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Abstract
In analogy with ocean waves running up towards the beach, shoaling of pre-chirped optical
pulses may occur in the normal group-velocity dispersion regime of optical fibers. We present
exact Riemann wave solutions of the optical shallow water equations and show that they agree
remarkably well with the numerical solutions of the nonlinear Schrödinger equation, at least
up to the point where a vertical pulse front develops. We also reveal that extreme wave events
or optical tsunamis may be generated in dispersion tapered fibers in the presence of
higher-order dispersion.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Extreme or rogue waves have received a great deal of attention
recently due to their emergence in a variety of applications,
ranging from fluid dynamics and oceanography to plasma
physics, Bose–Einstein condensation (BEC) and nonlinear
optics [1, 2]. The most popular manifestation of a rogue
wave has so far been described as the sudden build-up and
subsequent rapid disappearance in the open sea of an isolated
giant wave, whose height and steepness are much larger than
the corresponding average values of other waves in the ocean.
A different manifestation of rogue waves with the potential for
large-scale damage also occurs as a result of wave propagation
in shallow waters, a framework which describes the run-up of
tsunamis towards the coast [3]. Moreover, it is also known
that the crossing of waters propagating in different directions
or with opposite velocities may lead to the formation of
high-elevation and steep humps of water or sneaker waves,
which may cause severe disruption along the coastline and
river flooding [4]. The same phenomena also occur in the
run-down of avalanches falling from a mountain channel or
a glacier [5].

In deep waters, the dynamics of rogue wave formation
may be described by the well-known one-dimensional
nonlinear Schrödinger equation (NLSE). As such, the
generation of rogue waves has been closely associated so
far with the presence of continuous wave (CW) breaking or
modulation instability (MI) [6], which occurs in the so-called
self-focusing or anomalous group-velocity dispersion (GVD)
regime. Thanks to the integrability of the NLSE, the nonlinear
development of the MI gives rise to families of exact solutions
such as the Akhmediev breathers [7]. Although generally
periodic both in the evolution variable (e.g., distance) and
the transverse dimension (e.g., time), such nonlinear wave
families may also include strictly spatio-temporally localized
waves: consider for example the Peregrine soliton [8].

Given the widespread applicability of the NLSE to fields
of physics other than oceanography, it has been possible to
predict and experimentally observe rogue wave phenomena
in different contexts, such as nonlinear optical fibers. For
example, the temporal statistics of optical supercontinuum
generation has revealed the emergence of extreme solitary
wave emissions [9]. In addition, optical fibers have provided
the test-bed for the first clear experimental observation of
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Peregrine solitons by inducing the MI of a pump laser by
means of an additional seed laser [10].

On the other hand, the appearance of rogue waves in
shallow waters is a field which is still in the emergent
stage [3]. As such, it does not appear to have received
much attention in other physical contexts apart from
hydrodynamics. However, a recent study has pointed out
that extreme waves may be also be generated in optical
fibers in the normal GVD regime of pulse propagation,
where MI is absent [11]. In this framework the model
linking hydrodynamics with nonlinear optics is provided
by the semiclassical approximation to the NLSE [12],
which is known as the nonlinear shallow water equation
(NSWE) [13] or the Saint-Venant equation [14]. Although
in the normal GVD regime a CW is modulationally stable,
extreme waves may still be generated in the presence of a
suitable temporal pre-chirp or phase modulation [11, 15, 16],
which is analogous to a nonuniform velocity distribution of
the propagating water waves, eventually leading to tsunamis.
As is well known, the condition of shallow water (as opposed
to deep water) propagation applies in oceanography whenever
the wavelength of the wave is much longer than the depth of
the water, such as occurs for tsunamis even at large distances
from the coast, given their typical wavelengths of the order
of thousands of km. On the other hand, in nonlinear optics,
the applicability of the NSWE requires the characteristic
dispersion distance to be much longer than the nonlinear
distance (small dispersion limit) [12].

In this work we show that, in analogy with the commonly
experienced case of ocean waves as they run up to the
beach, the shoaling of properly pre-chirped optical pulses
may also occur in the normal dispersion regime of optical
fibers. Therefore we shall consider the propagation of special,
temporally pre-chirped input optical pulses with different
power profiles. These pulses represent nonlinear invariant
solutions of the NSWE (Riemann waves). For such a type
of chirped pulses, we obtain exact solutions of the optical
NSWE and demonstrate their good agreement with numerical
solutions of the NLSE, at least up to the point where a vertical
pulse edge or front develops in the power profile. In addition,
we also present simulations which reveal that third-order
dispersion (TOD) leads to the occurrence of extreme waves
or optical tsunamis whenever a dispersion tapered fiber is
used, in analogy with the dramatic run-up and wave height
amplification of a tsunami as the coast is approached and the
water depth is progressively reduced.

