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Abstract

Polar Grassmann codes of orthogonal type have been introduced in [1]. They are subcodes of the
Grassmann code arising from the projective system defined by the Plücker embedding of a polar
Grassmannian of orthogonal type. In the present paper we fully determine the minimum distance
of line polar Grassmann Codes of orthogonal type for q odd.
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1. Introduction

Codes Cm,k arising from the Plücker embedding of the k–Grassmannians of m–dimensional
vector spaces have been widely investigated since their first introduction in [12, 13]. They
are a remarkable generalization of Reed–Muller codes of the first order and their monomial
automorphism groups and minimum weights are well understood, see [10, 5, 6, 4].

Recently, in [1], the first two authors of the present paper introduced some new codes Pn,k

arising from embeddings of orthogonal Grassmannians ∆n,k. These codes correspond to the
projective system determined by the Plücker embedding of the Grassmannian ∆n,k representing
all totally singular k–spaces with respect to some non-degenerate quadratic form η defined on a
vector space V (2n+1, q) of dimension 2n+1 over a finite field Fq. An orthogonal Grassmann code
Pn,k can be obtained from the ordinary Grassmann code C2n+1,k by just deleting all the columns
corresponding to k–spaces which are non-singular with respect to η; it is thus a punctured version
of C2n+1,k. For q odd, the dimension of Pn,k is the same as that of G2n+1,k, see [1]. The minimum
distance dmin of Pn,k is always bounded away from 1. Actually, it has been shown in [1] that for
q odd, dmin ≥ qk(n−k)+1 + qk(n−k) − q. By itself, this proves that the redundancy of these codes
is somehow better than that of C2n+1,k.

In the present paper we prove the following theorem, fully determining all the parameters for
the case of line orthogonal Grassmann codes (that is polar Grassmann codes with k = 2) for q
odd.

Main Theorem. For q odd, the minimum distance dmin of the orthogonal Grassmann code Pn,2

is
dmin = q4n−5 − q3n−4.

Furthermore, all words of minimum weight are projectively equivalent.
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Hence, we have the following.

Corollary 1.1. For q odd, line polar Grassmann codes of orthogonal type are [N,K, dmin]-projective
codes with

N =
(q2n−2 − 1)(q2n − 1)

(q2 − 1)(q − 1)
, K =

(
2n+ 1

2

)
, dmin = q4n−5 − q3n−4.

1.1. Organization of the paper
In Section 2 we recall some well–known facts on projective systems and related codes, as well

as the notion of polar Grassmannian of orthogonal type. In Section 3 we prove our main theorem;
as some long, yet straightforward, computations are required, here we present in full detail the
arguments for two of the main cases to be considered, while we simply summarize the results,
which can be obtained in an analogous way, for the remaining two.

2. Preliminaries

2.1. Projective systems and Grassmann codes
An [N,K, dmin]q projective system Ω ⊆ PG(K − 1, q) is a set of N points in PG(K − 1, q)

such that for any hyperplane Σ of PG(K − 1, q),

|Ω \ Σ| ≥ dmin.

Existence of [N,K, dmin]q projective systems is equivalent to that of projective linear codes with
the same parameters; see, for instance, [14]. Indeed, let Ω be a projective system and denote by
G a matrix whose columns G1, . . . , GN are the coordinates of representatives of the points of Ω
with respect to some fixed reference system. Then, G is the generator matrix of an [N,K, dmin]
code over Fq, say C = C(Ω). The code C(Ω) is not, in general, uniquely determined, but it is
unique up to code equivalence. We shall thus speak, with a slight abuse of language, of the code
defined by Ω.

As any word c of C(Ω) is of the form c = mG for some row vector m ∈ FK
q , it is straightforward

to see that the number of zeroes in c is the same as the number of points of Ω lying on the
hyperplane of equation m · x = 0 where m · x =

∑K
i=1 mixi and m = (mi)

K
1 , x = (xi)

K
1 . The

minimum distance dmin of C is thus

dmin = |Ω| − fmax, where fmax = max
Σ≤PG(K−1,q)

dim Σ=K−2

|Ω ∩ Σ|. (1)

We point out that any projective code C(Ω) can also be regarded, equivalently, as an evaluation
code over Ω of degree 1. In particular, when Ω spans the whole of PG(K − 1, q) = PG(W ), where
W is the underlying vector space, then there is a bijection, induced by the standard inner product
of W , between the elements of the dual vector space W ∗ and the codewords c of C(Ω).

Let G2n+1,k be the Grassmannian of the k–subspaces of a vector space V := V (2n + 1, q),
with k ≤ n and let η : V → Fq be a non-degenerate quadratic form over V . Denote by
εk : G2n+1,k → PG(

∧k
V ) the usual Plücker embedding

εk : 〈v1, . . . , vk〉 → 〈v1 ∧ · · · ∧ vk〉.

The orthogonal Grassmannian ∆n,k is a geometry having as points the k–subspaces of V
totally singular for η. Let εk(G2n+1,k) := {εk(Xk) : Xk is a point of G2n+1,k} and εk(∆n,k) =
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{εk(X̄k) : X̄k is a point of ∆n,k}. Clearly, we have εk(∆n,k) ⊆ εk(G2n+1,k) ⊆ PG(
∧k

V ). Through-
out this paper we shall denote by Pn,k the code arising from the projective system εk(∆n,k).
By [2, Theorem 1.1], if n ≥ 2 and k ∈ {1, . . . , n}, then dim〈εk(∆n,k)〉 =

(
2n+1

k

)
for q odd, while

dim〈εk(∆n,k)〉 =
(
2n+1

k

)
−

(
2n+1
k−2

)
when q is even.

We recall that for k < n, any line of ∆n,k is also a line of G2n+1,k. For k = n, the lines of
∆n,n are not lines of G2n+1,n; indeed, in this case εn|∆n,n : ∆n,n → PG(

∧n
V ) maps the lines of

∆n,n onto non-singular conics of PG(
∧n

V ).
Thus, for q odd, the projective system identified by εk(∆n,k) determines a code of length N =∏k−1

i=0
q2(n−i)−1
qi+1−1 and dimension K =

(
2n+1

k

)
; if q is even the projective system identified by εk(∆n,k)

determines instead a code of length N =
∏k−1

i=0
q2(n−i)−1
qi+1−1 and dimension K =

(
2n+1

k

)
−
(
2n+1
k−2

)
.

The following universal property provides a well–known characterization of alternating multi-
linear forms; see for instance [11, Theorem 14.23].

Theorem 2.1. Let V and U be vector spaces over the same field. A map f : V k −→ U is
alternating k–linear if and only if there is a linear map f :

∧k
V −→ U with f(v1∧v2∧· · ·∧vk) =

f(v1, v2, . . . , vk). The map f is uniquely determined.

In general, the dual space (
∧k

V )∗ of
∧k

V is isomorphic to the space of all k–linear alternating
forms of V . Observe that when dimV = 2n+ 1, we can also write (

∧k
V )∗ ∼=

∧2n+1−k
V .

