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Summary
Dendritic cells (DC) are professional antigen presenting cells
which play a pivotal role in the activation of adaptive immunity.
Tissue invasion by pathogens induces the recruitment of blood
DC to the site of infection and contributes to their subsequent
migration to secondary lymphoid organs.This complex process
relies on the expression and regulation of receptors for chemot-
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actic factors on the surface of migrating DC and on the acti-
vation of adhesion molecules which allow DC to properly inter-
act with both blood and lymphatic vessels. In the absence of cor-
rect tissue localization, DC fail to promote proper immune re-
sponses.Therefore, the interaction of DC with endothelial cells
represents a fundamental step for DC biology.
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Introduction
Dendritic cells (DC) are a heterogeneous population of potent
antigen presenting cells which are recruited from the blood into
peripheral tissues where they reside in an immature state and
exert a sentinel function for incoming antigens (1–4). Upon
microbial contact and stimulation by inflammatory cytokines,
DC take up antigens and traffic via the afferent lymphatics into
the T cell area of the draining lymph node to initiate immune re-
sponses (2, 5–7). Therefore, DC need to transmigrate first across
endothelial cell barriers to reach peripheral tissues and then
across lymphatic endothelium (8). The proper localization of DC
to secondary lymphoid organs and their recruitment at sites of in-
flammation in response to chemotactic stimuli are critical events
for optimal immune response (9–11). Migration of DC into tis-
sues depends on a cascade of discrete events which include the
induction of chemokine, the activation of chemokine receptors
and the regulation of adhesion molecules (5, 6, 12, 13). DC sub-
sets possess a distinct migratory pattern. Myeloid blood CD11c+

DC migrate in response to a wide array of inflammatory chemot-
actic agonists produced at the peripheral sites of infection and
immune reaction (7, 14, 15). On the other hand, CD123+ plas-
macytoid DC are believed to enter lymph nodes across blood
high endothelial venules (16). The expression and regulation of
functional chemotactic receptor for chemotactic factors and the
selective usage of adhesion molecules are likely to be respon-
sible for the different distribution of DC subsets in vivo.

Chemokines and chemokine receptors
Chemokines are a superfamily of small proteins which play a
crucial role in immune and inflammatory reactions and in viral
infection (12, 17). Based on a cysteines motif, CXC, CC, C and
CX3C subfamilies have been identified. Chemokines interact
with seven transmembrane domain, G-protein coupled recep-
tors. At least ten CC (CCR1 to 10), seven CXC (CXCR1 through
7), one CX3C (CX3CR1) and one XCR (XCR1) receptors have
been identified. Receptor expression is a crucial determinant of
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the spectrum of action of chemokines and dictates most of the
differences observed in the chemotactic response of immature
versus mature DC (18). Emerging evidence indicates that regu-
lation of receptor expression during cellular activation or deacti-
vation is as important as regulation of chemokine production for
tuning the chemokine system. In addition, there are at least three
promiscuous chemokine “receptors” (D6, DARC and CCX-
CKR) which do not elicit migration or conventional cellular re-
sponses (19).

Chemokines elicit their biological activities through interac-
tion with seven transmembrane domain proteins which form a
distinct group of structurally related proteins within the GTP-
binding proteins-coupled receptors superfamily. The presence of
a significant degree of identity among chemokine receptors (25
to 80% at the aminoacid level) suggests a common origin from a
common ancestor, also testified by the presence of structural fea-
tures more frequently observed in chemokine receptors than un-
related seven transmembrane domain receptors, such as an
acidic N-terminal segment, a short basic third intracellular loop,
the presence in most cases of one cysteine residue for each of the
four extracellular domains coordinating two disulfide bridges,
and some conserved sequences (a LxxLxxDLLF motif in TM2;
a DRYLAIVHA motif or subtle variations of it in IL2; a NPXXY
motif inTM7) of proven relevance for G protein coupling and ac-
tivation (20). In particular, the major biological function of che-
mokine receptors, i.e. their ability to induce chemotaxis, is
tightly dependent on coupling and activation of Gαi, as indicated
by the ability of pertussis toxin to completely block this function.
Activated G protein subunits directly stimulate downstream sig-
nal transducers, including phospholipase C (PLC)β2 and β3