In section 2 we present the NSWE and its formulation
in Riemann invariant form, which leads to the definition
of the nonlinear Riemann waves. Exact solutions for these
temporally chirped optical Riemann pulses with different
input power temporal profiles, such as the parabolic, Gaussian
or hyperbolic secant profile, are presented in section 3,
and critically compared with the numerical solutions of the
NLSE. The analysis of section 3 reveals the emergence
of wave-breaking free optical wave shoaling, which is the
formation of a vertical edge for the propagating pulse without
any appearance of high-frequency temporal oscillations or
shock phenomena. Finally, as discussed in section 4, we show

that whenever the balance of GVD and TOD dynamically
evolves along the fiber, such as occurs in dispersion varying
or tapered fibers, significant temporal compression and peak
power amplification may result in the form of a high-intensity
spatio-temporally localized flash of light propagating entirely
in the normal GVD regime.

2. Basic equations

As is well known, the propagation of short light pulses in
optical fibers may be described in terms of the NLSE

i
∂Q

∂z
−
β2

2
∂2Q

∂t2
− i
β3

6
∂3Q

∂t3
+ γ |Q|2Q = αf tQ. (1)

Here z and t denote the distance and retarded time (in
the frame travelling at the carrier frequency group velocity)
coordinates; β2, β3 and γ represent GVD, TOD and the
nonlinear coefficient, respectively; Q is the field envelope.
Moreover, αf denotes the rate of the carrier frequency
shift with distance. A continuous frequency shift may be
introduced in a fiber ring laser by means of an acousto-optic
filter [17]. Otherwise, the frequency shifting term may be
introduced to represent, in combination with the TOD term,
propagation in a dispersion tapered optical fiber, where the
local dispersion varies along the propagation distance [18, 19].
In dimensionless units, and in the normal GVD regime (i.e.,
β2 > 0), equation (1) reads as

i
∂q

∂Z
−
β2

2
∂2q

∂T2 − i
β̂

6
∂3q

∂T3 + |q|
2q = α̂Tq. (2)

Here T = t/t0,Z = zγP0 = z/LNL, β2
= β2/(t20γP0) ≡

LNL/LD, where LNL and LD are the nonlinear and dispersion
lengths, respectively, β̂ = β3/(t30γP0), q = Q/

√
P0, and α̂ =

αf t0/(γP0); t0 and P0 are arbitrary time and power units.
Equation (2) can be expressed in terms of the real variables
ρ and u, which denote the field dimensionless power and
instantaneous frequency (or chirp)

q(T,Z) =
√
ρ(T,Z) exp

[
−

i
β

∫ T

−∞

u(T ′,Z) dT ′
]
. (3)

By ignoring higher-order time derivatives in the resulting
equations (which is justified for relatively small values of β),
as well as TOD, one obtains from the NLSE the hydrodynamic
NSWEs [12, 13]

∂ρ

∂Z′
+
∂ (ρu)

∂T
= 0

∂u

∂Z′
+ u

∂u

∂T
+
∂ρ

∂T
= α,

(4)

where Z′ = βZ and α = α̂/β. In hydrodynamics, equations
(4) describe the motion of a surface wave in shallow water,
i.e., a wave whose wavelength is much larger than the water
depth. In this context, ρ and u represent the water depth and its
velocity, respectively. Moreover α = dh/dT , where h(T) is the
unperturbed water depth along the channel or beach axis [3].
Therefore a constant α represents tsunami run-up towards a
beach with uniform slope.
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Solutions of equations (4) may be found by making use
of the Riemann invariants

I± = u± 2
√
ρ − αT (5)

so that equations (4) read as

∂I±
∂Z′
+ c±

∂I±
∂T
= 0 (6)

where

c± = 3
4 I± + 1

4 I∓ + αT. (7)

If we set u = αT + ν, so that

ν =
I+ + I−

2

ρ =
(I+ − I−)2

16
,

(8)

use the accelerated reference frame T ′ = T−αZ′2/2,Z′ = Z′,
and drop primes for simplicity, equations (6) read as