In this paper we are concerned with line Grassmannians, that is we assume k = 2. The
above argument shows that for any hyperplane π of PG(

∧2
V ), induced by a linear functional in

(
∧2

V )∗, there is an alternating bilinear form ϕπ : V × V → Fq such that p ∧ q ∈ π for p, q ∈ V
if and only if ϕπ(p, q) = 0. In particular, when one considers the set of totally singular lines
of V with respect to a given quadratic form η, the image of a totally singular line ` = 〈p, q〉
of V belongs to the hyperplane π if and only if ` is also totally isotropic for ϕπ, that is to say
ϕπ(p, q) = 0.

Denote by Lϕ the set of all totally isotropic lines for the alternating form ϕ := ϕπ corresponding
to a hyperplane π of PG(

∧2
V ). The number of points in ε2(∆n,2)∩ π is the same as the number

of lines of PG(V ) simultaneously totally singular for the quadratic form η defining ∆n,2 and
totally isotropic for the alternating form ϕπ. Hence, by (1),

dmin(Pn,2) = #{points of ∆n,2} − max
ϕ

#{points of ∆n,2 ∩ Lϕ}.

In other words, in order to determine the minimum distance of Pn,2 we need to find the maximum
number of lines which are simultaneously totally singular for a fixed non-degenerate quadratic
form η on V and totally isotropic for a (necessarily degenerate) alternating form ϕ.

Recall that the radical of ϕ is the set

Rad(ϕ) := {v ∈ V : ∀w ∈ V, ϕ(v, w) = 0}.

This is always a vector space and its codimension in V is even. As dimV is odd, 2n − 1 ≥
dim Rad(ϕ) ≥ 1.

We point out that for the line projective Grassmann code C2n+1,2, it has been proven in
[10] that minimum weight codewords correspond to points of ε2n−1(G2n+1,2n−1); these can be
regarded as bilinear alternating forms of V of maximum radical.

In the case of orthogonal line Grassmannians, not all points of G2n+1,2n−1 yield codewords of
Pn,2 of minimum weight. However, as a consequence of the proof of our main result, we shall
show in Proposition 3.18 that all the codewords of minimum weight of Pn,2 do indeed correspond
to some (2n − 1)–dimensional subspaces of V , that is to say, to bilinear alternating forms of
maximum radical.
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2.2. Generalities on quadrics
Let Q := Q(2t, q) be a non-singular parabolic quadric of rank t in PG(2t, q) and write

κ0 = (q2t − 1)/(q − 1) for the number of its points. The points of PG(2t, q) are partitioned in
three orbits under the action of the stabilizer PO(2t+ 1, q) of Q in PGL(2t+ 1, q); namely the
points of Q, those whose polar hyperplane cuts on Q an elliptic quadric Q−(2t − 1, q) of rank
t− 1 and those whose polar hyperplane meets Q in a hyperbolic quadric Q+(2t− 1, q) of rank
t. As customary, call the former points internal and the latter external to Q. Write κ−

0 for the
number of the internal points and κ+

0 for that of the external ones. Then, see e.g. [7],

κ−
0 =

1

2
qt(qt − 1), κ+

0 =
1

2
qt(qt + 1).

If Q := Q+(2t−1, q) is a non-singular hyperbolic quadric in PG(2t−1, q) or Q := Q−(2t−1, q)
is a non-singular elliptic quadric in PG(2t− 1, q), then the polar hyperplane of a point p not in
Q always cuts a parabolic section of rank t− 1 on Q. There are still two orbits of PO(2t, q) on
the non-singular points of PG(2t− 1, q); they have the same size, but can be distinguished by
the value (either square or non-square) assumed by the quadratic form defining Q on vectors
representing their points. Denote by κ+ and κ− the size of these orbits, in the hyperbolic and
elliptic case respectively. We have

κ+ =
1

2
qt−1(qt − 1), κ− =

1

2
qt−1(qt + 1).

Fix now a quadratic form η on V inducing a quadric Q and let the symbols � and /� stand for
the set of non-null square elements and the set of non-square element of Fq.

With a slight abuse of notation, we shall say that a (projective) point p is square and,
consequently, write p ∈ �, when η(vp) is a square for any (non-null) vector vp representing the
projective point p = 〈vp〉. Note that η(vp) ∈ � if and only if ∀λ ∈ Fq \ {0}, η(λvp) ∈ �; so, the
above definition is well posed. Analogously, we say that a (projective) point p is a non-square
and write p ∈ /�, when η(vp) is a non-square, for vp a (non-null) vector representing p = 〈vp〉.
Recall the quadratic character of a point is constant on the orbits of the orthogonal group. In
particular, in the parabolic case, the external points are either all squares or non-squares. For
the internal points the opposite behavior holds.

3. Proof of the Main Theorem

In order to simplify the notation, throughout this section, whenever no ambiguity might arise,
we shall usually denote by the same symbol a point p ∈ PG(2n+ 1, q) and any non-null vector vp
representing p with respect to a suitably chosen basis. This slight lack of rigour will however be
harmless.

For n = k = 2, by [1, Main Result 2], the minimum distance of the code P2,2 is dmin = q3 − q2

and there is nothing to prove. Suppose henceforth n > 2, k = 2 and q odd.
As

#{points of ∆n,2} =
(q2n − 1)(q2n−2 − 1)

(q − 1)(q2 − 1)
,

by Theorem 2.1, the part on the minimum distance in the Main Theorem is equivalent to the
following statement.
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Theorem 3.1. Let V := V (2n+ 1, q), q odd. The maximum number of lines totally singular for
a given non-singular quadratic form η defined on V and simultaneously totally isotropic for a
(degenerate) alternating form ϕ over V is

fmax =
(qn−1 − 1)

(q − 1)(q2 − 1)
(q3n−2 + q3n−3 − q3n−4 + q2n − qn−1 − 1).

This section is fully devoted to the proof of Theorem 3.1. In Section 3.1 we shall introduce
some preliminary lemmata. Under a somehow further technical assumption we shall see that four
cases will need to be analyzed; they depend on the dimension and position of the radical R of
a generic alternating form ϕ with respect to the quadric Q. In Section 3.4 we shall perform a
detailed analysis of the first of these cases, the one yielding the actual minimum distance. The
outcome of our investigation for the next two cases will be outlined in Section 3.5; there we shall
just describe in what measure they differ from the case of Section 3.4 and summarize the results
obtained. The fourth case will be dealt with in Section 3.6. In Section 3.7 we shall drop the
assumption used in sections 3.3–3.6 and see that the theorem holds in full generality. Finally, in
Section 3.8 the projective equivalence of all the words of minimum weight is proved.

3.1. Some linear algebra
Throughout the remainder of the paper, we shall always denote by η a fixed non-singular

quadratic form on V and by ϕ an arbitrary alternating form defined on the same space. We shall
also write M and S for the matrices representing respectively η and ϕ with respect to a given,
suitably chosen, basis B of V ; write also ⊥Q for the orthogonal polarity induced by η and ⊥W for
the (degenerate) symplectic polarity induced by ϕ. In particular, for v ∈ V , the symbols v⊥Q and
v⊥W will respectively denote the space orthogonal to v with respect to η and ϕ. Likewise, when
X is a subspace of V , the notations X⊥Q and X⊥W will be used to denote the spaces orthogonal
to X with respect to η and ϕ. We shall say that a subspace X is totally singular if X ≤ X⊥Q

and totally isotropic if X ≤ X⊥W . Let also R := Rad(ϕ) and r := dimR.