isoenzymes, the phosphoinositide 3-kinase (PI3K) isoenzymes,
the cytosolic phospholipase A2 (cPLA2), the c-Src family tyro-
sine kinases, and mitogen-activated protein kinases (MAPK)
(21). PLCβ activation leads to the release of diacylglycerol and
inositol-1,4,5-trisphosphate, which is responsible for the induc-
tion of calcium transients. Though this is the most frequent sig-
nalling pathway investigated, leukocyte migration is not depend-
ent on PLCβ activity and consequent calcium transients, which
are required for PLA2 activation and arachidonic acid release
(22). On the other hand cell migration requires the βγ-dependent
activation of PI3K, which in turn regulate the contractile appar-
atus through recruitment and activation of pleckstrin homology
domain containing proteins, such as guanine-nucleotide-ex-
change factors and protein kinase B (23). PI3Ks are also directly
responsible for the activation of a classical signal transduction
pathway which through Shc, Grb2, Ras and Raf ends on the ac-
tivation of MAPKs. The αi subunit has also been associated with
the activation of Src-like kinases, such as Fgr and Lck, and other
downstream effectors such as FAK and Pyk-2. The role of
MAPK activation in cell migration has been questioned, and
their possible involvement in other biological functions, such as
transcription regulation, has also been suggested (24).

Phosphorylation and internalization of chemokine receptors
results in the transient interruption of responsiveness to chemo-
kines, a process termed cellular desensitisation. Homologous
and heterologous desensitization both rely on the activity of ser-
ine-threoninine kinases, represented by G-protein coupled re-
ceptor kinase (GRK)2 and protein kinase C (PKC), respectively.

While in the case of heterologous desensitization the activation
of PKC is supported by G protein activation, in the case of GRK-
mediated homologous desensitization the activation pathways
are G protein-independent and presently unclear. In both cases
however, phosphorylation of conserved residues in the receptor
COOH-terminus creates a docking site for the recruitment of ar-
restins, which displace the G protein, thus leading to signalling
termination, and couple the receptor to adaptor proteins which
support clathrin-dependent receptor internalization (25).

Chemokines and dendritic cells
Immature DC express a unique repertoire of inflammatory che-
mokine receptors (e.g. CCR1, CCR2, CCR5, CCR6) which are
responsible for the recruitment of immature DC, or their precur-
sors, to the inflamed tissues (13, 18). These receptors bind a pat-
tern of “inflammatory“ chemokines, including CCL2, CCL3,
CCL4, CCL5 and CCL20. DC also express a wide variety of re-
ceptors for chemotactic agonists different from chemokines.
These include receptors for bacterial components, bioactive li-
pids and for signals of “tissue danger”.These chemotactic stimu-
li are rapidly produced (within minutes) at the site of inflam-
mation and represent an early signal for the recruitment of DC, or
their precursors, which can precede chemokines action (Table 1).

For instance, myeloid immature DC, but not mature DC, ex-
press functional receptors for formylated peptides (fMLP) and
for chemotactic components of the complement cascade (i.e.
C5a) (26). The formyl peptide receptor (FPR) family includes
multiple proteins, two of them FPR and FPRL2 were found to be
expressed by immature DC (27). FPR is the fMLP receptor,
whereas FPRL2 is activated by the WKYMVM hexapeptide and
F2L, a highly conserved acetylated 21-aminoacid peptide de-
rived from the cleavage of the N-terminus of the intracellular

Table 1: Chemotactic receptors expressed by blood dendritic
cell subsets.