∂J±
∂Z
+ C±

∂J±
∂T
= 0 (9)

where

J± = ν ± 2
√
ρ

C± = 3
4 J± + 1

4 J∓.
(10)

For a temporally localized input optical waveform such as
a chirp-free square pulse, i.e., with ρ(T,Z = 0) = ρ0 for
|T| ≤ T0 and ρ(T,Z = 0) = 0 otherwise, equation (4) may
be analytically solved up to the point Z = T0/

√
ρ0 in terms

of the well-known Ritter dam-break solution [12, 20]. On the
other hand, henceforth we shall restrict our attention to the
propagation of special pre-chirped optical pulses, as discussed
in section 3.

3. Nonlinear Riemann waves

A particular solution of equations (9), known as the Riemann
wave, can be obtained if we set J− = 0, so that ν = 2

√
ρ.

Therefore equations (9) reduce to

∂0

∂Z
+ 0

∂0

∂T
= 0 (11)

where 0 ≡ 3J+/4 = 3ν/2 = 3
√
ρ. The solution of equa-

tion (11) reads as 0(T,Z) = 00(T − 0Z), where 00(T) =
0(T,Z = 0). In practice it is easier to consider a given
initial power profile for the optical pulse. From the first
of equations (4), one also obtains for the pulse power the
following equation

∂ρ

∂Z
+ 3
√
ρ
∂ρ

∂T
= 0. (12)

The solution of equation (12) corresponding to the initial
power profile ρ(T,Z = 0) = ρ0P(T/T0) can be written in
implicit form as [21]

ρ(T,Z) = ρ0P[(T − 3Z
√
ρ(T,Z))/T0] (13)

or, in more compact notation, as

P−1(p) = τ − aζ
√

p (14)

where we defined p = ρ/ρ0, τ = T/T0, a = 3
√

2ρ0/T0, and
ζ = Z/

√
2T0. In the remainder of this section, we will apply

equation (14) to solve exactly some specific cases of interest in
nonlinear optics, namely a pulse with an initial power profile
of either parabolic, Gaussian or hyperbolic secant shape.

3.1. Parabolic pulse

Consider first the interesting case of a pulse with initial (i.e., at
ζ = 0) parabolic power profile of finite duration 2T0 (or
parabolic cap), that is

p(τ, ζ = 0) =

{
1− τ 2 for |τ | < 1,

0 for |τ | ≥ 1.
(15)

One easily obtains from equation (14) the solution for the
power profile at any ζ as

√
p(τ, ζ ) =


−B+

√
1

A
for

∣∣τ − aζ
√

p
∣∣ < 1,

0 for
∣∣τ − aζ

√
p
∣∣ ≥ 1

(16)

where

A = 1+ a2ζ 2, B = −aζ τ,

C = −1+ τ 2, 1 = B2
− AC

(17)

and the inequalities in equation (16) immediately result by
imposing that the pulse power p remains greater than or equal
to zero in equation (14). The corresponding temporal chirp
profile is always provided by the relationship ν = 2

√
ρ.

It is interesting to compare the analytical solution (16)
of the NSWEs (4) with the numerical solution of the
original NLSE (1). Let us consider the specific case of
a dispersion-compensating fiber (DCF) with normal GVD
coefficient D = −100 ps nm−1 km−1 (or β2 = 127 ps2 km−1

at 1550 nm), and the nonlinear coefficient γ = 3.2 W−1 km−1

in equation (1).
In figure 1 we illustrate the propagation of a nonlinear

Riemann wave with initial parabolic power profile by showing
the contour plot of the pulse power as a function of the
distance along the DCF, as computed by solving the original
NLSE (1). Here the input peak pulse power is equal to P =
2 W, and the parabolic pulse full width at half maximum is
Tfwhm = 200 ps. Figure 1 shows that the pre-chirp distribution
leads to a slowing down of the pulse. Moreover, the pulse
power profile develops a strongly asymmetric shape: its
trailing edge acquires a vertical slope at about z = 1 km. For
longer distances both trailing and leading edges of the pulse
exhibit a nearly linear decrease with time, albeit with different
slopes. The details of the evolution of the pulse power profile
with fiber length is clearly illustrated in figure 2: here we
compare the numerical solution of the NLSE (1) (blue solid
thick curves) with the exact solution of the NSWEs (green
solid thin curves). In figure 2 we also show the input parabolic
power profile (red dashed curves).
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Figure 1. Contour plot of pulse power versus fiber length by
solving equation (1) with an initial parabolic power profile.