Lemma 3.2. 1. For any v ∈ V , v⊥Q = v⊥W if and only if v is an eigenvector of non-zero
eigenvalue of M−1S.

2. The radical R of ϕ corresponds to the eigenspace of M−1S of eigenvalue 0.

Proof. 1. Observe that v⊥Q = v⊥W if and only if the equations xTMv = 0 and xTSv = 0
are equivalent for any x ∈ V . This means that there exists an element λ ∈ Fq \ {0} such
that Sv = λMv. As M is non-singular, the latter says that v is an eigenvector of non-zero
eigenvalue λ for M−1S .

2. Let v be an eigenvector of M−1S of eigenvalue 0. Then M−1Sv = 0, hence Sv = 0 and
xTSv = 0 for every x ∈ V , that is v⊥W = V . This means v ∈ R.

We can now characterize the eigenspaces of M−1S.

Lemma 3.3. Let µ be a non-zero eigenvalue of M−1S and Vµ be the corresponding eigenspace.
Then,

1. ∀v ∈ Vµ and r ∈ R, r ⊥Q v. Hence, Vµ ≤ R⊥Q .

2. The eigenspace Vµ is both totally isotropic for ϕ and totally singular for η.
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3. Let λ, µ 6= 0 be two not necessarily distinct eigenvalues of M−1S and u, v be two corres-
ponding eigenvectors. Then either of the following holds:

(a) u ⊥Q v and u ⊥W v.

(b) µ = −λ.

Proof. 1. Take v ∈ Vµ. As M−1Sv = µv we also have µvT = vTSTM−T . So, vTMT =
µ−1vTST . Let r ∈ R. Then, as ST = −S, vTMr = µ−1vTST r and vTSr = 0 for any v, we
have vTMr = 0, that is r ⊥Q v.

2. Let v ∈ Vµ. Then M−1Sv = µv, which implies Sv = µMv. Hence, vTSv = µvTMv.
Since vTSv = 0 and µ 6= 0, we also have vTMv = 0, for every v ∈ Vµ. Thus, Vµ is
totally singular for η. Since Vµ is totally singular, for any u ∈ Vµ we have uTMv = 0; so,
uTSv = µuTMv = 0, that is Vµ is also totally isotropic.

3. Suppose that either u 6⊥Q v or u 6⊥W v. Since by Lemma 3.2 u⊥Q = u⊥W and v⊥Q = v⊥W ,
we have Mu = λ−1Su and Mv = µ−1Sv. So, u 6⊥Q v or u 6⊥W v implies vTMu 6= 0 6= vTSu.
Since M−1Su = λu and M−1Sv = µv, we have

vTSu = vTS(λ−1M−1Su) = λ−1(−M−1Sv)TSu = −(λ−1µ)vTSu;

hence, −λ−1µ = 1.

Corollary 3.4. Let Vλ and Vµ be two eigenspaces of non-zero eigenvalues λ 6= −µ. Then, Vλ⊕Vµ

is both totally singular and totally isotropic.

Proposition 3.5. If x ∈ Vλ, then ∀y ∈ V, λyTMx = yTSx.

Proof. If x ∈ Vλ, then M−1Sx = λx; hence, ∀y ∈ V , yTSx = λyTMx.

Lemma 3.6. The maximum number of eigenvectors for M−1S of non-zero eigenvalue is obtained
when a complement H0 of R ∩R⊥Q in R⊥Q contains a direct sum Vµ ⊕ Vλ of two eigenspaces of
M−1S, each of dimension m, where m is the rank of the non-singular quadric Q0 := Q ∩H0.

Proof. By Claim 2 of Lemma 3.3, any maximal eigenspace Vµ of M−1S with non-zero eigenvalue
is both totally singular for η and totally isotropic for ϕ. By Claim 1 of Lemma 3.3, Vµ is contained
in a complement H0 of R ∩ R⊥Q in R⊥Q . In particular, Vµ is contained in a generator of the
quadric Q0, so dimVµ ≤ m. If there were at least three distinct eigenspaces Vλ, Vµ, Vθ with
λ = −µ, then, obviously, θ 6= ±λ,±µ. Let c = dimVθ ≥ 1. By Corollary 3.4, both Vθ ⊕ Vλ and
Vθ ⊕ Vµ are totally singular for η; hence they are contained in two generators, say G+ and G−
of Q0, with Vθ ≤ G+ ∩G− and c < m, dimVλ, Vµ ≤ m− c. Thus, we have the following upper
bond on the number of eigenvectors of non-zero eigenvalue:

|Vλ|+ |Vθ|+ |Vµ| − 3 ≤ 2qm−c + qc − 3 < 2qm − 2 = |G+|+ |G−| − 2.

This is to say that the possible maximum number of eigenvectors of non-zero eigenvalue attained
when there are at least three distinct non-zero eigenvalues is strictly less than the number of
vectors contained in two vector spaces of dimension m.

We now show that there actually are alternating forms ϕ inducing two eigenspaces of dimension
m; this yields that the number 2(qm − 1) of eigenvectors can be achieved and, consequently, this
is the maximum possible. Let G+ and G− be two trivially intersecting generators of Q0 with
bases respectively {b+i }mi=1 and {b−i }mi=1. We can suppose without loss of generality that the
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quadratic form η|V ′ , restriction of η to V ′ := G+ ⊕G−, is represented with respect to the basis
B′ = {b+i }mi=1 ∪ {b−i }mi=1 by the matrix

M ′ =

(
0m Im
Im 0m

)
,

where Im is the m×m identity matrix and 0m stands for the null matrix of order m. Choose
also η such that V decomposes as V = V0 ⊥Q V ′ ⊥Q R, where V0 is an orthogonal complement
of V ′ ⊕R with respect to ⊥Q. Define now an alternating form ϕ with radical R represented on
V ′ with respect to B′ by the matrix

S′ =

(
0m −Im
Im 0m

)
and such that we also have V = V ′ ⊥W V0 ⊥W R. This is always possible, as dim(V ′ + V0) is
even. For any v ∈ G+ ∪G− ⊆ V ′,

v⊥W = v⊥
′
W +R+ V0 = v⊥

′
Q +R+ V0 = v⊥Q ,

where by ⊥′
W and ⊥′

Q we denote the orthogonality relations defined by the restriction of the
forms η and ϕ to respectively V ′ and V ′ × V ′. By Lemma 3.2, v is an eigenvector of M−1S.
Thus, G+, G− are eigenspaces of M−1S of dimension m.

By Lemma 3.6, the alternating forms ϕ inducing a maximum number of eigenvectors of M−1S,
determine two eigenspaces Vλ and Vµ with dimVλ = dimVµ = m. In this case, Lemma 3.3, point
3 shows that, for Vλ and Vµ to be both maximal, λ = −µ is also required.

3.2. Sketch of the proof and setup
As outlined before our aim is to count the maximum number f of lines totally isotropic for ϕ

and totally singular for η.
Let p be a point of Q and consider the spaces p⊥Q and p⊥W . Since Q is non-singular, p⊥Q is

a hyperplane of PG(V ) for any p ∈ Q, while p⊥W is a hyperplane of PG(V ) if and only if p 6∈ R.
Let now Qp be the orthogonal geometry induced by η on p⊥W and denote by ResQp

p the
geometry having as elements the (singular) subspaces (with respect to η) through p contained in
Qp.

