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Abstract
Background. IgA nephropathy (IgAN) is not generally
considered a hereditary disease, even though extensive evi-
dence suggests an undefined genetic influence. Linkage
analysis identified a number of genome regions that could
contain variations linked to IgAN.
Methods. In this case–control association study, genes
possibly involved in the development of IgAN were in-
vestigated. DNA samples from 460 North Italian patients
with IgAN and 444 controls were collected. Candidate
genes were selected based on their possible functional
involvement (6 genes) or because of their location
within linkage-identified genomic regions IGAN2 and
IGAN3 (5 and 13 genes within chromosome 4q26–31
and 17q12–22, respectively). One hundred and ninety-
two tag and functional single-nucleotide polymorphisms
(SNPs) were typed with Veracode GoldenGate technol-
ogy (Illumina).
Results. C1GALT1 showed an association with IgAN
(rs1008898: P ¼ 0.0019 and rs7790522: P ¼ 0.0049). Asso-
ciations were found when the population was stratified by
gender (C1GALT1, CD300LG, GRN, ITGA2B, ITGB3 in
males and C1GALT1, TRPC3, B4GALNT2 in females) and
by age (TLR4, ITGB3 in patients aged <27 years). Further-
more, rs7873784 in TLR4 showed an association with pro-
teinuria (G allele: P ¼ 0.0091; GG genotype: P ¼ 0.0077).
Conclusions. Age and gender are likely to evidence distinct
immunological and inflammatory reactions leading to indi-
vidual susceptibility to IgAN. Overall, a genetic predisposi-
tion to sporadic IgAN was found. We might hypothesize that

C1GALT1 and TLR4 polymorphisms influence the risk to
develop IgAN and proteinuria, respectively.
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Introduction

IgA nephropathy (IgAN) is the most common form of pri-
mary glomerulonephritis worldwide. Nonetheless, mecha-
nisms regulating abnormal IgA synthesis and its selective
mesangial deposition, mesangial cell proliferation and ex-
tracellular matrix expansion leading to renal fibrosis are
still poorly understood [1–4].

Although not generally considered a hereditary disease,
IgAN ethnic variation in prevalence and familial clustering
have suggested an undefined genetic influence [5–9]. IgAN
does not exhibit basic Mendelian segregation patterns, al-
though an increased risk of the disease was observed in close
relatives of probands. The heterogeneity of the IgAN pheno-
type is more consistent with the combined effects of variation
at multiple interacting genes and the environment [6, 8]. The
first report on genome-wide linkage analysis in familial IgAN
identified a genetic locus on chromosome 6q22–23 (IGAN1)
[10]. Linkage analysis to IGAN1, in an independent group of
Italian IgAN families, evidenced that the majority are not
linked to this locus confirming genetic heterogeneity in fam-
ilial IgAN. Bisceglia et al. [11] and Paterson et al. [12] found
the existence of other candidate chromosomal regions on 4q,
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7q, 12q, 17q and 2q. The regions 4q26–31 and 17q12–22
exhibited the strongest evidence of linkage from two point,
multipoint parametric and non-parametric linkage analysis
becoming the second (IGAN2) and third (IGAN3) genetic
loci candidate to contain causative and/or susceptibility genes
to familial IgAN [11].

Case–control studies have been long heralded as the
optimal design to discover gene variation associated with
genetic susceptibility to complex multifactorial diseases
[13], and they have been successfully applied to a host of
complex diseases [14]. IgAN may also follow this multi-
factorial paradigm, and hence, a case–control design may
be successful in recovering genetic susceptibility factors.

In this study, the genotype of 23 candidate genes selected
on the base of their functional possible involvement (6 genes)
or because mapping in the genomic regions IGAN2 (5 genes)
and IGAN3 (13 genes) were retrospectively evaluated in 460
Italian patients affected by IgAN, to search for single nucleo-
tide polymorphisms (SNPs) correlated with the development
and the clinical course of this disease.

Materials and methods

Patients

Four hundred and sixty DNA samples (446 successfully genotyped) of
North Italian patients affected by IgAN were collected; 188 (185) of them
were from Brescia, 45 (42) from Cremona, 35 (34) from Bologna, 21 (21)
from Trieste and 171 (164) from Turin. The pathology was diagnosed by
performing renal biopsy (RB) between the years 1966 and 2003 and pa-
tients with Henoch–Schonlein purpura were excluded. Patient character-
istics, including gender, age at time of RB, serum creatinine (sCr),
proteinuria (PTU) and creatinine clearance (CrCl) at time of RB, dialysis,
transplantation, relapse after transplantation and Lee’s classification, are
shown in Table 1. This study was approved by local ethical committees of
involved hospitals and informed consent was obtained from each subject.
Two hundred and twenty-eight IgAN patients of Brescia, Cremona, Bo-
logna and Trieste have already been included in the previous association
study of Pirulli et al. [15], where eight polymorphisms of C1GALT1 were
analysed. In the present study, we selected 10 different SNPs of C1GALT1,
with the exception of rs1008898, located in the 5#flanking region at posi-
tion �330, that was in common with the previous study. The other seven
SNPs of the previous study were not considered in this work because they
did not pass our criterion of selection.

