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ABSTRACT
B system
. L . ) ) B, state i of system B
In earlier publications, heat Q~ is defined as an interaction
. ) o dE* infinitesimal change of energy of A
that is entirely distinguishable from work W~. The energy 8 &
. - . DE* change of energy of system X
exchanged Q7 is T, times the entropy exchanged §7, where s & i
. . ) dn* infinitesimal change of amount of constituent of 4
T, is the almost common temperature of the interacting
x .
systems. Dn change of amount of constituent of system X
Here, we define diffusion as another interaction that is DsX change of entropy of system X
entirely distinguishable from both work and heat, and that .
. i E flow of energy out of a system
involves exchanges of energy, entropy, and amount of a
. . . . x . ,
constituent. It is an interaction between two systems 4 and E; energy of system X in state i
B that pass through stable equilibrium states while their EX flow of energy, positive if into system X
respective parameters remain fixed, and that have almost equal EX- flow of energy, positive if out of system X
Aﬁ Blﬂ 1 . -
temperatures T#«T°~T, and almost equal total potentials g gravity acceleration
pA=pBap of the diffusing constituent. The exchanges of h specific enthalpy
entropy S”, energy E~, and amount of constituent n~ out of n- flow of amount of constituent, positive if into a
one system satisfy the relation system
E- n- n” flow of amount of constituent, positive if out of a
- -
§" = —— 2 system
Tp o
n* flow of constituent, positive if into system X
.. oo e . n*" flow of constituent, positive if out of system X
In the limit of n~=0, a diffusion interaction becomes heat.
nf amount of constituent of system X in state i
Q- heat, positive if into a system
NOMENCLATURE :
s specific entropy
S” flow of entro ositive if into a system
A system Py, P Y
. - itive i Sys
A state i of system A S flow of entropy, positive if out of a system



§* flow of entropy, positive if into system X

s flow of entropy, positive if out of system X

Six entropy of system X in state i

SXE*,n% fundamental relation of system X

T, almost common value of temperatures of systems
experiencing a diffusion interaction

T, almost common temperature of systems
experiencing a heat interaction

x temperature of system X

T,»x temperature of system X in state i

W work, positive if done by a system

X, cyclic engine i

Greek symbols

Hp almost common value of total potentials of
systems experiencing a diffusion interaction

Hip almost common value of total potentials of i-th
constituent of systems experiencing a diffusion
interaction

pf total potential of system X in state i

u* total potential of system X

3 speed of a bulk flow state

1. INTRODUCTION

In some expositions of thermodynamics, the concept of
diffusion is assumed self-evident and not defined explicitly [1,2].
In other expositions, diffusion in the widest sense is "the
macroscopically perceptible relative motion of individual
particles” [3,4], or "the transport of matter caused by
concentration gradients” [5]. From these definitions, it is not
clear whether diffusion should be viewed as an interaction at a
boundary of a system or as a property of a system.

Consistent with our earlier discussions of work, heat, and
bulk-flow interactions [6], in this paper we define diffusion as an
interaction occurring at a boundary of a system that is entirely
distinguishable from work, and that involves exchanges of
energy, entropy, and amounts of constituents between which
exists a specified relation.

The paper is organized as follows. Nonwork interactions
are discussed in Section 2, diffusion is defined in Section 3, and
conclusions are presented in Section 4.

2. A NONWORK INTERACTION

An interaction that cannot be classified as work is called
nonwork [7]. An example of a nonwork interaction is heat [8,9].
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Figure 1

Another is the interaction between two systems 4 and B that
experience a process under the following specifications (Figure
1). Each system consists of at least one common constituent
and, initially, is in a stable equilibrium state but not in mutual
stable equilibrium with the other because the initial temperature

T{4 at state 4, differs from the initial temperature Tf at state

B,, and for the common constituent the initial total potential

pf differs from the initial total potential pf. At the end of the

process, the states 4, and B, are not necessarily stable
equilibrium, the energy and amount of constituent of system
A are changed, the changes in energy and amount of
constituent of system B are respectively equal and opposite to
those of 4, no net effects are left on the parameters and other
constituents of either A or B, and no net effects are left on any
system in the environment of the composite of systems 4 and
B. Under these specifications, the interaction between A and

B is nonwork because it involves exchanges of both energy and
amount of the common constituent. In general, however, this
interaction can be regarded as partly nonwork and partly work.