As each line contains q + 1 points and each line through p in p⊥W ∩ p⊥Q corresponds to a
point in ResQp

p, the number of lines simultaneously totally isotropic for ϕ and totally singular
for η is

f =
1

q + 1

∑
p∈Q

τ(p), where τ(p) := #{points of ResQp
p}. (2)

We distinguish two main cases.

• Case A: p⊥Q ⊆ p⊥W

Let P := Pa ∪Pb and A := |P|, where

Pa := {p ∈ Q : p⊥W = PG(V )}, AR := |Pa| and

Pb := {p ∈ Q : p⊥W = p⊥Q}, AV := |Pb|.
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For any p ∈ P, ResQpp
∼= Q(2n − 2, q) (where Q(2n − 2, q) is a non-singular parabolic

quadric of rank n− 1). Thus, we have

p ∈ P ⇒ τ(p) =
q2n−2 − 1

q − 1
=: A0.

The points in Pa are the points of Q contained in R; by Lemma 3.2 the points in Pb

correspond to eigenvectors of M−1S of non-zero eigenvalue. In particular,

AR = #{points of Q ∩R}, AV =
|
⋃

λ 6=0 Vλ| − 1

q − 1

where Vλ are the eigenspaces of M−1S as λ varies among all of its non-null eigenvalues.
Clearly, A = AR +AV .

• Case B: codim p⊥W p⊥W ∩ p⊥Q = 1
Three possibilities can occur for ResQp

p:

1. ResQpp
∼= Q+(2n − 3, q) is a non-singular hyperbolic quadric of rank n − 1 in the

(2n− 3)-dimensional projective space p⊥Q ∩ p⊥W ; let

P+ := {p ∈ Q : ResQpp
∼= Q+(2n− 3, q)} and N+ = |P+|.

In particular,

p ∈ P+ ⇒ τ(p) =
(qn−1 − 1)(qn−2 + 1)

q − 1
=: B+.

2. ResQpp
∼= Q−(2n− 3, q) is a non-singular elliptic quadric of rank n− 2 in the (2n−

3)-dimensional projective space p⊥Q ∩ p⊥W ; define

P− := {p ∈ Q : ResQpp
∼= Q−(2n− 3, q)} and N− = |P−|.

Then,

p ∈ P− ⇒ τ(p) =
(qn−1 + 1)(qn−2 − 1)

q − 1
=: B−.

3. ResQp
p is isomorphic to a cone TQ(2n − 4, q) having a point T as vertex and a

non-singular parabolic quadric Q(2n− 4, q) of rank n− 2 as base; put

P0 := {p ∈ Q : ResQp
p ∼= TQ(2n− 4, q)} and N0 = |P0|.

Then,

p ∈ P0 ⇒ τ(p) =
(q2n−3 − 1)

q − 1
=: B0,

Clearly, as pointsets, Q \P = P+ ∪P0 ∪P−.
By replacing the aforementioned numbers in (2), we obtain

f =
1

q + 1
(AA0 +N0B0 +N+B+ +N−B−). (3)

The aim of the remainder of the current paper is to determine the quantities A,N0, N+ and
N− in such a way as to compute the maximum fmax of f .
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Write QR := R ∩Q for the quadric induced by η on R and take D as the radical of QR; this
is to say D = Rad(η|R); write also d = dimD. Observe that, in general, R ≤ D⊥Q and the space
V decomposes as follows

V = H ⊕D⊥Q ; D⊥Q = H0 ⊕R; R = D0 ⊕D,

where D0 is a direct complement of D in R, H is a direct complement of D⊥Q in V and H0 is a
direct complement of R in D⊥Q . Thus,

V = H ⊕H0 ⊕D0 ⊕D.

Let also
R0 := Q ∩D0, Q0 := Q ∩H0

be the quadrics induced by η in respectively D0 and H0. As Q is non-singular we have

dimH = dimD = d, dimH0 = 2n+ 1− (r + d), dimD0 = r − d.

Denote by m the rank of Q0; since for any generator X of Q0 we have X+D ⊆ Q, then d+m ≤ n.
The function f in (3) is then dependent on r and d. The possible ranks of R0 and Q0 are outlined
in Table 1. These correspond to four cases to investigate. In particular, we shall denote by f i(r, d),
1 ≤ i ≤ 4, the function providing the values of f in a given case i and by f i

max its corresponding
maximum.

3.3. Forms for M and S

In this section we shall determine suitable forms for the matrix M and S which should provide
the maximum possible values for f under the following Assumption 3.7; this shall be silently used
in Sections 3.4–3.6 and removed in Section 3.7.

Assumption 3.7. The maximum of the function f can be attained only if for a given radical R
the number of eigenvectors AV for M−1S is maximum.

It is always possible to fix an ordered basis B = BH ∪BH0
∪BD0

∪BD of V such that

BH = {b1 . . . bd} is an ordered basis of H;
BH0 = {bd+1 . . . b2n+1−r} is an ordered basis of H0;
BD0

= {b2n+2−r, . . . , b2n+1−d} is an ordered basis of D0;
BD = {b2n+2−d . . . b2n+1} is an ordered basis of D.

(4)

As all parabolic quadrics of given rank are projectively equivalent, the matrix M representing
Q with respect to B may be taken of the form

M =


0 0 0 Id
0 Q0 0 0
0 0 R0 0
Id 0 0 0

 , (5)

where R0 and Q0 are given by Table 2, according to the cases of Table 1. Here, with a slight
abuse of notation, as no ambiguity may arise, we use R0 and Q0 to denote both the matrices and
the corresponding quadrics.

Observe that there is always a vector x = (0, . . . , 0, 1, 0 . . . 0) ∈ V such that xTMx = 1; the
exact x to be chosen according varies to the case being considered as described in Table 3. It can
be seen directly that the hyperplane x⊥Q cuts Q in a section which is hyperbolic for cases 1 and
3 and elliptic otherwise; thus, the correspondence of Table 3 between square/non-square points
and internal/external points to Q is determined using the remarks of Section 2.2.
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case parity of d type of R0 rankR0 type of Q0 rankQ0

1 odd hyperbolic (r − d)/2 parabolic n− (r + d)/2
2 odd elliptic (r − d)/2− 1 parabolic n− (r + d)/2
3 even parabolic (r − d− 1)/2 hyperbolic n− (r + d− 1)/2
4 even parabolic (r − d− 1)/2 elliptic n− (r + d+ 1)/2

Table 1: Decomposition of the quadric Q

Case R0 Q0

1 R+
0 :=

(
0 I
I 0

) 0 I 0
I 0 0
0 0 1


2 R−

0 :=


0 I 0 0
I 0 0 0
0 0 1 0
0 0 0 −ξ


0 I 0
I 0 0
0 0 1



Case R0 Q0

3

0 I 0
I 0 0
0 0 1

 Q+
0 :=

(
0 I
I 0

)

4

0 I 0
I 0 0
0 0 1

 Q−
0 :=


0 I 0 0
I 0 0 0
0 0 1 0
0 0 0 −ξ


Table 2: Matrices for R0 and Q0

In this table ξ is a non-square in Fq; the order of the identity matrices I and the null matrices 0
is provided by Table 1.

