and the second (and third) Stokes component is given by
2
3g� 1

2g: The contrast is much weaker than for the co-propagating case, where we
had g� 1

2g: The average gain of the counter-propagating Raman polarizer is

G ¼ 1
2

e
2
3gPL þ e

1
3gPL

� �
; ð59Þ

which is significantly smaller than for a Raman polarizer operating in the
co-propagating configuration, although it is still larger than for an ideal Raman
amplifier. For the same value of the product PL; the DOP for the counter-propa-
gating configuration is also smaller:

DOP ¼ 1� 2 e
1
3gPL þ 1

� ��1


 1� 2e�
1
3gPLðfor gPL� 1Þ


 1�
ffiffiffi
2
p

G�1=2:

ð60Þ

For G ¼ 20 dB in the co-propagating case the DOP was as high as 99 %, while in
the counter-propagating configuration it is only 86 %.

It is instructive to compare our model of ideal Raman polarizer with full-scale
numerical simulations of the underlying stochastic equations presented in [23],
where the empirical formula:

DOP ¼ 1� e�GdB=C; ð61Þ

connecting the DOP with the gain was suggested and tested numerically. Here
GdB ¼ 10 log10 G and C 
 10:2 for the considered range of PMD coefficients. The
graphical comparison of the results obtained with formula (60) on one hand, and
the results plotted according to the empirical formula (61) on the other hand, is
shown in Fig. 2a. The fit is good. On the same plot we have also shown the results
based on the direct numerical solution of Eq. (30) with XPolM and Raman tensors
in the form of Eqs. (53, 54). Note that we did not use any fitting parameter in this
cross-comparison.

The alignment parameter for the counter-propagating geometry is different
from the co-propagating case. Because of the change of the sign in front of the
second element of the Raman tensor, see Eq. (54), the alignment parameter is now

A"# ¼
hSðsÞ1 SðpÞ1 � SðsÞ2 SðpÞ2 þ SðsÞ3 SðpÞ3 i

hSðsÞ0 iS
ðpÞ
0

: ð62Þ

For input unpolarized light, the alignment parameter coincides with the DOP,
namely,
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A"# ¼ 1� 2 e
1
3gPL þ 1

� ��1


 1� 2e�
1
3gPLðfor gPL� 1Þ


 1�
ffiffiffi
2
p

G�1=2:

ð63Þ

The PDG parameter D ¼ Gmax � Gmin is easily calculated, resulting in

D ¼ 1
2

e
2
3gPL � e

1
3gPL

� �
¼ 1

2
1þ 2G�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8G
p	 


: ð64Þ

Its value is considerably less in the co-propagating configuration, particularly for
moderate values of gain. This observation again points to the relatively poorer
performances of the counter-propagating Raman polarizer. At the same time, the
RIN is expected to have a lower level. In order to demonstrate this, let us evaluate
the variance of the signal intensity. Formula (51) and solution (55) yield

(a)

(b)

Fig. 2 DOP versus gain G:
Graphical comparison of the
results obtained with
formulae (60) (black solid);
results obtained with
empirical formulae (61)
(green dotted); and results
based on the direct numerical
solution of Eq. (30) with
XPolM and Raman tensors in
the form of Eqs. (53, 54) (red
dashed). Parameters are:
a Lc ¼ 1 m; LB ¼ 45 m;
P ¼ 8 W; Dp ¼ 0:005 ps=ffiffiffiffiffiffiffi

km
p

; and Ld ¼ 17:5 km;
L varies from 0 to 2:5 km;
and C ¼ 10:2; b Lc ¼ 10 m;
LB ¼ 3500 m; P ¼ 8 W;

Dp ¼ 0:0002 ps=
ffiffiffiffiffiffiffi
km
p

; and
Ld ¼ 10914 km; L varies
from 0 to 1.5 km, and
C ¼ 4:3
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r2
s ¼

1
3

1� 2 e
1
3gPL þ 1

� ��1
� �2

: ð65Þ

Before concluding this section, one remark is in order about the applicability
domain of these results. SPolM, XPolM and Raman tensors given by Eqs. (31–33,
53), and (54) were calculated in the limit

L� Lbire �
L2

BðxpÞ
8p2Lc

: ð66Þ

This inequality holds for all practical situations. Thus, for Lc as small as 1 m and
LB as large as 100 m we get Lbire as short as 127 m. Fiber-optic Raman amplifiers
are always longer than 1 km, and therefore inequality (66) is not violated. How-
ever, if for some reason inequality (66) is violated, for instance for extremely low
birefringent fibers, the analysis given above must be corrected. Thus, in the limit
LBðxpÞ ! 1; the tensors of interest take the following form:

Jcounter
s ¼ 1

3
diagð�1; 1;�1Þ; ð67Þ

Jcounter
x ¼ 4

3
diagð�1; 0;�1Þ; ð68Þ

Jcounter
R ¼ diagð1; 1; 1Þ: ð69Þ

Figure 2b shows the dependence of DOP on Raman polarizer gain for this case.
Although the performance of the Raman polarizer in this limit is very good, we
will not evaluate it here explicitely because of its little practical interest.

7 Conclusion

We have studied the effect of trapping of the state of polarization of a signal beam
by a pump beam in the model of a Raman polarizer. We have introduced the
notion of the ideal Raman polarizer and quantified its performance it terms of gain,
degree of polarization, polarization-dependent gain parameter, alignment param-
eter, and RIN characteristics. We have studied two different geometries: co- and
counter-propagating configurations, and identified their pros and contras. Possible
applications of Raman polarizers include their potential use in telecom-related
signal processing, where the need of transforming an unpolarized light to a
polarized one is necessary in order to provide an interface between the telecom
link and post-processing polarization-sensitive devices (based, for instance, on
nonlinear crystals).
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