In order to perform a case–control association study and to reflect a similar
geographic origin of patients, a healthy North Italian population (n ¼ 444;
429 successfully genotyped) was also typed as control: they belong to neg-
ative urinalysis unrelated individuals, mainly blood or bone marrow donors.
We collected 86 (84 successfully genotyped) controls from Brescia, 43 (40)
from Cremona, 24 (24) from Bologna, 16 (15) from Trieste and 275 (266)
from Turin (Table 1). To reflect a similar geographic origin (the only differ-
ence is the lower number of controls from Brescia, that we supplied with a
higher number of controls from Turin) and because of the selection within
blood and marrow donors, controls could not match patients for age and sex.

Gene selection

Two main strategies were used in order to select 23 genes. The first is
candidate gene approach based on their functional possible involvement in
IgAN. Six genes, already analysed in previous studies, were evaluated: the
core-1-b,3-galactosyltransferase (C1GALT1) [15, 16] and its specific mo-
lecular chaperone b1,3-GT (C1GALT1C1) [17, 18], GalNAc a2,6-sialyl-
transferase (ST6GALNAC2) [19, 20], transferrin receptor 1 (TFRC) [21,
22], immunoglobulin A Fca receptor (CD89) [23, 24] and toll-like recep-
tor 4 (TLR4) [25, 26] (Table 2).

By the second approach, public databases were queried to obtain the
available gene maps for 4q24–31 (IGAN2; 21cM) and 17q12–22 (IGAN3;
15cM) chromosomal linked regions [11] and the information on the expres-
sion pattern of these genes in tissue and organs (www.hapmap.org,
www.ensembl.org). Genes of potential interest located on IGAN2 were

selected: the transient receptor potential channel 3 (TRPC3) [45] and inter-
leukin 21 (IL21) [46, 47], complement factor I (CFI) [1, 42], aminopeptidase
A ectopeptidase (ENPEP) [43, 44] and nephronectin (NPNT) [41] (Figure 1).
On IGAN3 different chemokines (CCL2, CCL3, CCL5, CCL7) were selected
and a chemokine receptor (CCR7) [27, 28], granulin (GRN) [31, 32], a and b
subunits of the platelet adhesive glycoprotein receptor complex GPIIb/IIIa
(ITGA2B and ITGB3) and integrin a3 (ITGA3) [33–37]. Furthermore, the
hepatocyte nuclear factor-1-b (HNF1B) [29], CD300 antigen-like family
member G (CD300LG) [30], TBX21 [38, 39] and b-1,4-N-acetyl-galactosa-
minyltransferase2 (B4GALNT2) [40] were analysed [Figure 2, (see Supple-
mentary data for colour version) Table 2]. The last set of genes have never
been analysed in previous studies for association to IgAN (Supplementary
data).

SNP selection and genotyping

Peripheral blood from patients and controls was collected in ethylene
diamine tetra-acetic acid, and genomic DNA was extracted by ‘salting
out’ method [48] or automatically (Macherey–Nagel kit). Electrophoresis
was carried out using 2% agarose, stained with ethidium bromide and
visualized by ultraviolet transillumination. All DNA samples were quan-
tified with the PicoGreen method.

Within the detected genes mentioned above, 192 polymorphisms were
carefully selected. Tag SNPs, that are organized into a region of the genome
with high linkage disequilibrium (LD), and functional SNPs were chosen to
further narrow the linked chromosomal regions. Functional SNPs were non-
synonymous and synonymous polymorphisms, SNPs in TFBS (transcrip-
tion factor-binding site), ESE (exonic splicing enhancer) and ESS (exonic
splicing silencers) regions, triplex and intron–exon boundaries regions
(http://pupasuite.bioinfo.cipf.es). Minor allele frequency (MAF) of all the
SNPs in the selected gene was analysed in CEPH (Utah residents with
Northen and Western European Ancestry) population. Organizing selected
polymorphisms into LD bins with pairwise r2 > 0.8 (http://hapmart.hapmap.
org/BioMart/martview), tag SNPs with MAF > 0.05 (www.sysnps.org) and
functional SNPs with MAF > 0.01 were selected (Table 2).

The 192 selected SNPs (179 successfully genotyped) were analysed
with the Veracode GoldenGate technology (Illumina), a multiplex recent
testing method based on digitally encoded microbeads. A designability
rank score (0–1.0) was calculated for each SNP by Illumina for the con-
version of a SNP into a successful GoldenGate assay. Of the 192 SNPs,
170 with a score >0.6 (designability rank ¼ 1, high success rate) and 20
with a score between 0.4 and 0.6 (designability score ¼ 0.5, moderate
success rate) were selected (Supplementary data: Illumina SNPs list). The
Illumina GoldenGate assay was performed according to the manufac-
turer’s protocol.