To see this clearly, we reproduce the process just cited in two
steps.

In the first step, we interpose between 4 and B a cyclic
engine X, that produces shaft work without any entropy
generation by irreversibility (Figure 2a). The cyclic engine can

do work because the composite of systems A and B is notin a

stable equilibrium state (7;'#T;" and uj =p;) and, therefore, its
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Figure 2

adiabatic availability is different from zero.
involved in the first step are as follows.

The changes

(a) Transfers of energy, amount of the common constituent,
and perhaps entropy out of system 4 and into the cyclic
engine X, equal to the respective transfers experienced in

the course of the original nonwork interaction. As a result
of these transfers and possibly internal effects, system

A changes from state A, to its final state 4,, the state
reached in the original nonwork process.
(b) Transfer of some of the energy received by X, to a
weight — shaft work done to raise the weight.

(c) Transfer of the remaining energy received by X,, and
transfers of all the amount of constituent and entropy

received by X, to system B. As a result of these transfers

only, system B reaches an intermediate state B, different
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from the final state B, reached in the course of the original
process because less energy is exchanged between X, and
B than between 4 and B. Moreover, here the interaction
between X, and B must be viewed as nonwork because it

involves both energy and an amount of the constituent.

In the second step, we disconnect systems 4 and X, and
connect the raised weight to a cyclic engine X, that can do work

on system B while the weight is lowered to its initial elevation
(Figure 2b), and do so without generating any entropy by
irreversibility. As a result of the shaft work done on B and
possibly internal effects, system B is carried from state B, to

the final state B, reached by system B in the course of the
original nonwork process.

At the completion of the two steps: (1) both cyclic engines
X, and X,, and the weight are restored to their respective
initial states; (2) systems 4 and B experience the same changes
of states — exchange the same amounts of energy, constituent,
and perhaps entropy as in the original process, and generate the
same amounts of entropy; and (3) we conclude that the
interaction between the two systems initially at different
temperatures and different total potentials can be regarded
partly as nonwork (step 1), and partly as wark (step 2). The
question now arises "Is this conclusion always valid?" We
examine the answer to this question in the next section.

3. DIFFUSION

Here we discuss a special nonwork interaction that involves
at least exchanges of both energy and amount of a constituent
and yet is entirely distinguishable from work in that no fraction
of any such interaction can be regarded as work. To proceed,
we first evaluate the work done by the cyclic engine X, and the
systems in Figure 2a in a reversible weight process for the
composite of systems A4, B, and cyclic engine X;. In this
process, the initial states A4, and B, are stable equilibrium, the
final states A, and B, are not necessarily stable equilibrium,
and there are no net changes in parameters and other
constituents of either system A or system B.

Under these conditions, and for given changes DE4, DS*4,
and Dn* respectively in the energy, entropy, and amount of

constituent of system A4, or flows E4, $4°, and n*" out of

system A, the corresponding energies E; and Ef, entropies

A

B : B
S, and §;, and amounts of constituents n; and n, of states

. . B .
A, and B,, respectively, and the energies E;' and E; , entropies



A B . A B
Sy and S, and amounts of constituents n; and n, of the

initial states 4, and B,, respectively, satisfy the relations

E'=E'+DE*<E!-E* E]=E+DE®-E’«g> (1)

S=8/+DS*=5}-s4  §f=8F.DsE=5f+55 (2)

A_ A A 4- B_ 8 5 3
ny =n{+Dnt=n/-n4 ny=n’sDnB=nfend Q)

where, in writing the second of equations (3), we use the fact
that no amount of constituent flows to the weight, DE# and

DS? are, respectively, the changes in energy and entropy
between states By and B,, and a superscript with an arrow
pointing to the right indicates positive flow out of the system
denoted by the superscript. If the arrow points to the left, then
positive flow is into the system denoted by the superscript.