Lemma 3.8. Let p 6∈ R be a singular point with respect to η. If the points external to Q are
squares, then

• p ∈ P+ if and only if pTSM−1Sp ∈ −�;

• p ∈ P0 if and only if pTSM−1Sp = 0;

• p ∈ P− if and only if pTSM−1Sp ∈ −/�.

When the points external to Q are non-squares, the classes P+ and P− are exchanged.

Proof. Let Wp := p⊥W and write ap := W
⊥Q
p for the point orthogonal with respect to η to the

hyperplane Wp. Then, a⊥Q
p = p⊥W . In particular, the following two equations are equivalent for

any x:
xTSp = 0, xTMap = 0.

In other words, there exists ρ ∈ Fq \ {0} such that ρSp = Map and, consequently, ap = ρM−1Sp.
Observe that the point ap belongs to p⊥Q , as pTMap = ρpTMM−1Sp = ρpTSp = 0. Clearly, p
is an eigenvector of M−1S if and only if p = ap. In this case p ∈ P.

Suppose now p not to be an eigenvector of M−1S and consider the quadric

Qp = Wp ∩Q = a⊥Q
p ∩Q.

Observe that the the residue at p of Qp is either an hyperbolic, elliptic or degenerate quadric
(more precisely, in the latter case, a cone with vertex a point and base a parabolic quadric)
according as ap is external, internal or contained in Qp ∩ p⊥Q . Thus, the three cases above are
determined by the value assumed by the quadratic form η on ap, that is by

aTp Map = ρ2pTSTM−TMM−1Sp = −ρ2pTSM−1Sp.

The result now follows.
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case x x⊥Q ∩Q internal points external points
1 (02n−r, 1, 0r) hyperbolic non-square square
2 (02n−r, 1, 0r) elliptic square non-square
3 (02n−d, 1, 0d) hyperbolic non-square square
4 (02n−d, 1, 0d) elliptic square non-square

Table 3: Internal/external points for Q

Case S22 ν Non-null entries in U

1, 2

 0 I 0
−I 0 0
0 0 0

 n− (r + d)/2 1 in the position U1,2n+1−(r+d)

3
(

0 I
−I 0

)
n− 1

2 (r + d− 1) None

4


0 I 0 0
−I 0 0 0
0 0 0 α
0 0 −α 0

 n− 1
2 (r + d+ 1)

• if α = 0, a non-
singular 2× 2 minor
UI contained in the
last two columns of
U .

• if α 6= 0, possibly a
2 × 2 minor UI con-
tained in the last two
columns of U .

Table 4: Structure of the matrix S

For any p ∈ R we have Sp = 0; if p ∈ Vλ, where Vλ is an eigenspace of M−1S, then
pTSTM−1Sp = λpTST p = 0. In particular, the coordinates of all the points of P (see Section 3.2)
satisfy the system {

pTSTM−1Sp = 0

pTMp = 0.
(6)

Lemma 3.9. Suppose ϕ to be an alternating form with a maximum number of totally isotropic
lines which are also totally singular for the quadric Q. Then ϕ can be represented with respect to
the basis B by an antisymmetric matrix of the form

S =


S11 U 0 0
−UT S22 0 0

0 0 0 0
0 0 0 0

 , (7)

where S11 = −ST
11 and U , S22 are given by Table 4.

Proof. The generic matrix of an antisymmetric form with radical R is of the form (7), with S11

and S22 antisymmetric and U arbitrary. By Lemma 3.6 and Assumption 3.7, if the number of
totally isotropic lines which are also totally singular is maximum, then there are two maximal
subspaces of dimension m contained in a complement H0 of R ∩ R⊥Q in R⊥Q which are both
totally singular and totally isotropic. Thus, we may take the first two blocks of columns of S22 as
described in Table 4. Observe that the linear transformation induced by

11



D =


Z 0 0 0
0 I 0 0
0 0 I 0
0 0 0 Z−T

 ,

with Z a non-singular d× d matrix, acts on M and S as follows

DTMD = M, DTSD =


ZTS11Z ZTU 0 0
−UTZ S22 0 0

0 0 0 0
0 0 0 0

 .

In particular, by a suitable choice of Z, the matrix U can be assumed to be of the form(
0 I
0 0

)
,

where I is either the 1× 1 or 2× 2 identity matrix, according as the case being considered is 1, 2
or 4.

3.4. First case
Throughout this section we shall write the coordinates of a generic point p with respect to

the basis B given by (4) as
p = (x1, z1, z2, y,x2,y2)

where y ∈ Fq, z1, z2 ∈ Fn−(r+d)/2
q , x1,y2 ∈ Fd

q and x2 ∈ F(r−d)
q . Furthermore, z ∈ Fq is taken to

be the first component of the vector x1. By Tables 1 and 2, we have R0 = R+
0 :=

(
0 I
I 0

)
with

I the identity matrix of order (r − d)/2. Then,

pTSTM−1Sp = −z2 + 2z2
T z1 and pTMp = 2z2

T z1 + y2 + x2
TR+

0 x2 + 2x1
T y2.

We need a preliminary technical lemma.

Lemma 3.10. The following properties hold.

1. For any given β ∈ Fq\{0}, the number of solutions (y,x2) of the equation y2+x2
TR+

0 x2 = β2

is q(r−d)/2(q(r−d)/2 + 1).

2. Consider the quadratic form θ(z, z1, z2) = −z2 + 2z2
T z1. Then the number of vectors

(z, z1, z2) with z 6= 0 such that θ(z, z1, z2) ∈ −� is

q − 1

2

(
q2n−(r+d) − q2n−(r+d)−1 + qn−(r+d)/2 + qn−(r+d)/2−1

)
. (8)

Proof. 1. Let ξ(y,x2) = y2 + x2
TR+

0 x2 be a quadratic form defined on J := 〈b2n+1−r, BD0〉,
where the coordinates of vectors are taken with respect to the basis {b2n+1−r} ∪BD0 . Then
ξ induces a parabolic quadric R′ of rank (r − d)/2 and the polar hyperplane of the vector
(1, 0, . . . , 0) = (1,0) ∈ J cuts a hyperbolic section on R′. So, (1,0) is external to R′ and,
consequently, its orbit has size 1

2q
(r−d)/2(q(r−d)/2 + 1). Furthermore, ξ(1,0) = 1 ∈ �; thus

the points external to R′ are always squares and they number to 1
2q

(r−d)/2(q(r−d)/2+1). Note
that for each square point p there are exactly 2 vectors v1, v2 representing p = 〈v1〉 = 〈v2〉
such that ξ(v1) = ξ(v2) = β2; thus, the overall number of solutions of the equation is
q(r−d)/2(q(r−d)/2 + 1).
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2. Consider the quadratic form θ(z, z1, z2) = −z2 + 2z2
T z1 defined on the space J ′ :=

〈b1, BH0 \{b2n+1−r}〉. Observe that the point (1, 0, . . . , 0) = (1,0) ∈ J ′ is always external to
the parabolic quadric of equation θ(z, z1, z2) = 0, as its polar hyperplane cuts a hyperbolic
section of equation 2z2

T z1 = 0. Note that θ(1,0) = −1 — namely, θ(1,0) is a square if
−1 ∈ � and a non-square otherwise. This gives that the number of vectors on which θ
assumes a square value when −1 ∈ � is the same as the number of values on which θ assumes
a non-square value for −1 6∈ �. In particular, for −1 ∈ �, the number of such vectors is the
number of vectors (z, z1, z2) corresponding to external points to θ(z, z1, z2) = 0, excluding
those lying in the hyperplane z = 0. This gives (8). The same number is obtained for
−1 6∈ �.