For the total number of samples, the call frequency [the frequency of
the total number of genotypes in each sample with a GenCall (GC) score
above the no-call threshold, from 0 to 1] was 1 for 78 SNPs, between 0.893
and 0.999 for 121 SNPs and 0 for 13 SNPs (not successfully genotyped).
Seven loci of the 13 failed SNPs were not successfully genotyped because
of the cluster separation, 2 because of the low intensity, 2 because >3
clusters were detected, 1 because an allele failed and 1 because detected
only a single cluster was detected (Supplementary data: Illumina Results,
Illumina GenomiPhi Results).

The automatic allele calling was done using the Illumina GenCall soft-
ware with a GC threshold of 0.25. The software assigned three clusters on
a graph based on the fluorescence obtained (Supplementary data: Illumina
Results, Illumina GenomiPhi Results). The GC score, a confidence score
of the genotyping of each point, depends on the intensity of fluorescence
and the distance of the point from the centre of the cluster on the graph.
The obtained values for each SNPs across all samples referred to as the 50
or 10% GC score is listed in Supplementary data: Illumina Results, Illu-
mina GenomiPhi Results and detailed in Tables 3, 5 and 6 for the SNPs
with a significant P-value.

Statistical analysis

Allele and genotype frequencies were calculated by direct gene counting.
Hardy–Weinberg (H–W) equilibrium was calculated on the basis of ex-
pected genotype frequencies. Both simple analyses, such as the study of
allele or genotyping frequencies and the H–W equilibrium, and higher
scale analyses such as LD, haplotype estimations and allele and genotype
association analyses were performed using the SNPator bioinformatic tool
[49] and SPSS (SPSS Inc., Chicago, IL). We considered P < 0.01 as the
significance cut-off and value. We applied the Bonferroni correction for
multiple testing for all comparisons [Pc-value was adjusted for 179 SNPs
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(179 of 192 SNPs were successfully genotyped) and Pc-values <0.05 were
considered as significant], with the exception of C1GALT1, as it was al-
ready associated with IgAN in previous studies. Odds ratios (ORs) were
adjusted for sex and age with logistic regression as implemented in SNPstats
(http://bioinfo.iconcologia.net/snpstats/start.htm). Power analysis was also
performed and applied to each statistical significant association. Our sample
size is adequate to achieve 80% power at P < 0.05 to detect a positive
association for each polymorphism, but not sufficient at P < 0.01.

Results

Four hundred and sixty DNA samples (446 successfully
genotyped) of North Italian patients affected by IgAN were
collected. A healthy North Italian population (n¼ 444; 429
successfully genotyped) geographically matched with pa-

tients was also typed as control. Patient characteristics are
listed in Table 1.

One hundred and ninety-two SNPs were genotyped
(179 successfully). Polymorphisms were carefully se-
lected within candidate genes by function (C1GALT1,
C1GALT1C1, TFRC, FCAR, TLR4, ST6GALNAC2) and
by mapping in two genomic regions, IGAN2 (NPNT, CFI,
ENPEP, TRPC3, IL21; Figure 1, see Supplementary data
for colour version) and IGAN3 (CCL2, CCL7, CCL5,
CCL3, HNF1B, CCR7, CD300LG, GRN, ITGA2B,
ITGB3, TBX21, B4GALNT2, ITGA3; Figure 2) (Table 2).
Quality control details can be found in Supplementary data.
No statistically significant departures from H–W equili-
brium were found.

Table 1. Characteristics of successfully genotyped patients and controlsa

Variable n patients % n controls %

Centre (n P ¼ 446; n C ¼ 429)
Brescia 185 41 84 20
Cremona 42 9 40 9
Bologna 34 8 24 6
Trieste 21 5 15 3
Torino 164 37 266 62

Gender (n P ¼ 446; n C ¼ 429)
M 350 78 173 40
F 96 22 256 60

Age at RB (years) (n P ¼ 420; n C ¼ 429)
(P range 1–75 years)
Mean 38 49
Median 36 48
Quartiles

<27 126 31 12 3
27 < x < 48 196 48 185 49
>48 84 21 179 48

Missing 40 53
Hypertension at B (n P ¼ 279)

Yes 117 42 ND ND
No 162 58 ND ND
Missing 167

sCr at RB (mg/dL) (n P ¼ 342)
>1.5 mg/dL 150 44 ND ND
<1.5 mg/dL 192 56 ND ND
Missing 104

CrCl at RB (mL/min) (n P ¼ 226)
>70 mL/min 153 68 ND ND
<70 mL/min 73 32 ND ND
Missing 220

PTU at RB (g per day) (n P ¼ 351)
<3 g per day 234 67 ND ND
>3 g per day 117 33 ND ND
Missing 95

Dialysis (n P ¼ 220)
No 26 12 ND ND
Yes 194 88 ND ND
Missing 240

Renal transplantation (n P ¼ 210)
No 52 25 ND ND
Yes 158 75 ND ND
Missing 10

Relapse after transplantation (n P ¼ 114)
No 89 78 ND ND
Yes 25 22 ND ND
Missing 44

Lee’s classification (n P ¼ 193)
Mild 58 30 ND ND
Severe 135 70 ND ND
Missing 267

an P, number of patients; n C, number of controls; sCr, serum creatinine; CrCl, creatinine clearance; PTU, proteinuria; ND, not determinable.
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Associations

Allele, genotype and haplotype frequencies were compared
between cases and controls to assess the potential role of
each gene and SNP in the susceptibility to IgAN.