Receptor myeloid DC plasmacytoid DC

Expression Function Expression Function

CCR1 +/- + +/- -

CCR2 ++ + ++ -

CCR4 + + + -

CCR5 + + ++ -

CCR6 +/- + +/- -

CCR7a + + + +

CXCR3 + + ++ + b

CXCR4 ++ + ++ +

FÜR ++ + + -

FPRL1 ++ + NDc -

FPRL2 ++ + - -

ChemR23 + + ++ +

PAFR + + ND -

C5a + + ND ND

aall the receptors are functional on immature DC, with exception of CCR7 that is expressed in a
functional manner only by mature DC. bfunctional in association with CXCR4 activation by
CXCL12 in classical chemotactic assays. It was also reported that CXCR3 is functional when its li-
gands are tested in a membrane bound form (see text). cND, not done
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heme-binding protein (HBP) (28, 29). DC express functional re-
ceptors for platelet activating factor (PAF), a bioactive phosp-
holipid that derives from the activation of PLA2 (30, 31). PAF
plays a crucial role in the retention of DC into peripheral tissues
and may thus be relevant in the accumulation of DC observed at
pathological sites, such as in atherosclerotic plaques (31).

Recent work has also shown that DC may have a pivotal func-
tion in the induction of autoimmunity (32). Histidyl-(HisRS) and
asparaginyl-(AsnRS) tRNA synthases, two cytoplasmic proteins
involved in protein synthesis which function as autoantigens in
myositis, were shown to induce the migration of immature DC
through the interaction with CCR5 (33). Furthermore, S-antigen
and the interphotoreceptor retinoid binding protein (IRBP), two
self-antigens involved in autoimmune uveitis, were shown to
bind and activate CXCR3 and CXCR5 on immature DC (34).
Therefore, self-antigens may promote autoimmunity also
through the recruitment of antigen presenting cells at sites of tis-
sue injury.

A dramatic change in the repertoire of chemokine receptors
is promoted by DC activation. This change is functional for the
migration of DC from the periphery to the draining lymph nodes.
The signals that promote this process include a variety of matu-
ration factors, such as IL-1, TNF and LPS (35–37). DC acti-

vation is associated with the acquisition of a mature phenotype
consisting in an up-regulation of co-stimulatory and MHC mol-
ecules. Activation of DC is also associated with down-regulation
of inflammatory chemokine receptors and the de novo ex-
pression of CCR7, the receptor for CCL19 and CCL21, two che-
mokines which are expressed at the luminal side of high endothe-
lial cells and in the T cell rich areas of secondary lymphoid or-
gans, such as tonsils, spleen and lymph nodes (36, 38, 39). The
crucial role of CCR7 and its ligands is documented in vivo in
mice deficient for these proteins (10, 11). CCR7 expression by
DC is also required for the entry of DC into lymphatic vessels at
peripheral sites both in steady state and inflammatory conditions
(40, 41). During inflammation, the entry of DC into lymphatic
vessels is boosted by the up-regulation of CCL21 on lymphatic
endothelial cells. Therefore, inflammatory stimuli not only pro-
mote the recruitment of immature DC into tissues but also initi-
ate their maturation process and boost the recruitment of matur-
ing DC into lymphatics (41). The relevance of chemotactic fac-
tors in DC migration in vivo has been clearly documented in
mice lacking the gamma isoform of phosphoinositide-3 kinase
(PI3Kγ) (9). PI3Kγ is located downstream seven-transmembrane
chemotactic receptors and plays a non-redundant role in cell mi-
gration in response to chemotactic agonists (23). DC generated
from PI3Kγ null mice show a profound defect in the migration in
response to both inflammatory and constitutive chemokines. A
defect of DC migration was also observed in vivo in PI3Kγ-/-

mice and most importantly, this defect was associated with a de-
fective ability of PI3Kγ-/- mice to generate a specific immune re-
sponse (9).