Proposition 3.11. Suppose we have a form ϕ yielding the maximum possible number of totally
singular and totally isotropic lines in Case 1. Then,

A = 2
qn−(r+d)/2 − 1

q − 1
+

qr−1 − 1

q − 1
+ q(r+d−2)/2; N0 =

q2n−1 − 1

q − 1
−A;

N+ =
1

2

(
q2n−1 + q2n−(r+d)/2−1 + qn+(r+d)/2−1 − qn−1

)
;

N− =
1

2

(
q2n−1 − q2n−(r+d)/2−1 − qn+(r+d)/2−1 + qn−1

)
.

Proof. By Assumption 3.7, in order for the number of totally singular, totally isotropic vectors to
be maximum we need M−1S to have two eigenspaces Vλ, Vµ of non-zero eigenvalues λ, µ = −λ,
both of maximal dimension m = n − (r + d)/2; thus, AV = 2 qn−(r+d)/2−1

q−1 . As the quadric QR

induced by η on PG(R) can be seen as the product of a hyperbolic quadric of rank (r− d)/2 with
a subspace of dimension d, we have

AR = #{points of QR} =
qr−1 − 1

q − 1
+ q(r+d−2)/2.

It is now straightforward to retrieve A.
For any p ∈ Q, we have p ∈ P0 if and only if p 6∈ P and the coordinates of p are solution of

System (6), that is 
−z2 + 2z2

T z1 = 0

2z2
T z1 + y2 + x2

TR+
0 x2 + 2x1

T y2 = 0.
(9)

To determine the number of solutions of (9) we distinguish three cases:
• x1 = 0; consequently we also have z = 0. Under this assumption the first equation in (9) is

z2
T z1 = 0; it has

(qn−(r+d)/2 − 1)(qn−(r+d)/2−1 + 1) + 1

solutions in (z1, z2), that is the number of singular vectors for the hyperbolic quadratic
form z2

T z1 of rank n− (r + d)/2. Given z1 and z2, we can choose y2 in an arbitrary way;
thus it can assume qd values. Finally, the second equation in (9) is fulfilled when the vector
(y,x2) is singular for the parabolic form y2 + x2

TR+
0 x2 of rank (r − d)/2; that is to say

there are qr−d possibilities for it.
Thus, the number of (projective) points whose coordinates satisfy (9) with x1 = 0 is

N0
1 =

qr(q2n−r−d−1 + qn−(r+d)/2 − qn−(r+d)/2−1)− 1

q − 1
.
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• Assume now z = 0 and x1 6= 0. The first equation in (9) is the same as before; thus
the vector (z1, z2) can assume (qn−(r+d)/2 − 1)(qn−(r+d)/2−1 + 1) + 1 distinct values. As
z = 0 and x1 6= 0, the vector x1 can be chosen in qd−1 − 1 ways, while y and x2 are
arbitrary — thus there are respectively q and qr−d possibilities for these. Observe that
given z1, z2, y,x1,x2 the second equation in (9) is a non-null linear equation in y2; thus
there are qd−1 possible solutions y2. Overall we get that the number of projective points
satisfying (9) with z = 0 and x1 6= 0 is

N0
2 =

qr

q − 1
(qd−1 − 1)(q2n−r−d−1 + qn−(r+d)/2 − qn−(r+d)/2−1).

• Finally, suppose z 6= 0. Clearly, there are (q − 1) possible choices for z and, consequently,
qd−1(q − 1) choices for x1. The first equation in (9) becomes z2

T z1 = z2. Observe
that the hyperbolic form z2

T z1 assumes a given square value z2 for exactly ( q
2n−r−d−1

q−1 −
(qn−(r+d)/2−1)(qn−(r+d)/2−1+1)

q−1 ) 12 · 2 choices of (z1, z2). The values of y and x2 can now be
chosen arbitrarily; that is to say, there are respectively q and qr−d possibilities. Finally, as
in the previous case, the vector y2 must be the solution of a non-null linear equation in
d unknowns; thus, it can assume qd−1 distinct values. So, for z 6= 0, then the number of
projective points being solutions of (9) is

N0
3 = q2n−2 − qn+(r+d)/2−2.

In particular,

N0 = N0
1 +N0

2 +N0
3 −A =

q2n−1 − 1

q − 1
−A. (10)

By Lemma 3.8 and Table 3, p ∈ P+ if and only if pTSM−1Sp ∈ −�. Thus, the coordinates
of the points of P+ satisfy

−z2 + 2z2
T z1 ∈ −�

2z2
T z1 + y2 + x2

TR+
0 x2 + 2x1

T y2 = 0
(11)

We argue as above.

• Suppose x1 = 0; hence z = 0. The vector y2 can be chosen arbitrarily; thus, it may assume
qd values. The first equation in (11) gives 2z2

T z1 = −β2 for some element β ∈ Fq \ {0}.
As the quadric induced by 2z2

T z1 is hyperbolic, there are

(
q2n−r−d − 1

q − 1
− (qn−(r+d)/2 − 1)(qn−(r+d)/2−1 + 1)

q − 1
)
1

2
· (q − 1)

possible vectors of V (2n− r − d, q) on which the quadratic form 2z2
T z1 assumes a value

opposite of a square. Observe that for any of these choices of (z1, z2), an element −β2 is
determined by the first equation. Given such β2, the second equation becomes

β2 = y2 + x2
TR+

0 x2.

By Claim 1 of Lemma 3.10, the number of solutions of this equation is q(r−d)/2(q(r−d)/2+1).
So, the contribution of this case to the number of points fulfilling (11) is

N+
1 =

(q2n−r−d−1 − qn−(r+d)/2−1)(qr + q(r+d)/2)

2
.
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• Suppose now x1 6= 0 and z = 0. The vector x1, clearly, can assume qd−1 − 1 distinct
non-null values. The analysis of the first equation in (11) is exactly as before and gives that
the vector (z1, z2) can assume ( q

2n−r−d−1
q−1 − (qn−(r+d)/2−1)(qn−(r+d)/2−1+1)

q−1 ) 12 · (q − 1) values.
The values of y and x2 may be assigned arbitrarily, thus there are respectively q and qr−d

possibilities for them. Finally, y2 can assume qd−1 different values, this being the number
of solutions of a linear equation in d unknowns. So, for z = 0 and x1 6= 0, the number of
projective points solution of (11) is

N+
2 =

(q2n−r−d−1 − qn−(r+d)/2−1)(qd−1 − 1)qr

2
.

• Assume now z 6= 0. By Lemma 3.10, Claim 2, −z2 + 2z2
T z1 ∈ −� has

q − 1

2

(
q2n−(r+d) − q2n−(r+d)−1 + qn−(r+d)/2 + qn−(r+d)/2−1

)
solutions in (z, z1, z2). For x1 there remain qd−1 possibilities since the first coordinate z
has already been taken into account in the first equation. As before, the values of y and
x2 can be assigned arbitrarily, that is in respectively q and qr−d ways and y2 is a solution
of a linear equation in d unknowns; thus there are qd−1 possibilities for the latter. The
contribution of solutions in terms of projective points to the system (11) for z 6= 0 is

N+
3 =

q2n−1 + qn+(r+d)/2−1 − q2n−2 + qn+(r+d)/2−2

2
.