Overall, no SNP showed significantly different allele
frequencies between the whole set of cases and controls
(Supplementary data: SNPs frequency and association).
However, genotype frequencies were different for two SNPs
in C1GALT1: rs1008898 [GG 1 GT versus TT genotype;
P ¼ 0.0019; OR ¼ 2.65; 95% confidence interval (CI) ¼
1.40–5.01], already analysed by Pirulli et al. [15] and Li
et al. [16], and rs7790522 (AA 1 AG versus GG genotype;
P ¼ 0.0049; OR ¼ 2.07; 95% CI ¼ 1.24–3.46) (Figure 3,
see Supplementary data for colour version). These SNPs
resulted in almost complete LD (D# ¼ 0.95, Haploview,
www.hapmap.org). To verify these associations, the analysis
was performed with patients (n ¼ 232) not included in the
study of Pirulli et al. [15] and the association was marginally
replicated (rs1008898: GG 1 GT versus TT genotype; P ¼
0.0468; OR ¼ 2.48; 95% CI ¼ 0.99–6.22).

Overall, no significant associations in genotype frequen-
cies were observed for the genes in the IGAN2 and IGAN3
genome regions (Figure 4, Figure 5, see Supplementary
data for colour versions).

Gender

The patient population was stratified by gender (males: n¼
361, 78%; females: n ¼ 99, 22%). In males, various SNPs
of different genes showed an association with the risk to
develop IgAN: rs1008898, rs13245879 and rs7790522 of
C1GALT1; rs12453522 of CD300LG, rs4792938 of GRN,
two SNPs of ITGB3 (rs5918 and rs4629024) and one of
ITGA2B (rs850730) (Table 3).

Also in females, different SNPs were found to be associ-
ated with IgAN: rs10263069 of C1GALT1, rs3796892 of
ENPEP, rs6820068 of TRPC3 and two SNPs of
B4GALNT2, rs4550490 and rs1403528; the last one remains
statistical significant after Bonferroni correction (Table 3).

Different haplotypes resulted from each gene with at least
one SNP associated with IgAN which were analysed in males
and females. Each haplotype was compared both with the
most common haplotype and with all the other haplotypes.
In males, the GAAGA and GGAGC haplotypes ofCD300LG
were associated, respectively, with a higher and a lower risk
to develop IgAN and GT and CT haplotypes of ITGA2B with
a higher and a lower risk, respectively (Table 4). Further-
more, GCGATTGCCTGGGAT haplotype of ITGB3, when
analysed versus all the other haplotypes, is associated with a
higher risk to develop IgAN (Table 4).

Table 2. Selected genes and SNPsa

Gene Chr OMIM Ensembl ID
Start
Ensembl

End
Ensembl

Length
(bp)

No. of
SNPs

No. of
failed
SNPsb Definition References

C1GALT1 7 610555 ENSG00000106392 7240414 7250505 10091 10 0 Core 1 synthase involved in
glycolsylation of IgA1

[15, 16]

C1GALT1C1 X 300611 ENSG00000171155 119643564 119648033 4469 3 0 Specific chaperone of core 1 synthase [17, 18]
TFRC 3 190010 ENSG00000072274 197260553 197293343 32790 7 0 Transferrin receptor [21, 22]
FCAR 19 147045 ENSG00000186431 60077534 60095055 17521 9 0 Fca receptor of IgA [23, 24]
TLR4 9 603030 ENSG00000136869 119506291 119519589 13298 10 0 Toll-like receptor 4 involved in

glomerular inflammation
[25, 26]

ST6GALNAC2 17 610137 ENSG00000070731 72073056 72093524 20468 7 1 Sialyltransferase involved
in sialyation of IgA1

[19, 20]

CCL2 17 158105 ENSG00000108691 29606409 29608329 1920 6 0 Monocyte chemotactic protein 1 [27, 28]
CCL7 17 158106 ENSG00000108688 29621354 29623373 2019 4 1 Monocyte chemotactic protein 3 [27, 28]
CCL5 17 187011 ENSG00000161570 31222613 31231490 8877 4 0 Chemoattractant for blood monocytes [27, 28]
CCL3 17 182283 ENSG00000006075 31439737 31441517 1780 3 3 Macrophage inflammatory protein 1a [27, 28]
HNF1B 17 189907 ENSG00000108753 33120548 33179182 58634 17 0 Hepatocyte nuclear factor 1b [29]
CCR7 17 600242 ENSG00000126353 35963550 35975250 11700 5 1 C–C chemokine receptor type

7 precursor
[27, 28]