Interaction of DC with blood endothelium
Migration is a multistep process which involves the adhesion of
DC with endothelial cells and the interaction with physical ob-
stacles, such as basement membranes and collagen meshwork.
Circulating DC first need to tether to endothelial cells through
the interaction of E-and P-selectins with their respective ligands
(42). Firm adhesion between DC and endothelial cells is depend-
ent on the engagement of chemotactic receptors and subsequent
integrin activation on DC (43–45). In vitro, DC express CD31,
the β2 integrins LFA-1, Mac-1 and p150,95, the β1 integrins
VLA-4 and VLA-5 which mediate their binding to both resting
and activated endothelial cells (EC) and to EC-derived extracel-
lular matrix (ECM) (44) (Table 2). Transmigration of DC across
an EC monolayer, unlike adhesion, involves the engagement of
CD31. Activation of endothelial cells by oxLDL, TNF-α, or hy-
poxia strongly increases DC adhesion and transmigration (44,
46). Interestingly, EC apoptosis also markedly enhances DC ad-
hesion (47). In vivo, mice defective in β2 integrin functions (48)
and α6 integrin (49) showed a reduced ability in the migration of
cutaneous DC to the draining lymph nodes. An accumulation of
DC was reported in atherosclerotic areas (50) and in vascular re-
gions prone to develop atherosclerosis (51, 52). Furthermore,
modulation of the endothelial nitric oxide synthase (NOS) is in-
volved in DC-EC interaction (53). Release of nitric oxide by ac-
tivated endothelial cells inhibits DC adhesion and trans-
migration, whereas inhibition of nitric oxide synthesis increases
DC-endothelial cell interaction (46). These evidences provide

Table 2: Lymphatic endothelial cell and blood vascular en-
dothelial cell preferential gene expression. (Adapted from Hiraka-
wa et al. Am J Pathol 2003; 162: 575-86 and Saharinen et al. Trends Imm
2004; 25: 387-95.)

Blood EC Lymphatic EC

Adhesion and transmembrane
molecules

Integrin α5 Integrin α9

Integrin β5 Integrin α1

ICAM-1, ICAM-2 Macrophage mannose receptor I

N-cadherin LYVE-1

Selectin P, selectin E Podoplanin

CD44

Cytokines, chemokines, growth
factors and their receptors

IL-8, IL-6 IL-7

CCL2 SDF-1

CXCR4, CCRL2 SLC

IL-4 receptor CCL20

Axl CCL5

NRP1 Angiopoietin-2

VEGF-C, PlGF VEGFR-3

Cytoskeletal proteins Vinculin Desmoplakin I and II

Claudin 7 Plakoglobin

Actin, α2 α-actinin-2 associated LIM protein

Profilin 2

β-catenin

ECM molecules Collagens 8A1, 6A1, 1A2 Matrix Gla protein

Laminin, γ2, α5 Reelin

Versican TIMP-3

Proteoglycan

MMP-1, MMP-14

uPA, PAI-1

Cathepsin C
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new insight into DC-endothelial cell interaction, which plays an
emerging role in inflammation and atherogenesis.

JAM-A (junctional adhesion molecule A) is a 32 kDa trans-
membrane glycoprotein which belongs to an immunoglobulin
superfamily of proteins expressed at the intercellular junctions
of epithelial and endothelial cells (54, 55). JAM-A is expressed
by endothelial cells, platelets and leukocytes and localizes in
close proximity to tight junction components. Other members of
the JAM family (JAM-B and JAM-C) have been identified, but
they have a more restricted distribution (56). JAM-A comprises
an extracellular domain, a transmembrane segment and a cyto-
plasmic tail. The extracellular domain forms parallel dimers (57)
and binds several ligands such as JAM-A itself (58, 59), the leu-
kocyte integrin αLβ2 (60) and the reovirus protein s-1 (61).
Being localized at tight junctions, JAM-A may have a role in
binding leukocytes and in directing their transmigration through
endothelial junctions, both by homophilic binding and by linking
integrin αLβ2 (60).

We have recently described that DC express JAM-A and that
this expression has a biological relevance both in vitro and in vivo
(62). DC generated from JAM-A-defective mice showed a selec-
tive increase in random migration and transmigration across
lymphatics. Conversely, migratory capacity in response to che-
motactic agents was not affected, indicating that only random
motility in DC is influenced by JAM-A. No difference in DC ran-
dom migration across blood endothelial cells was observed. One
possible explanation for the different migration of DC across
lymphatic and blood vessels may be ascribed to the fact that lym-
phatics present weak intercellular junctions with a specific mol-
ecular organization, compared to blood vessels (63, 64).
JAM-A-/- mice showed increased localization of skin DC to
lymph nodes and an exaggerated response in a contact hypersen-
sitivity model, which was directly related to an increased mi-
gration of DC (62). Therefore, JAM-A possesses a non-redun-
dant role in the regulation of DC trafficking and function.