Figure 2. Pulse power temporal profiles at the output of different
DCF lengths: blue solid thick curves indicate the numerical solution
of the NLSE; green solid thin curves show the exact solution of the
NSWEs; the red dashed curve shows the input parabolic power
profile.

As can be seen in figure 2, there is an excellent agreement
between the numerical solution of the NLSE and the exact
solution (16) up to the point (i.e., z = 1 km), where a
wavefront with vertical slope develops at the trailing edge of
the pulse. For longer distances, the agreement between the
analytical NSWE solution and the numerical NLSE solution
remains for the entire leading edge of the pulse. On the
other hand, the vertical trailing edge is preserved in the
analytical solution of the NSWEs, whereas the trailing edge
shows a smoothened decay in the solution of the NLSE. The
optical pulse deformation which is seen in figures 1 and 2
is analogous to the shoaling of a shallow water wave when
it approaches the beach. Therefore we can name the point
where the vertical pulse edge develops as the shoaling point.
It is remarkable that no wave breaking occurs in spite of the
occurrence of a vertical slope in the pulse trailing edge: the
NLSE solutions exhibit a self-regularization behavior.

In figure 3 we display the evolution of the chirp profiles
with distance, corresponding to the power profiles of figure 2.
Here the red dashed curves indicate the initial chirp profile of
the parabolic Riemann pulse. As can be seen, the analytical

Figure 3. Pulse chirp temporal profiles at the output of different
DCF lengths: blue solid thick curves indicate the numerical solution
of the NLSE; green solid thin curves show the exact solution of the
NSWEs; red dashed curves show the input parabolic power profile.

Figure 4. Contour plot of pulse power versus fiber length by
solving equation (1) with an initial Gaussian power profile.

solutions for the chirp, as obtained either from the NSWE or
the NLSE, are in excellent agreement with each other up to
the shoaling point. For longer distances, the agreement only
remains for the (relatively longer) leading edge of the pulse.

3.2. Gaussian pulse

In the case of a nonlinear Riemann wave with an
input Gaussian power profile, we may set p(τ, ζ = 0) =
exp

(
−2τ 2

)
, so that from equation (14) we obtain the implicit

equation for the pulse power

p(τ, ζ ) = exp[−2(τ 2
− 2aζ τ

√
p+ a2ζ 2p)] (18)

which can be easily solved by an iterative procedure. In
figure 4 we display the corresponding contour plot of the pulse
power versus distance along the DCF, as obtained by solving
the NLSE (1). The input Gaussian peak pulse power is always
equal to P = 2 W, and the pulse Tfwhm = 200 ps. Figure 4
shows that with a Gaussian pulse the shoaling point occurs at
about z = 2.5 km.

The comparison among the exact NSWE and numerical
NLSE solutions for the pulse power profiles shown in figure 5

4
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Figure 5. Same as in figure 2, with an initial Gaussian pulse power
profile.

Figure 6. Same as in figure 3, with an initial Gaussian pulse power
profile.

reveals that their agreement is very good up to the shoaling
point, that is z ∼= 3 km. For longer distances, the NLSE
solution develops a tail in the trailing edge which is not
captured by the solution (18) of the NSWE (4). Moreover,
the fragmented green curve in the bottom panel of figure 5
(i.e., for z = 4 km) shows that the numerical solution of the
transcendental equation (18) is no longer accurate for points
in time beyond the vertical trailing edge.

Moreover, the comparison of the chirp profiles in figure 6
shows that past the shoaling point the NLSE pulse acquires a
temporally oscillating negative chirp in its leading edge, and a
uniform positive chirp in its trailing edge. Such highly chirped
regions in the pulse tails are not fully captured by the NSWE
solution (18).

3.3. Hyperbolic secant pulse

In the case of an input hyperbolic secant pulse, we may set
p(τ, ζ = 0) = sech2(τ ), so that from equation (14) we obtain

p(τ, ζ ) = sech2(τ − aζ
√

p). (19)

In figure 7 we illustrate the contour plot of the pulse
power versus distance along the DCF from the solution of

Figure 7. Contour plot of pulse power versus fiber length by
solving equation (1) with an initial hyperbolic secant power profile.