CD300LG 17 610520 ENSG00000161649 39280050 39296520 16470 5 0 CD300 molecule-like family member G [30]
GRN 17 138945 ENSG00000030582 39778017 39785996 7979 3 2 Granulin [31, 32]
ITA2B 17 607759 ENSG00000005961 39805076 39822399 17323 2 0 Integrin a2b, platelet membrane

glycoprotein IIb
[33–37]

ITGB3 17 173470 ENSG00000056345 42686207 42745076 58869 15 1 Integrin b3, platelet membrane
glycoprotein IIIa

[33–37]

TBX21 17 604895 ENSG00000073861 43165609 43178484 12875 6 0 T-box 21 [38, 39]
B4GALNT2 17 111730 ENSG00000167080 44565328 44602235 36907 9 3 b-1,4 N-acetyl-galactosaminyl

transferase 2
[40]

ITGA3 17 605025 ENSG00000005884 45488431 45522843 34412 11 0 Integrin a3, receptor for
fibronectin

[36, 37]

NPNT 4 610306 ENSG00000168743 107036054 107112273 76219 11 0 Nephronectin [41]
CFI 4 217030 ENSG00000205403 110881301 110942590 61289 8 0 Complement factor I precursor [1, 42]
ENPEP 4 138297 ENSG00000138792 111616697 111702812 86115 14 1 Glutamyl aminopeptidase [43, 44]
TRPC3 4 602345 ENSG00000138741 123019633 123092359 72726 10 0 Transient receptor potential

cation channel 3
[45]

IL21 4 605384 ENSG00000138684 123753221 123761662 8441 3 0 Interleukin 21 [46, 47]

aChr, chromosome.
bFailed SNPs were selected, but not successfully genotyped.
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In females, the most common haplotype of B4GALNT2
(GAATGACGA), in both the analyses with six different
haplotypes and with all the other haplotypes, is associated
with a lower risk to develop IgAN (Table 4).

Age at time of RB

IgAN shows a great diversity in age at onset, which may
signal heterogeneity in its genetic architecture. Therefore,
patient populations were stratified by quartiles into differ-
ent groups of age at RB. Frequencies between minor and
major quartiles were compared: the first included patients
aged <27 years (n ¼ 126, 31%) and the second patients
aged >48 years (n¼ 84, 21%). In patients aged <27 years,
an association between the risk to develop IgAN and
rs4449421 of NPNT was found as well as rs7873784 of
TLR4 and four SNPs of ITGB3, rs2015049, rs2292867,
rs5918 and rs3809865 (Table 5).

In patients aged >48 years, rs3917878 of CCL2,
rs7224013 of CCL7 and rs2290065 of CCR7 resulted in
association with the disease (Table 5).

Since ITGB3 showed an association with the risk to
develop IgAN both for males and young patients, an anal-
ysis in males aged <27 years was performed and an asso-
ciation of rs5918 SNP was found (Table 5).

Fig. 2. Chromosome 17q12–22 (IGAN3) and selected genes. (a) Chromosome bands; (b) Contigs; (c) Ensembl/Havana genes (from www.ensembl.org).
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Fig. 1. Chromosome 4q24–31 (IGAN2) and selected genes. (a) Chromosome bands; (b) Contigs; (c) Ensembl/Havana genes (from www.ensembl.org).
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Significant genotypic associations within sex and age
classes were confirmed by means of logistic regression
with both sex and age class as covariates, by means of
the SNPstats programme (Table 3, Table 5) (http://bioinfo.
iconcologia.net/SNPstats) [50].

Clinical characteristics

Patients were also stratified according to several clinical
parameters, which could represent endophenotypes. Hyper-
tension, serum creatinine level, creatinine clearance, pro-
teinuria at RB and outcome such as dialysis, renal
transplantation and relapse of IgAN after transplantation
were analysed. An association between IgAN with mild
proteinuria (<3 g per day) and three SNPs of C1GALT1
(rs1008898, rs13245879 and rs7790522) was found as well
as between IgAN with severe proteinuria (>3 g per day)
and one SNP of TLR4 (rs7873784) (Table 6).

Discussion

In this study, a comprehensive scan for genotype association
in Italian IgAN patients was provided for the first time.
One hundred and ninety-two selected polymorphisms were
analysed in 23 genes in a large homogeneous North Italian
population using high-throughput SNP genotyping. Genes
were carefully selected based on their possible functional
involvement in IgAN (6 genes) or because of their location
within two candidate regions in linkage with the disease, the
first on chromosome 17q12–22 (IGAN3, 13 genes) and the
second on chromosome 4q26–31 (IGAN2, 5 genes) [11].

The heterogeneity of the IgAN phenotype seems to be
consistent with the combined effects of multiple interacting
polymorphic genes and environmental factors [7, 11, 51, 52].
One of the difficulties in predicting the genetic influence of
the susceptibility to IgAN is the involvement of immunologic
factors and extracellular matrix rearrangements, which could
affect the pathogenesis of IgAN. Age and gender are likely to
evidence distinct immunological and inflammatory reactions
leading to individual susceptibility to IgAN. Our results sug-
gest a genetic involvement in IgAN, especially when stratified
for gender, age and proteinuria.