In particular,

N+ = N+
1 +N+

2 +N+
3 =

q2n−1 + q2n−(r+d)/2−1 + qn+(r+d)/2−1 − qn−1

2
. (12)

The value of N− can now be recovered either with a similar argument, or by just observing that
N− = #{points of Q(2n, q)} − (A+N0 +N+).

Proposition 3.12. The function f1(r, d) attains its maximum f1
max for r = 2n− 1 and d = 1,

where it assumes the value

f1
max := f1(2n− 1, 1) =

(qn−1 − 1)(q3n−2 + q3n−3 − q3n−4 + q2n − qn−1 − 1)

(q − 1)2(q + 1)
.

Proof. By plugging the values of A,N0, N+ and N− into (3), we get

f1(r, d)(q+1)(q−1)2 = q2n−3(q−1)(qr−1+q(r+d)/2+1−q(r+d)/2−1+qn−(r+d)/2+1+qn−(r+d)/2)+

q4n−3 − q2n−1 − q2n−2 + q2n−3 − q2n + 1. (13)

Recall that from the last paragraph of Section 3.2, 1 ≤ d ≤ min{r, 2n− r}.
Let s = r + d. It is straightforward to see that f(r, d) is maximum if and only if g(r, s) is

maximum, where

g(r, s) = qn−s/2+1 + qn−s/2 + qs/2+1 − qs/2−1 + qr−1, (14)

with the constraints 1 ≤ r ≤ 2n− 1 and

r + 1 ≤ s ≤ min{2r, 2n}. (15)
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In order to determine the maximum of g(r, s) in its domain, we regard it as a continuous
function defined over R2 and then we reinterpret its behavior over Z2. So, we can consider the
derivative

∂

∂s
g(r, s) =

log q
2

(
qs/2+1 − qn−s/2+1 − qs/2−1 − qn−s/2

)
. (16)

This is positive for

qs/2
(
q − 1

q

)
> qn−s/2(q + 1),

that is
s > n+ logq

q

q − 1
. (17)

As 1 < q
q−1 < q, also 0 < logq

q
q−1 < 1, and (17) gives s ≥ n + 1. Hence, for s ≥ n + 1 the

function g(r, s) is increasing in s, while for s ≤ n it is decreasing. Define

h(r) := max
s

g(r, s),

where s varies in all allowable ways for any given r. The following cases are possible:

• for s ≥ n+ 1 the maximum of g(r, s) is attained when s is maximum, that is

h(r) = g(r,max s),

where by max s we denote the maximum value s may assume, subject to the constraints of
(15). This leads to the following two subcases:

1. if r > n, then max s = 2n and

h(r) := max
s

g(r, s) = g(r, 2n).

By (15), r < s ≤ 2n is odd and by

∂

∂r
h(r) =

∂

∂r
g(r, 2n) = qr−1 log q > 0, (18)

the value of h(r) = g(r, 2n) is maximum for r maximum, that is r = 2n − 1. Since
s = r + d by definition, as r = 2n − 1 and s = 2n, we have d = 1. So, g(r, s) is
maximum for r = 2n− 1 and s = 2n. The value assumed in this case is

g(2n− 1, 2n) = q2n−2 + qn+1 − qn−1 + q + 1. (19)

2. if r ≤ n and also s ≥ n + 1, then n + 1 ≤ s ≤ 2r implies r ≥ (n + 1)/2. Since
s ≤ 2r ≤ 2n, by (15), we have max s = 2r. Thus,

h(r) = g(r, 2r) = qr+1 + qn−r+1 + qn−r.

Then,
∂

∂r
h(r) = (log q)

(
qr+1 − qn−r+1 − qn−r

)
.

We have ∂
∂rh(r) > 0 if and only if (r + 1) > (n − r) + logq(q + 1), that is 2r >

n− 1 + logq(q + 1), i.e. 2r ≥ n+ 1. In particular, for 2r ≥ n+ 1, the function h(r) is
increasing and it attains its maximum for r = n, where

h(n) = qn+1 + q + 1 = g(n, 2n).

This is smaller than (19); so in the range n+1
2 ≤ r ≤ 2n− 1 the maximum is given by

(19).
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• Suppose now 2 ≤ s < n+ 1; then, as d ≥ 1, we have r ≤ s− 1 and

r − 1 ≤ s− 2 < n− 1

n− s/2 + 1 ≤ n

n− s/2 ≤ n− 1

s/2 + 1 ≤ n/2 + 3/2

s/2− 1 ≥ 0.

. (20)

Using the estimates of (20) in (14) we get

g(r, s) < qn + 2qn−1 + qn/2+3/2 =: g0. (21)

Observe that the value g0 from (21) is always smaller than that of g(r, s) given by (19).

The above argument proves that the maximum of g(r, s) is always attained in (19); consequently,
the maximum for f1(r, d) is f1

max := f1(2n− 1, 1).

In particular,
q2n − 1

q − 1

q2n−2 − 1

q − 1

1

q + 1
− f1

max = q4n−5 − q3n−4.

Thus, this case correspond to words of minimum weight and these words are alternating bilinear
forms with a radical of dimension 2n − 1, that is to say, they correspond to some points of
G2n+1,2n−1.

We now show that in the three remaining cases f(r, d) cannot ever be larger than f1
max.

3.5. Cases 2 and 3
Cases 2 and 3 can be carried out in close analogy to Section 3.4. The values they yield for

f2
max and f3

max turn out to be always lower than f1
max. The following proposition summarizes the

results; its proof is quite analogous to that of Proposition 3.11.

Proposition 3.13. Suppose we have a maximum number of totally singular totally isotropic
lines and Assumption 3.7 holds. Then,

• In case 2,

A = 2
qn−(r+d)/2 − 1

q − 1
+

qr−1 − 1

q − 1
− q(r+d−2)/2; N0 =

q2n−1 − 1

q − 1
−A;

N+ =
q2n−1 + q2n−(r+d)/2−1 − qn+(r+d)/2−1 − qn−1

2
;

N− =
q2n−1 − q2n−(r+d)/2−1 + qn+(r+d)/2−1 + qn−1

2
.

• In case 3,

A = 2
qn−(r+d−1)/2 − 1

q − 1
+
qr−1 − 1

q − 1
; N0 =

q2n−1 + qn+(r+d−1)/2 − qn+(r+d−1)/2−1 − 1

q − 1
−A;

N± =
q2n−r−d − qn−(r+d+1)/2

2(q − 1)
(qr+d−1 ± q(r+d−1)/2).
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Using arguments similar to those of Proposition 3.12, we can show that for n > 3 the maximum
number of totally singular totally isotropic lines is attained when the radical R of the alternating
form ϕ is as large as possible. Our results are described by the following proposition.
Proposition 3.14. For 1 ≤ i ≤ 3 denote by f i(r, d) the function f(r, d) obtained in case i and
by f i

max its maximum. The values of r, d where f i attains its maximum f i
max for i = 1, 2, 3 are

those outlined in Table 5.