Figure 8. Same as in figure 2, with an initial hyperbolic secant
pulse power profile.

the NLSE (1) for an input Riemann wave with an initial
hyperbolic secant power profile. The input peak pulse power
is kept equal to P = 2 W, and Tfwhm = 200 ps. Figure 7 shows
that with a hyperbolic secant pulse the shoaling point is shifted
further up to about z = 3.5 km: otherwise the power evolution
remains qualitatively very similar to the case of the Gaussian
pulse shown in figure 4.

Figure 8 illustrates the details of the pulse power with
an initial hyperbolic secant profile for the exact NSWE
and numerical NLSE solutions. Again, there is an excellent
agreement up to the shoaling point at z ∼= 4 km.

On the other hand, the comparison of the chirp profiles
illustrated in figure 9 shows that past the shoaling point
the NLSE pulse acquires a strong, temporally oscillating
positive chirp in its trailing edge. Such a highly chirped region
corresponds to the oscillating tail in figure 8, which is not
reproduced by the NSWE solution (19).

4. Rogue waves

In section 3 we have shown that properly pre-chirped optical
pulses with different power profiles experience wave-breaking
free formation of a vertical edge, which is analogous to

5
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Figure 9. Same as in figure 3, with an initial hyperbolic secant
pulse power profile.

the shoaling of shallow water waves. On the other hand,
in spite of the strong temporal deformation, the value of
the peak power remained nearly unchanged and close to the
input value in the course of propagation. In this section we
will demonstrate by numerical simulations that extreme wave
formation—the emergence of temporally compressed, high
intensity and transient pulses—is possible in optical fibers
with the inclusion of frequency shifting and TOD. This is
equivalent to the case of a dispersion varying optical fiber,
where the local value of the dispersion changes owing to
the variation of the fiber diameter [18, 19]. Let us consider
next the impact of fiber TOD on the propagation of nonlinear
Riemann waves in optical fibers: the corresponding modified
NSWE reads as [22]

∂ρ

∂Z′
+
(
1+ β̄u

)
u
∂ρ

∂T
+
(
1+ 2β̄u

)
ρ
∂u

∂T
= 0

∂u

∂Z′
+
(
1+ β̄u

)
u
∂u

∂T
+
∂ρ

∂T
= α,

(20)

where β̄ = β̂/(2β3).
In the following, we restrict our attention to investigating

the possibility of the emergence of spatio-temporally localized
flashes or rogue wave types of solution under the action
of nonlinearity, dispersion, frequency shifting and TOD by
numerically solving the original NLSE (1). For simplicity, we
will only consider the case of an initial Riemann pulse with
a Gaussian power profile, for the same power and temporal
duration values as in section 3.

Figure 10 shows the contour plot of the pulse power
evolution along the DCF whenever the frequency up-shift rate
is equal to αf = 256 MHz m−1 and the TOD equal to β3 =

−2 ps3 m−1. Note that the zero-dispersion point is up-shifted
by 31.4 GHz with respect to the carrier frequency of the input
pulse. The direction of frequency shifting is such that the fiber
GVD is reduced by TOD as the pulse propagates in the fiber,
so that the zero-dispersion point is crossed and eventually the
pulse moves into the anomalous dispersion regime.

In figure 10 and elsewhere in this section, we will display
the pulse evolution in the original temporal frame and not
in the accelerated frame, as was done in section 3. As

Figure 10. Same as in figure 6, with negative third-order
dispersion.

Figure 11. Details of pulse evolution as in figure 10; numbers next
to each curve indicate the propagation distance in meters.

we shall see, using the original reference frame permits a
good temporal separation of the various pulse power profiles
that are obtained at different distances. As can be seen by
comparing figure 10 with figure 4, the relatively large TOD
value has the effect of anticipating the shoaling point (or
vertical trailing edge) to z = 0.3 km (from z = 2.5 km
in the absence of TOD). Moreover, a significant temporal
compression and three-fold peak power amplification (from
2 W to 6 W) occurs in correspondence to the shoaling point.

A selection of pulse power profiles at a given set of
distances (indicated in meters next to each curve) along the
fiber, corresponding to the power contour plot of figure 10,
is shown in figure 11. Here we can see that the formation
of a vertical trailing edge at z = 300 m is accompanied by a
nearly three-fold amplification of the peak power value. Past
the shoaling point, the peak power decreases, and a temporal
oscillation appears in the leading edge, while the trailing edge
remains smooth.