Firstly, candidate genes selected by function were ana-
lysed. In the cohort of North Italian patients affected by
IgAN, two polymorphisms (rs1008898 and rs7790522) of
C1GALT1, the core-1-b1,3-galactosyltransferase, already
known to be involved in glycosylation of IgA1 [15, 16],
showed an association with the risk to develop IgAN.
Furthermore, rs1008898 is described to be in LD with
rs11772919 (D# ¼ 0.69), an SNP correlated with the expres-
sion of C1GALT1 (http://eqtl.uchicago.edu). This is further
evidence that the C1GALT1 gene is associated with the dis-
ease and suggests that its modified expression, possibly due to
different SNPs, might be involved in the hypoglycosylation of
IgA1. C1GALT1 also showed an association, with different
SNPs, in males and females separately and in patients with
mild proteinuria (<3 g per day).

When the population was stratified by age, SNP
rs7873784 in the TLR4 gene showed an association in in-
dividuals aged <27 years and in patients with severe pro-
teinuria (>3 g per day). TLR4 expression has been recently
investigated in IgAN by Coppo et al. [26] and its engage-
ment in circulating mononuclear cells has suggested a role
in the development of glomerular inflammation and a pos-
sible specific involvement in IgAN. Yoon et al. [53] pro-
posed that serum CD14, a TLR4 ligand on the surface of
macrophages/monocytes, affect IgAN progression, modu-
lating the mesangial responsiveness to deposited IgA [54].
It might be hypothesized that rs7873784 in TLR4 (or other
SNPs in LD with it) might up-regulate the production of
TLR4, although we could not find any data correlating
TLR4 expression with its SNPs (http://eqtl.uchicago.edu).

Secondly, the selected linked regions were analysed. On
IGAN3, an association between the risk to develop IgAN in
males and rs12453522 of CD300LG was found. The amino
acid sequence of the immunoglobulin (Ig) V-like domain of
CD300LG glycoprotein shows ~35% identity to those of
the polymeric Ig receptor (pIgR) and of Fca/muR [30],
generating a possible binding for IgA. SNP rs4792938 in

Fig. 4. SNP genotype associations of analysed genes in chromosome 17
(IGAN3) with the development of IgAN. Distances along the x-axis are
proportional to the actual physical base pair distances.

IGAN2

0.00

0.50

1.00

1.50

2.00

2.50

Genes

-l
og

10
(p

)

N
P
N
T

E
N
P
E
P

C
F
I

I
L
2
1

T
R
P
C
3

P < 0.01

P < 0.05
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granulin gene (GRN), which may be involved in immune
response dysregulation [31, 32], also showed an associa-
tion. Granulin is a pluripotent secreted growth factor that
mediates cell cycle progression and cell motility [32]. This
SNP might change the expression of the gene, thereby
contributing to the susceptibility to IgAN. Furthermore,
SNPs of ITGA2B (rs850730) and ITGB3 (rs4629024 and
rs5918) integrins, the a and b subunits of the platelet adhesive
glycoprotein receptor complex GPIIb/IIIa, might also be in-
volved. ITGB3 was also found in association with IgAN in
individuals aged <27 years, particularly in males. Among
other functions, integrins mediate platelet aggregation through
binding of plasma fibrinogen and serve as receptor for platelet
adhesion to the extracellular cell matrix in vivo [36]. They also
regulate mesangial cell proliferation and deposition of exces-

sive extracellular matrix [33–37], which is a recognized risk
factor for progression of IgAN. The detected SNPs of IT-
GA2B and ITGB3 might enhance the expression of these
genes and lead to the rearrangement of cellular matrix, trig-
gering mesangial depositions and susceptibility to IgAN.
Literature reports that, when stratified for gender, GRN is
associated with Alzheimer disease [55] and ITGB3 with the
metabolic syndrome in female patients [56].

In females, B4GALNT2 showed an association with
IgAN. B4GALNT2 catalyses the addition of an N-acetyl-
galactosamine residue via a b-1,4 linkage to a subterminal
galactose residue substituted with an a-2,3-linked sialic
acid [40]. Among other functions, B4GALNT2 was sup-
posed to change the expression of von Willebrand factor
(vWF) and may be relevant in type I von Willebrand

Table 3. SNP allele and genotype associations with the development of IgAN in males and femalesa

Gender Gene Chr SNP
50% GC
score

10% GC
score

Risk configuration
(allele/genotype) P (%) C (%) P-value Raw OR 95% CI

Adjusted OR
(95% CI)

Males C1GALT1 7 rs1008898 0.8201 0.8122 GG 1 GT 97 91 0.0031 3.13 1.42–6.90 3.23 (1.32–7.69)
rs13245879 0.8312 0.8312 TT 1 GT 100 97 0.0029 12.5 1.50–104.99 11.11 (1.37–100)
rs7790522 0.8475 0.8475 AA 1 AG 95 88 0.0062 2.42 1.27–4.64 2.44 (1.20–5.00)