Case n = 3 n > 3
1 r = 5, d = 1 r = 2n− 1, d = 1
2 r = 1, d = 1 r = 2n− 1, d = 1
3 r = 1, d = 0 r = 2n− 1, d = 0

Table 5: Maxima for the functions f i(r, d).

3.6. Fourth case
As Q0 is elliptic, we have from Table 4

A = 2
qn−(r+d+1)/2 − 1

q − 1
+

qr−1 − 1

q − 1
.

Recall that A0 > B+ > B0 > B−; thus,

f4
max <

1

q + 1

(
AA0 + (

q2n − 1

q − 1
−A)B+

)
=

A0 −B+

q + 1
A+

q2n − 1

q2 − 1
B+.

Some straightforward algebraic manipulations show that

f4
max(r, d)(q − 1)2(q + 1) < τ(r, s),

where s = r + d and

τ(r, s) := qn(qn−1 − 1)(q − 1)(qr−3 + 2qn−(s+5)/2)+

q4n−3 + q3n−1 − q3n−2 − 3q2n−2 + 2q2n−3 − q2n + 2qn−1 − 2qn−2 + 1.

Regarding τ(r, s) as a function defined over R2,
∂

∂s
τ(r, s) = log q

(
−q3n−(s+5)/2 + q3n−(s+7)/2 + q2n−(s+3)/2 − q2n−(s+5)/2

)
< 0.

In particular, the maximum of τ(r, s) is attained for s minimum, that is s = r. Thus,

h(r) := max
s

τ(r, s) = τ(r, r).

By computing ∂
∂rh(r), we see that the function h(r) has one critical point in the range 1 < r <

2n− 1 and this critical point is a minimum. Thus, the maximum of h(r) is for either r = 1 or
r = 2n− 1. We have

h(1) = q4n−3 + q3n−1 − q3n−2 + 2q3n−3 − 2q3n−4 − 4q2n−2 + 3q2n−3 − q2n + qn−1 − qn−2 + 1,

h(2n− 1) = q4n−3 + q4n−4 − q4n−5 + q3n−1 − q3n−2 − q3n−3 + q3n−4 − q2n−2 − q2n + 1,

and h(1) < h(2n− 1). In any case, f4
max < h(2n−1)

(q−1)2(q+1) = f1
max.

Proposition 3.15. Under Assumption 3.7, the maximum of the function f(r, d) is f1
max, attained

in case 1, for r = 2n − 1 and d = 1; consequently, the minimum distance of the orthogonal
Grassmann code Pn,2 is q4n−5 − q3n−4.
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Type of ` #(` ∩P+) #(` ∩W) #(` ∩P−) Corresponding set
0 0 q + 1 0 ∆0

+ q 1 0 ∆+

α q+1
2 0 q+1

2 ∆α

β q−1
2 2 q−1

2 ∆β

− 0 1 q ∆−

Table 6: Types of lines in ∆n,2 and corresponding subsets

3.7. Removal of Assumption 3.7
We are now ready to drop Assumption 3.7. Let W be the quadric induced by the matrix

W = SM−1S, as studied in Lemma 3.8. We say that a line ` ∈ ∆n,2 is of type 0, +, α, β or −
according to the conditions in Table 6; observe that actually ` ∩W = ` ∩ (P ∪P0).

Lemma 3.16. For any choice of M and S we have

(N+ −N−)
q2n−2 − 1

q − 1
= q(#∆+ − #∆−).

Proof. We count the number of flags of type (p, `) with p ∈ P− or p ∈ P+ and ` ∈ ∆2,n in two
different ways. Let

S− = {(p, `) : p ∈ P−, p ∈ `, ` ∈ ∆n,2}.

As there are exactly q2n−2−1
q−1 lines of ∆2,n through any point p ∈ Q we have

#S− = N− q2n−2 − 1

q − 1
.

On the other hand, only lines of type α, β or − are incident with points of P−. Using Table 6 we
get

#S− = q#∆− +
q + 1

2
#∆α +

q − 1

2
#∆β .

So,

N− q2n−2 − 1

q − 1
= q#∆− +

q + 1

2
#∆α +

q − 1

2
#∆β .

By the same counting argument on S+ := {(p, `) : p ∈ P+, p ∈ `, ` ∈ ∆n,2}, we have

N+ q2n−2 − 1

q − 1
= q#∆+ +

q + 1

2
#∆α +

q − 1

2
#∆β .

Consequently,

(N+ −N−)
q2n−2 − 1

q − 1
= q(#∆+ − #∆−).

Proposition 3.17. The maximum of the function f is f1
max, as described in Proposition 3.15.
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Proof. Both the lines of ∆+ and those of ∆− are simultaneously tangent to Q and 1–secant to
W. In particular, all of them are tangent to both Q and W at some point p ∈ Q ∩W. Thus,

#∆+ + #∆− ≤ q2n−2 − 1

q − 1
#(Q ∩W).

A fortiori,

#∆+ − #∆− ≤ q2n−2 − 1

q − 1
#(Q ∩W);

consequently, by Lemma 3.16,

δ := (N+ −N) ≤ q#(Q ∩W) < q
q2n − 1

q − 1
. (22)

Since B+ +B− = 2B0, B+ −B0 = qn−2, A0 −B0 = q2n−3, we can rewrite (3) in the form

(q+1)f = A(A0−B0)+B0 q
2n − 1

q − 1
+ δ(B+−B0) = Aq2n−3+ δqn−2+

q2n−3 − 1

q − 1

q2n − 1

q − 1
. (23)

Using the estimate of (22) this becomes

f <
Aq2n−3(q − 1)2 + q4n−3 − q3n−1 − q2n−3 + q3n − q2n − qn + qn−1 + 1

(q + 1)(q − 1)2
. (24)

Suppose now f ≥ f1
max = q4n−3+q4n−4+...

(q+1)(q−1)2 . Then, Aq2n−3(q − 1)2 ≥ q4n−4; thus, A ≈ q2n−3.
Observe now that A = AV + AR with AV ≤ 2 qn−1

q−1 . In particular, we have AR ≈ q2n−3. As
AR = #(Q ∩R) this gives r = dimR ≥ 2n− 1. As R ≤ D⊥Q , we obtain d ≤ 2. For d = 1 there
are no possible eigenspaces contributing to AV and we end up in either case 1 or 2, according
to the nature of R0; thus, f = f1

max. Likewise, for d = 2 there are also no possible eigenspaces
contributing to AV and we are done. Finally, for d = 0 then M−1S has necessarily two eigenspaces
of dimension 1, that is of maximal dimension; thus we end up in either case 3 or 4. In particular,
all possible configurations have been already investigated and we can conclude f = f1

max.

3.8. Minimum weight codewords
Proposition 3.18. All minimum weight codewords are projectively equivalent.

Proof. By Proposition 3.17 a minimum weight codeword corresponds to a configuration in which
dimR = 2n− 1, d = 1 and dimVλ = dimVµ = 0. The form of the matrices M and S with respect
to the basis B of Section 3.3 is as dictated by Case 1. In particular, we have with respect to B

M =


0 0 0 1
0 1 0 0
0 0 R+

0 0
1 0 0 0

 , S =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 .

This means that, up to projective equivalence, M and S are uniquely determined. The result
follows.
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