Interaction of DC with lymphatic endothelium
The migration pathways which lead DC from periphery to sec-
ondary lymphoid organs through the lymphatics, are still poorly
understood and may involve multiple signals (8). As mentioned
above, CCR7 expression of maturing DC is required for their ef-
ficient entering into lymphatic vessels (41). In addition, a recent
study proposed that CCR8 and its cognate ligand CCL1 are in-
volved in the emigration of mouse DC from the skin (65). A role
for CCR4/CCL22 has been also described in the formation of
T cell-DC cluster in both inflamed skin and lymph nodes (66).

Studies on the biology of lymphatic endothelium have been
limited by the complexity of in vitro culturing of these cells. Both
human and mouse lymphatic endothelial cells were isolated and
characterized in short term cultures, but unfortunately cell
growth was limited to a few in vitro passages (67, 68). We have
recently reported the characterization of a mouse endothelial
lymphatic cell line (MELC) (69, 70). MELC express the lym-
phatic endothelial markers VEGFR-3/Flt-4 and podoplanin and
the chemokine decoy receptor D6; moreover they express en-
dothelial markers and adhesion molecules relevant for the
physiological circulation of leukocytes from tissues to secondary

lymphoid organs through the lymphatics, such as CD34,
ICAM-1, VCAM and JAM-A, but not CD31, VE-cadherin and
E-selectin (Table 2). Upon stimulation with TNF-α they upregu-
late the expression of adhesion molecules such as ICAM-1 and
VCAM and produce increased amounts of IL-6 and CCL2.

D6 is a chemokine scavenger receptor strategically located
on endothelial cells lining afferent lymphatics (71) and has been
suggested to have a role in limiting and preventing excessive
transfer of inflammatory chemokines to lymph nodes (72). By
recognizing CCL22, D6 expressed on lymphatic endothelial
cells may regulate the traffic of CCR4-expressing cells, such as
DC during migration to lymph nodes via afferent lymphatics
(72). In the cornea, a close interaction between DC and the eye
lymphatic axis was reported (73). Under steady state conditions,
cornea resident DC express VEGFR-3 and the expression of this
receptor, and its ligand VEGF-C is upregulated during inflam-
matory reactions (73).These findings suggest a potential link be-
tween lymphangiogenesis and immunity. The induction of lym-
phatic vessels into the cornea might facilitate the delivery of
antigen presenting cells to draining lymph nodes which can con-
tribute to immunogenic inflammatory reactions, such as rejec-
tion of corneal grafts (74). The model proposed by Hamrah et al.
(73) suggests that the increased cytokine secretion during in-
flammation leads to increased expression of VEGFR-3 and
VEGF-C; the signalling through VEGFR-3 can then lead either
to lymphangiogenesis or DC recruitment. VEGF-C could also
promote the molecular interactions of DC with lymphatic en-
dothelial cells, inducing the entry of DC into lymphatic vessels,
similarly to the promotion of tumor metastatic spread via lym-
phatics (75, 76).

Selective recruitment of dendritic cell subsets
Blood DC includes two main subsets, myeloid and plasmacytoid
DC. These two cell subsets differ for the expression of some
membrane molecules and for the ability to release cytokines.
Myeloid DC produce large amounts of IL-12 whereas, plas-
macytoid DC secrete high levels of type I interferon (16, 77).

The expression of chemokine receptors on blood myeloid DC
and plasmacytoid DCs is, in general, fairly similar (78). Both
subsets express relatively high levels of CC chemokine receptor
CCR2 and CXCR4. In contrast, CCR1, CCR3, CCR4, CCR6,
CXCR1, CXCR2, and CXCR5 are very weakly, or not expressed,
on both circulating myeloid DC and plasmacytoid DC. Con-
versely, CCR5 and CXCR3 expression is clearly divergent in the
two subsets, being low on blood myeloid DC, but high on plas-
macytoid DC (78, 79). In contrast with the overall similar pattern
of chemokine receptor expression, circulating myeloid DC and
plasmacytoid DC exhibit a profound difference in their capacity
to migrate in response to chemokines with CXCL12 being the
only chemokine active in a classic chemotaxis assay (78) or in
transmigration assays across an endothelial cell monolayer (80).
In classical chemotaxis assays, the ligands of CXCR3, namely
CXCL9, CXCL10 and CXCL11, are inactive in inducing plas-
macytoid DC migration but can promote plasmacytoid DC mi-
gration in response to CXCL12 (81, 82).