CD300LG 17 rs12453522 0.8437 0.8437 AA 68 57 0.0095 1.64 1.13–2.39 1.64 (1.10–2.50)
GRN 17 rs4792938 0.6937 0.6937 GG 1 GC 94 86 0.0008 2.79 1.50–5.18 2.94 (1.45–5.88)
ITGA2B 17 rs850730 0.6046 0.6046 G allele 39 29 0.0029 1.52 1.15–2.00 ND

CG 1 GG 62 49 0.0051 1.69 1.17–2.44 1.76 (1.16–2.59)
ITGB3 17 rs4629024 0.915 0.915 CC 15 7 0.0065 2.43 1.26–4.67 2.28 (1.14–4.56)

rs5918 0.8076 0.7822 C allele 17 10 0.0021 1.87 1.25–2.81 ND
CC 1 CT 31 18 0.0017 2.04 1.30–3.20 1.98 (1.21–3.23)

Females C1GALT1 7 rs10263069 0.9168 0.9168 CT 1 TT 80 63 0.0056 2.25 1.26–4.04 1.79 (0.89–3.61)
ENPEP 4 rs3796892 0.3566 0.3566 CCb 3 0 0.0045 ND ND ND
TRPC3 4 rs6820068 0.8239 0.8239 CT 1 CCc 23 12 0.0084 2.24 1.22–4.12 2.47 (1.23–4.97)
B4GALNT2 17 rs1403528 0.8967 0.8967 A allele 74 56 1.206 3 10�5d 2.25 1.56–3.26 ND

rs4550490 0.9156 0.9156 AA 54 31 0.0001e 2.65 1.64–4.28 2.44 (1.37–4.35)
T allele 63 51 0.0072 1.59 1.13–2.23 ND

aChr, chromosome; P, patients; C, controls; ND, not determinable.
bCC genotype in controls is ¼ 0.
cCC genotype in both patients and controls is ¼ 0. Adjusted OR, OR adjusted with logistic regression.
dSignificant P-value after Bonferroni correction (Pc < 0.01).
eSignificant P-value after Bonferroni correction (Pc < 0.05).

Table 4. Haplotype associations with the development of IgAN in males and femalesa

Gender Gene Haplotype Cod. P (%) C (%) Analyses P-value OR 95% CI

Males CD300LG GAAGAb H1b 52 43 H1/others 0.0057 1.4411 1.11–1.87
GGAGC H2 17 24 H2/others 0.0071 0.6490 0.47–0.89

H2 25 36 H2/H1 0.0018 0.5846 0.42–0.82
ITGA2B CTb H1b 54 66 H1/others 0.0001c 0.5921 0.45–0.77

GT H2 39 29 H2/others 0.0029 1.5202 1.15–2.00
H2 42 31 H2/H1 0.0007 1.6226 1.23–2.15

ITGB3 GTGGCTACTTTGTAAb H1b 22 22 ND ND ND ND
GCGATTGCCTGGGAT H2 16 9 H2/others 0.0010 2.0167 1.32–3.09

Females B4GANT2 GAATGACGAb H1b 9 20 H1/others 0.0021 0.4116 0.23–0.73
GAATGACAA H2 42 16 H2/H1 0.0033 3.8392 1.51–9.78
GAACGCTAG H3 17 2 H3/H1 0.0073 8.9000 1.37–57.80
ACGTAATAA H4 50 20 H4/H1 0.0009 4.0455 1.72–9.51
GCATGATAA H5 32 9 H5/H1 0.0048 4.6148 1.49–14.27
GCATGACAA H6 17 2 H6/H1 0.0073 8.9000 1.37–57.80
GAATGCTAA H7 12 0d H7/H1 0.0011 ND ND

aFor each gene are shown the most common haplotype and haplotypes with P-value <0.01. P, patients; C, controls; ND, not determinable.
bMost common haplotype.
cSignificant P-value after Bonferroni correction (Pc < 0.05).
dNumber of controls presenting H7 ¼ 0.
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disease, characterized by reduced levels of plasma vWF
[57–59]. B4GALNT2 might influence the rearrangement
of cellular matrix in IgAN and susceptibility to the disease,
but further investigations on gene expression and molecular
mechanisms even in IgA glycosylation are needed.

Finally, the IGAN2 region was analysed. Genes in asso-
ciation with the risk to develop IgAN were found in females:
ENPEP, that may affect the renin–angiotensin system [43,
44], TRPC3, the transient receptor potential channel 3 [45],
and NPNT, in individuals aged <27 years, that may play a
role in maintaining kidney filtration barrier [41].