By virtue of the highest-entropy principie {10], the entropy
S5 cannot be larger than the entropy of the stable equilibrium
state corresponding to the same values of energy and amount
of the common constituent as those of state A,. Similarly,

Sf cannot be larger than the entropy of the stable equilibrium
state corresponding to the same values of energy and amount
of the common constituent as those of state B,. Moreover, by
virtue of the state principle [11], the two highest entropies are
functions of the forms S4E4,n*) and S3(E 2 n %), respectively,
where we omit the dependences on parameters and other
constituents because here the values of the parameters and the

amounts of the other constituents experience no changes. So,
we have the relations

S;<SAES R and  SE<SEESRD C))

where the equal sign in the first or second relation holds only if
the final state 4, or B, is stable equilibrium, respectively.

To find the work, in addition to relations (1) to (4), we
consider the energy and entropy balances for the reversible

process of the composite of systems 4, B, and X, that is,

DE*+DE®=E}-E}+E}-EFf=-w~ ®)

DS4+DS%=8;-5+87-57=0 (6)

where W7 is the work done on the weight.

The value of the work depends on the types of the final
states A, and B,. Indeed. upon combining relations (4) and
equation (6), we find

5i+82=57+8P <SP+SEEL

o)
<SAE] )+ SBES n))

where the first inequality becomes an equality only if state B,

is stable equilibrium, and the second only if state 4, is stable
equilibrium. From relations (7), we conclude further that

S S E-SAES n) <8 SE-5F <SHEERE  ®

where the first inequality becomes an equality only if state
4, is stable equilibrium, and the second only if state B, is

stable equilibrium. Moreover, using equations (1) and (5) in
relations (8), we find
Si+sP-S4E!+DEA ! +Dn*) <5152

8 8 (9)
<S8E;-DEA-W,n;-Dn*)

For given initial states 4, and B,, and given changes in energy,

DE#, and in amount of constituent, Dn*, we observe that the
left-hand side of relations (9) has a fixed value. This is the

smallest value that can be achieved by S{‘«-SIB ~SZA, and can be
assumed by SZE’-DE4-W<,n’-Dn*) only if both states

A, and B, are stable equilibrium. Next, we recall that the

fundamental relation S2(E%,n%) is monotonically increasing
with E®. It follows that S3(ES-DEA-W=,n°-Dn4) is
monotonically decreasing with W™ and, therefore, that W™ is
the largest only if S%E -DE4-W",n’-Dn4) is the smallest,
that is, only if both states 4, and B, are stable equilibrium.
For infinitesimal changes in energy, dE4, and amount of
constituent, dn“, we can find an explicit expression for the
largest work (W) iargesr- Indeed, upon expanding $# in the first
relation (9) into a Taylor series around E,A and nf , and upon

expanding $# in the second relation (9) into a Taylor series

B B . .
around E;" and n,, and retaining only first order terms in these
expansions, we find

A
SAES +dEA ' rdnty=51-Lagt-Elans (10)
T Ty

and

SEEF-dEA-W,nP-dn*)

B
(1n
=58+ L (gt Elana
1 1



where 1/T=8S/8E, and p/T=-d8S/on. Upon substituting

equations (10) and (11) into relations (9), and rearranging
terms, we find

B A
__1_EW~$ _1;-_17 (-dE4) + fl_s-ff_‘_ dn (12)
T, T T YO ol

Clearly, the largest work is done only if the equal sign applies,

that is, only if the final states A, and B, are stable equilibrium,
so that

B A
)= | = - || BB 13)

a2 B A 8
1 i Tl Tl

where in writing the right-hand side of equation (13) we use the
notation introduced in equations (1) to (3).