DC subsets also differ for their ability to interact with en-
dothelial cells in vitro. Myeloid DC were shown to vigorously
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migrate across endothelium in the absence of any chemotactic
stimuli, whereas spontaneous migration of plasmacytoid DC
was limited (80). On the contrary, the interaction with an en-
dothelial cell monolayer greatly favored transmigration of plas-
macytoid DC in response to CXCL1 and CCL5 (80), ChemR23
(see below) (15) and in response to CXCR3 ligands (79).

Plasmacytoid DC are normally absent from peripheral tis-
sues and they are believed to migrate constitutively from the
blood into lymph nodes through high endothelial venules
(83–85). This migration is mediated by L-selectin and is in-
creased by an E-selectin-dependent mechanism, when lymph
nodes are exposed to inflammatory conditions (85–87). Accord-
ingly, plasmacytoid DC express high levels of CD62 ligand and
PSGL1, the counter ligands of P- and E-selectins (79, 83). Re-
cruitment of plasmacytoid DC to non-lymphoid tissues is ob-
served in some pathological conditions, such as autoimmune dis-
eases (i.e. lupus erythematosus disease, psoriasis and rheuma-
toid arthritis) (77, 88, 89), allergic diseases (i.e. contact dermati-
tis and in nasal mucosa polips) (90) and in tumors (91–93). How-
ever, the mechanisms leading to the recruitment of plasmacytoid
DC to inflammatory sites remain unresolved. Recently, chemer-
in, a new chemotactic factor was proposed as a key signal for the
recruitment of plasmacytoid DC into pathological tissues (15).
Chemerin is a novel chemotactic protein identified as the natural
ligand of ChemR23, a previously orphan G protein-coupled re-
ceptor expressed by immature dendritic cells and macrophages
(94). Chemerin was purified from ovarian cancer ascites and
found to correspond to the product of the Tig-2 gene. Chemerin
is expressed by many tissues, including spleen and lymph nodes,
and is secreted as prochemerin, a poorly active precursor protein.
Extracellular proteases involved in the coagulation cascade (95)
or released by leukocytes convert prochemerin into a full agonist
of ChemR23 by proteolytic removal of the last six amino acids
(96). ChemR23 is expressed by blood plasmacytoid DC, and
chemerin was found active in inducing their transmigration

across an endothelial cell monolayer. In vivo ChemR23 was ex-
pressed by plasmacytoid DC localized in reactive lymph nodes
and in skin lesions of lupus erythematosus patients. Of note, che-
merin was selectively expressed by high endothelial venules in
lymph nodes and by dermal blood vessels in lupus skin lesions.
These results strongly suggest that the ChemR23/chemerin axis
is likely to play a key role in regulating the trafficking of plas-
macytoid DC to lymph nodes and to pathological tissues (15).

Concluding remarks
DC are professional antigen presenting cells. To accomplish
their biological function, they need to go through a complex pat-
tern of migration, which includes their localization to both pe-
ripheral non-lymphoid tissues and secondary lymphoid organs.
In the absence of correct tissue localization, DC fail to promote
proper immune responses. DC trafficking include the interaction
with both blood and lymphatic endothelium and the response to
chemotactic signals. In the past few years, many chemokines
were reported to regulate DC migration in vitro and in vivo, how-
ever more recent findings strongly support the role of a consider-
able array of non-chemokine chemotactic signals and adhesion
molecules in this complex process. A better understanding of the
signals involved in the migration of DC subsets in vivo consti-
tutes a valuable basis for the development of new strategies for
the control of DC migration and function under pathological
conditions.
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