Taken together, these findings suggest a genetic predis-
position to sporadic IgAN. In this study, several genes were
analysed in IgAN for the first time, tag and functional SNPs
being selected with MAF >0.05 and >0.01, respectively.
For this reason, rare SNPs cannot be excluded to be asso-
ciated with the disease as well as polymorphisms in other
genes within IGAN2 and IGAN3 that we did not analyse.
Other variants, such as insertion/deletion and copy number
variations, were excluded for technical reasons and some
SNPs did not pass the Illumina bioinformatics prediction of
typing. Our sample size is adequate to achieve 80% power
at P < 0.05 to detect a positive association for each poly-
morphism, but not sufficient at P < 0.01. Population strat-
ification for sex and age may be a potential source of

spurious associations, but this study does not argue to be
a genome-wide association study; we analysed a few SNPs
in a small number of selected candidate genes only in North
Italian population samples and it does not claim overall
significance for any SNP. Finally, although the North Ital-
ian population can be considered genetically homogeneous
[60], any genetic stratification would also confound the
present study, with a potential to create false positives.
Therefore, we could consider our results as preliminary
for future studies.

Moreover, clinical data of the analysed population were
partially lacking and different clinical characteristic col-
lected at time of RB could be influenced by environmental
factors and medical treatments. Excluding proteinuria, this
could be a reason for the inefficiency of the analysis with
clinical characteristics.

Overall, we might confirm the influence of C1GALT1
on the susceptibility to IgAN and hypothesize a role of
TLR4 on proteinuria. A significant association between
B4GALNT2 and the disease was also found, and it might
be an interesting starting point for future analyses. Expres-
sion studies and other investigations in different popula-
tions with a larger sample size should be performed in order
to replicate these results and to identify a possible causative
gene variant for the disease. Genome-wide association

Table 5. SNP allele and genotype associations with the development of IgAN in patients with age <27 or >48 yearsa

Age Gene Chr SNPs
50% GC
score

10% GC
score

Risk configuration
(allele/genotype) P (%) C (%) P-value

Raw
OR 95% CI

Adjusted
OR (95% CI)

Age <27 years NPNT 4 rs4449421 0.8891 0.8891 TT 3 0b 0.0021 14.03 1.55–126.72 ND
TLR4 9 rs7873784 0.8316 0.8316 G allele 91 83 0.0019 2.08 1.30–3.35 ND

GG 83 69 0.0014 2.26 1.36–3.78 2.86 (1.52–5.26)
ITGB3 17 rs2015049 0.7785 0.7785 G allele 87 79 0.0072 1.71 1.15–2.55 ND

rs2292867 0.7782 0.7782 C allele 92 85 0.0031 2.07 1.27–3.40 ND
CC 84 72 0.0050 2.09 1.24–3.52 2.56 (1.37–5.00)

rs5918 0.8076 0.7822 C allele 21 14 0.0033 1.71 1.19–2.46 ND
CC 1 CT 39 25 0.0024 1.92 1.26–2.93 2.18 (1.33–3.58)

rs3809865 0.8225 0.8225 T allele 38 28 0.004 1.54 1.15–2.07 ND
Age >48 years CCL2 17 rs3917878 0.8282 0.8282 TT 5 0b 0.0008 10.63 1.91–58.99 ND

CCL7 17 rs7224013 0.8243 0.8243 AA 5 0b 0.0008 10.68 1.92–59.27 ND
CCR7 17 rs2290065 0.8516 0.8516 TT 4 0c 0.0015 15.85 1.63–154.30 ND

Males aged
<27 years

ITGB3 17 rs5918 0.8076 0.7822 C allele 24 14 0.0003 2.04 1.38–3.02 ND

CC 1 CT 43 25 0.0004 2.32 1.45–3.73 3.47 (1.86–6.45)

aChr, chromosome; P, patients; C, controls; adjusted OR, OR adjusted with logistic regression; ND, not determinable.
bTwo controls presenting risk genotype.
cOne control presenting risk genotype.

Table 6. SNP allele and genotype associations with proteinuria (PTU) in patients with IgANa

PTU (g/day) Gene Chr SNPs
50% GC
score

10% GC
score

Risk configuration
(allele/genotype) P (%) C (%) P-value OR 95% CI

<3 g/day C1GALT1 7 rs1008898 0.8201 0.8122 G allele 83 76 0.0052 1.5017 1.13–2.00
GG 1 GT 99 92 0.0001b 9.9418 2.37–41.77

rs13245879 0.8312 0.8312 T allele 93 88 0.0054 1.7785 1.18–2.68
rs7790522 0.8475 0.8475 A allele 79 72 0.0053 1.4644 1.12–1.92

AA 1 AG 97 89 0.0002b 4.4648 1.88–10.63
>3 g/day TLR4 9 rs7873784 0.8316 0.8316 G allele 90 83 0.0091 1.8451 1.16–2.94

GG 81 69 0.0077 1.9749 1.19–3.28

aChr, chromosome; P, patients; C, controls.
bSignificant P-value after Bonferroni correction (Pc < 0.05).
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studies, given their recent success in a number of common
diseases, could also contribute to detect additional suscept-
ibility genes for IgAN. Genetic factors possibly involved in
the disease may be used for many purposes such as prog-
nosis and to develop an IgAN ‘risk index’, which may
improve new strategies to reduce disease risk factors and
eventually lead to a better treatment of the disease.

Supplementary data

Supplementary data are available online at http://
ndt.oxfordjournals.org.
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