Quite surprisingly, numerical simulations reveal that
whenever the sign of the TOD is changed from negative to
positive (i.e., we set β3 = 2 ps3 m−1)—that is, the frequency

6
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Figure 12. Same as in figure 10, with positive third-order
dispersion β3 = 2 ps3 m−1.

Figure 13. Surface plot of pulse power versus distance for the same
case as in figure 12.

shifting pulse sees a progressively larger normal GVD as it
propagates along the fiber—the temporal compression and
peak power enhancement of the input Gaussian Riemann
pulse is greatly enhanced at the shoaling point.

In figures 12 and 13 we show the contour and surface
plots of the pulse power evolution along the DCF for the
same frequency up-shift rate as in figure 10, but with the
sign of TOD changed from negative to positive. As can be
seen, in this case the vertical edge or shoaling occurs in the
leading edge of the pulse at about z = 400 m. Moreover,
the temporal compression and the pulse peak power is
substantially increased with respect to the case of negative
TOD that was illustrated in figures 10 and 11. In particular,
a more than ten-fold increase in the peak power is observed at
the point of maximum temporal compression z = 400 m.

A set of pulse power profiles for progressively increasing
distances (indicated in meters next to each curve) in the fiber,
extracted from the plots of figures 12 and 13, is shown in
figure 14. As can be seen, the compressed pulse reaches a
peak power as high as 24 W at z = 400 m. Past the point
of maximum compression, the pulse breaks up into multiple
peaks until a pulse train is obtained at z = 600 m.

Figure 14. Details of pulse evolution as in figure 12; numbers next
to each curve indicate the propagation distance in meters.

Figure 15. Same as in figure 14 with the positive third-order
dispersion β3 = 0.4 ps3 m−1.

In the previous examples we have used a relatively
large value of the TOD coefficient. However the dynamics
of rogue wave formation is not critically dependent on the
specific TOD value: in figure 15 we show that similar pulse
compression and extreme peak formation also occur when
the TOD is reduced by five times to β3 = 0.4 ps3 m−1. The
main difference between figures 14 and 15 is that the point
of maximum compression is moved further down the fiber, at
z = 1 km from z = 400 m.

Figure 16 displays the spectral intensities associated
with the input pre-chirped pulse (red dashed curve) and the
frequency up-shifted rogue pulse at z = 1 km, which are
reported in figure 15. As can be seen, in spite of the relatively
large normal GVD, the spectrum of the rogue pulse exhibits
broad triangular tails that are associated with the presence of
a sharp hyperbolic secant soliton-like peak.

It is interesting to point out that, in contrast to the
case of either chirp-free input pulses, which are subject to
TOD-induced wave-breaking or shock formation in dispersion
tapered fibers [18, 19], in the case of Riemann pulses rogue
wave formation is not accompanied by any wave-breaking
phenomena. Note that whenever a step-wise pre-chirp of a

7
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Figure 16. Spectra of the input pulse and of the maximum
compressed pulse as in figure 15.

CW is used, temporal shocks still arise even in the absence
of TOD [15, 16].

In order to highlight the nonlinear and dispersive
mechanisms of pulse formation dynamics, in equation (1) and
elsewhere in this paper we neglected the presence of linear
optical fiber loss. Indeed, the effect of fiber loss is minimal
and it does not qualitatively change our conclusions for the
relatively short propagation lengths (up to a few km) which
have been considered in our numerical examples. In general,
effective transparent propagation can be achieved in optical
fibers thanks to distributed Raman amplification, or by means
of periodic lumped amplification in optical communication
systems.

5. Conclusions

In this work we have described optical pulse shoaling in
the normal dispersion regime of optical fibers. We obtained
exact solutions of the optical NSWE, and demonstrated their
relatively good match with the numerical solutions of the
NLSE. We have also revealed that TOD may lead to the
occurrence of extreme waves or optical tsunamis in dispersion
tapered fibers, in full analogy with the dramatic run-up and
wave height amplification of ocean tsunamis.

The present results may also have applications in contexts
other than nonlinear optics, such as hydrodynamics or
BEC. Moreover, we envisage that optical Riemann waves

and tsunamis may also be observed in the spatial domain,
namely, when diffraction replaces dispersion. In this case
the presence of two dimensional degrees of freedom may
facilitate the generation and control of the necessary initial
phase profiles [23].
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