Equation (13) indicates that if the initial temperature T{‘
and the initial ratio uj/7}" of system A differ from the initial
temperature Tlg and the initial ratio /.cf/Tf of system B,

respectively. a fraction of the energy E*" pius an energy-
equivalent fraction of the amount of constituent n*” transferred
out of system A can always be transferred to a weight, while the
remainders of these fractions are transferred to system B. The
energy stored in the weight can always be returned to B by
means of a weight process. Thus system B appears to

experience an interaction which is partly nonwork and partly
work.

But if the two initial temperatures are almost equal, and
the two initial total potentials are almost equal, (W targest

approaches zero faster than both E4* and n4”, and the

interaction between A and B is entirely distinguishable from
work in that no fraction of such an interaction can be regarded

as work, even if we interpose a cyclic engine between the two
interacting systems.

In this limit, equations (10) and (11) yield

54 =8/ -SHEA+dE4, n/'+dn*)

dE*-ppdn*  E*" -y nt” (14)
) TD ) TD
S =SHEP-dEAnF -dn? -5}
Bt ppdnt (15)
TD

where T, is the almost common value of the initial

A B
temperatures T;" and T, , and g, the almost common value of
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the initial total potentials pf and pf of the interacting systems
4 and B.

An interaction resulting in net exchanges of entropy,
energy, and amount of a constituent between two systems

A and B that are in stable equilibrium states at almost equal
temperatures, and almost equal total potentials, and such that
the flows of entropy S$%°, energy E4", and amount of

constituent a4~ out of system A are related by the last of
equations (14), that is,

EA~ - ‘anA-

Tp

A (16)

is called diffusion. Thus, diffusion is not a property of a system,
nor is it contained in a system. It is a mode of transfers of
energy, entropy, and amount of a constituent that are related by
equation (16), and that characterize an interaction entirely
distinguishable from work.

For comparison, the exchanges of energy, entropy, and
amount of constituent in work, heat, bulk flow, and diffusion
interactions are listed in Table 1.

TABLE 1
EXCHANGES IN FOUR DIFFERENT INTERACTIONS

INTERACTION
XCHAN
EXCHANGE WORK | HEAT | BULK FLOW() | DIFFUSION
ENERGY W 0" (h+.§.&gz)n' E"
- E“__ -

ENTROPY 0 < s Hol

T, T,
CONSTITUENT 0 9 " a"

(a) The specific enthaipy & and specific entropy s refer to the stable equilibrium
state part of the buik flow state {6}, The speed £,

gravity field g refer to the mechanical features of the bulk flow state. Flow of

and elevation z in the

the constituent is into the system if n” is positive.

In the limit of n~ =0, a diffusion interaction becomes a heat
interaction.

A diffusion interaction can be generalized to more than
one constituent. 1f two systems 4 and B, each consisting of
r constituents denoted by subscripts 1,2,..,r, are in stable
equilibrium states at almost the same temperature T,, and at

almost the same total patentials u,p, pyp,-.r H,p» and such that

the flows of entropy S§*°, energy E*", and amounts of

constituents nj ,n",..,nf" out of system A satisfy the relation

A= EA‘ N Zi’- 1

S4° =
TD

A—
Biphy

an




then the interaction is called multiconstituent diffusion or, simply,
diffusion.

It can be readily shown that two or more diffusion
interactions are very useful in discussions of heat conduction,
flow of neutral particles through a medjum, such as neutrons in
nuclear reactors, flow of electrons in an electric circuit, and
thermoelectricity, that is, in discussions of transport phenomena.

4. CONCLUSIONS

Diffusion is another ingenious thermodynamic concept that
allows the quantitative distinction between entropy generated by
irreversibility and entropy exchanged via interactions. By itself
or combined with work, heat, and bulk-flow interactions in
writing the energy, entropy, and mass balances, diffusion
provides us with practical means for identifying opportunities to
reduce the entropy generated by irreversibility and, hence, to
improve the performance of a system. These opportunities
could be missed if the definition of diffusion were ambiguous.

The proposed definition is consistent with the requirements
of the phenomenological equations discussed under the
headings of either irreversible thermodynamics or transport
phenomena.
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